

MATH524 – Spring 2025
Problem Set: Week 4

1. (Kernel Density Estimation with a Fourth Order Kernel)

Let X_1, \dots, X_n be i.i.d. real-valued samples from a distribution with Lebesgue density function $f(x)$. Suppose that f is four times continuously differentiable with $|f^{(r)}(x)| \leq M$ for $0 \leq r \leq 4$.

Define the fourth order Epanechnikov kernel as $K(u) = \frac{45}{32} \left(1 - \frac{7u^2}{3}\right) (1 - u^2)$ for $-1 \leq u \leq 1$. Recall that the kernel density estimator of $f(x)$ is given by

$$\hat{f}(x) = \frac{1}{n} \sum_{i=1}^n \frac{1}{h} K\left(\frac{X_i - x}{h}\right).$$

(a) Show that K is indeed a fourth order kernel by proving the following four statements.

$$\int_{-1}^1 K(u) du = 1, \quad \int_{-1}^1 uK(u) du = 0, \quad \int_{-1}^1 u^2 K(u) du = 0, \quad \int_{-1}^1 u^3 K(u) du = 0.$$

You may wish to use the fact that $K(u) = K(-u)$.

Solution: Since $K(u) = K(-u)$, we have that K is an even function. This immediately shows that $\int_{-1}^1 u^r K(u) du = 0$ whenever $r \geq 1$ is odd. For the remaining two integrals,

$$\begin{aligned} \int_{-1}^1 K(u) du &= \int_{-1}^1 \frac{45}{32} \left(1 - \frac{7u^2}{3}\right) (1 - u^2) du = \int_{-1}^1 \frac{105u^4}{32} - \frac{75u^2}{16} + \frac{45}{32} du \\ &= \left[\frac{105u^5}{160} - \frac{75u^3}{48} + \frac{45u}{32} \right]_{u=-1}^1 = \frac{105}{80} - \frac{75}{24} + \frac{45}{16} = 1, \\ \int_{-1}^1 u^2 K(u) du &= \int_{-1}^1 \frac{45u^2}{32} \left(1 - \frac{7u^2}{3}\right) (1 - u^2) du = \int_{-1}^1 \frac{105u^6}{32} - \frac{75u^4}{16} + \frac{45u^2}{32} du \\ &= \left[\frac{105u^7}{224} - \frac{75u^5}{80} + \frac{45u^3}{96} \right]_{u=-1}^1 = \frac{105}{112} - \frac{75}{40} + \frac{45}{48} = 0. \end{aligned}$$

(b) Show that the variance is bounded by

$$\mathbb{V}[\hat{f}(x)] \leq \frac{5M}{4nh}.$$

You may wish to show first that $\int_{-1}^1 K(u)^2 du = \frac{5}{4}$.

Solution: By i.i.d. and linearity,

$$\begin{aligned} \mathbb{V}[\hat{f}(x)] &\leq \frac{1}{nh^2} \mathbb{E} \left[K\left(\frac{X_i - x}{h}\right)^2 \right] = \frac{1}{nh^2} \int_{x-h}^{x+h} K\left(\frac{u - x}{h}\right)^2 f(u) du \\ &\leq \frac{M}{nh^2} \int_{x-h}^{x+h} K\left(\frac{u - x}{h}\right)^2 du = \frac{M}{nh} \int_{-1}^1 K(u)^2 du \\ &= \frac{M}{nh} \int_{-1}^1 \frac{11025u^8}{1024} - \frac{7875u^6}{256} + \frac{15975u^4}{512} - \frac{3375u^2}{256} + \frac{2025}{1024} du = \frac{5M}{4nh}. \end{aligned}$$

(c) Show that the bias is bounded by

$$|\mathbb{E}[\hat{f}(x)] - f(x)| \leq \frac{45Mh^4}{384}.$$

You may wish to use a third order Taylor expansion with Lagrange remainder for f around the point x . Note that $|K(u)| \leq \frac{45}{32}$.

Solution: By Taylor's theorem with Lagrange remainder,

$$\begin{aligned} \left| \mathbb{E} [\hat{f}(x)] - f(x) \right| &= \left| \mathbb{E} \left[\frac{1}{h} K \left(\frac{X_i - x}{h} \right) \right] - f(x) \right| = \left| \int_{x-h}^{x+h} \frac{1}{h} K \left(\frac{u-x}{h} \right) f(u) du - f(x) \right| \\ &= \left| \int_{-1}^1 K(u) f(x+hu) du - f(x) \right| \\ &= \left| \int_{-1}^1 K(u) \left(f(x) + \sum_{r=1}^3 \frac{f^{(r)}(x)}{r!} (hu)^r + \frac{f^{(4)}(\xi)}{4!} (hu)^4 \right) du - f(x) \right| \end{aligned}$$

for some ξ between x and $x+hu$. Recalling that K is a fourth order kernel which is bounded by $\frac{45}{32}$,

$$\left| \mathbb{E} [\hat{f}(x)] - f(x) \right| = \left| \int_{-1}^1 K(u) \frac{f^{(4)}(\xi)}{4!} (hu)^4 du \right| \leq \frac{Mh^4}{24} \int_{-1}^1 |K(u)| du \leq \frac{45Mh^4}{384}.$$

(d) Use the bias and variance upper bounds to derive an approximate optimal bandwidth which minimizes the mean squared error at each x . You may ignore constants which depend on M , giving your answer as a function of n only.

Solution: We have

$$\text{MSE} [\hat{f}(x)] = \mathbb{V} [\hat{f}(x)] + \left[\mathbb{E} [\hat{f}(x)] - f(x) \right]^2 \leq \frac{5M}{4nh} + \left(\frac{45Mh^4}{384} \right)^2 \lesssim \frac{1}{nh} + h^8.$$

These two terms can be balanced by solving

$$\frac{1}{nh} = h^8 \iff h^9 = \frac{1}{n} \iff h = n^{-1/9}.$$

(e) Using this approximate optimal bandwidth, provide an upper bound on the mean squared error of the kernel density estimator as a function of n only.

Solution: Using the approximate optimal bandwidth gives

$$\text{MSE} [\hat{f}(x)] \lesssim \frac{1}{nh} + h^8 \lesssim (n^{-1/9})^8 \lesssim n^{-8/9}.$$

(f) Compare the bias, variance, approximate optimal bandwidth and mean squared error upper bound derived above with those arising from an order 2 kernel, ignoring constants. What do you think would happen in the general case where $p \geq 2$ is even? Give any extra regularity assumptions you require.

Solution: Let $p \geq 2$ be the order of the kernel. The variance does not depend on p up to constants. The bias is on the order of h^p , so is smaller with a higher-order kernel, assuming the density is p times differentiable. Thus the mean squared error is $\frac{1}{nh} + h^{2p}$ giving an approximate optimal bandwidth of $h = n^{-\frac{1}{2p+1}}$ and a final MSE of order $n^{-\frac{2p}{2p+1}}$.

(g) Find u which minimizes $K(u)$ and report the associated value of $K(u)$. Propose a modified estimator $\tilde{f}(x)$ based on $\hat{f}(x)$ which satisfies:

i. $\tilde{f}(x) \geq 0$ for all $x \in \mathbb{R}$ almost surely.

ii. $\mathbb{E} \left[(\tilde{f}(x) - f(x))^2 \right] \leq \mathbb{E} \left[(\hat{f}(x) - f(x))^2 \right]$ for all $x \in \mathbb{R}$.

Solution: Firstly, the kernel achieves its minima at $u = \pm\sqrt{5/7}$, giving $K(u) = -15/56$. Next take $\tilde{f}(x) = \max\{\hat{f}(x), 0\}$ which is clearly non-negative. If $\hat{f}(x) \geq 0$ then $|\tilde{f}(x) - f(x)| = |\hat{f}(x) - f(x)|$, while if $\hat{f}(x) < 0$ then $\tilde{f}(x) = 0$ so

$$|\hat{f}(x) - f(x)| = f(x) - \hat{f}(x) = f(x) - \tilde{f}(x) + \tilde{f}(x) - \hat{f}(x) = |\tilde{f}(x) - f(x)| + |\hat{f}(x)| \geq |\tilde{f}(x) - f(x)|.$$

Thus we have $|\tilde{f}(x) - f(x)| \leq |\hat{f}(x) - f(x)|$ almost surely and the result about MSE follows.

2. **(Influence functions)** Determine the influence function $\varphi(x; \theta)$ for the variance estimator.

Solution: $\varphi(x) = (x - \mathbb{E}[X_i])^2 - \theta_0$ and

$$\sqrt{n}(\hat{\theta} - \theta_0) = \frac{1}{n} \sum_{i=1}^n \left[(X_i - \mathbb{E}[X_i])^2 - \theta_0 \right] + o_p(1).$$