
MATH524 – Spring 2025
Problem Set: Week 3

1. (Optimal kernel) Consider the second-order Epanechnikov kernel defined as

KE(x) =
3

4
√
5

(
1− x2

5

)
1{|x|≤

√
5},

and note that
∫
|u|2|KE(u)|du = 1. LetK0 be another non-negative second-order kernel with

∫
|u|2|K0(u)|du =

1. By considering e(x) = K0(x) −KE(x), or otherwise, show that the Epanechnikov kernel always has lower

risk than any K0. That is, R(K0) ≥ R(KE). Solution: Note that∫ ∞

−∞
e(x) dx =

∫ ∞

−∞
x2e(x) dx = 0,

and e(x) ≥ 0, for |x| ≥
√
5. Now, using the fact that both kernels are non-negative second-order,

R(K0)−R(KE) =

∫ ∞

−∞
K0(x)

2 −KE(x)
2 dx

=

∫ ∞

−∞
e(x)(K0(x) +KE(x)) dx

= R(e) + 2

∫ ∞

−∞
e(x)KE(x) dx.

But, ∫ ∞

−∞
e(x)KE(x) dx =

3

4
√
5

∫ √
5

−
√
5

(
1− x2

5

)
e(x) dx =

3

4
√
5

∫
|x|>

√
5

(
x2

5
− 1

)
e(x) dx ≥ 0.

The result follows.

2. (Linear Smoothers, Cross-validation)

Let {(yi, xi) : 1 ≤ i ≤ n} be a random sample taking values in R2. A linear smoother is given by

ê(x) =

n∑
i=1

wn,i(x)yi, wn,i(x) = w(x1, x2, · · · , xn;x).

Note that wn,i(x) is only a function of {xi : 1 ≤ i ≤ n} and not of {yi : 1 ≤ i ≤ n}. Recall that local polynomial

regression takes on the following form

ê = e′0 argmin
e

n∑
i=1

(yi − p(xi − x)′e)2Kh(xi − x)

where e0 is the first basis unit vector and p(x) = (1, x, x2, . . . , xp)′ is the polynomial basis up to order p.

(a) Show that local polynomial regression estimators can be written as linear smoothers and give the exact

form of the “smoothing weights” wn,i(x).

Solution: Let

X =


1 x1 − x · · · (x1 − x)p

1 x2 − x · · · (x2 − x)p

...
...

...

1 xn − x · · · (xn − x)p

 , W = diag
{
Kh(xi − x), 1 ≤ i ≤ n

}
, Y =


y1

y2
...

yn

 ,
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and let ej be the (j + 1)-th unit basis vector. Then the estimator is given by

ê(x) = e′0 (X
′WX)

−1
X ′WY

=
∑
i

e′0 (X
′WX)

−1
p(xi − x)Kh(xi − x)yi

=
∑
i

w(xi − x)yi,

where w(xi − x) = e′0 (X
′WX)

−1
p(xi − x)Kh(xi − x).

(b) Show the following simplified cross-validation formula holds for local polynomial regression. 1

CV(c) =
1

n

n∑
i=1

(
yi − ê(i)(xi)

)2
=

1

n

n∑
i=1

(
yi − ê(xi)

1− wn,i(xi)

)2

,

where ê(i) =
∑

j ̸=i wn,j(x)yj is the leave-one-out estimator and c denotes a tuning parameter (i.e., a

bandwidth hn for local polynomials).

Solution:

Note that
∑

k X
′
kXk = X ′X. Thus, by the hint, and the fact that W is a diagonal matrix,

(X ′WX)−1 = (X ′
(i)W(i)X(i) +WiiX

′
iXi)

−1

= (X ′
(i)W(i)X(i))

−1 −
Wii(X

′
(i)W(i)X(i))

−1X ′
iXi(X

′
(i)W(i)X(i))

−1

1 +WiiXi(X ′
(i)W(i)X(i))−1X ′

i

.

Then,

(X ′WX)−1X ′
i =

(
(X ′

(i)W(i)X(i))
−1 −

Wii(X
′
(i)W(i)X(i))

−1X ′
iXi(X

′
(i)W(i)X(i))

−1

1 +WiiXi(X ′
(i)W(i)X(i))−1X ′

i

)
X ′

i

=
(X ′

(i)W(i)X(i))
−1X ′

i

1 +WiiXi(X ′
(i)W(i)X(i))−1X ′

i

The leave-in predicted value at x is

ê(xi) = e′0(X
′WX)−1X ′WY

= e′0(X
′WX)−1X ′

iWiiYi + e′0(X
′WX)−1X ′

(i)W(i)Y(i)

= wyi + e′0

(
(X ′

(i)W(i)X(i))
−1 −

Wii(X
′
(i)W(i)X(i))

−1X ′
iXi(X

′
(i)W(i)X(i))

−1

1 +WiiXi(X ′
(i)W(i)X(i))−1X ′

i

)
X ′

(i)W(i)Y(i)

= wyi +

(
1−

e′0Wii(X
′
(i)W(i)X(i))

−1X ′
iXi

1 +WiiXi(X ′
(i)W(i)X(i))−1X ′

i

)
ê(i)

= wyi + (1− w)ê(i)(xi).

Hence,

ê(xi) = wyi + (1− w) ê(i)(xi),

1The following result is useful: for an invertible matrix A and a column vector v, and λ ̸= −1/(v′Av) the following holds(
A+ λvv′)−1

= A−1 −
λA−1vv′A−1

1 + λv′A−1v
.
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or equivalently

yi − ê(xi)

1− w(xi − x)
= yi − ê(i)(xi),

which justifies the simplified cross-validation formula.

(c) Providing regularity conditions, show that

ê(x)− e(x)√
V[ê(x)|x1, x2, · · · , xn]

→d N (0, 1).

where e(x) = E[Y |X = x]

Solution:

Note that the estimator is written as a weighted sum

ê(x) =
∑
i

w(xi − x)yi,

and the weights w(xi − x) depends only on the covariates. Therefore we consider the centered quantities∑
i

zi, zi = (V[ê(x) |xi, 1 ≤ i ≤ n])
− 1

2 w(xi − x)
(
yi − E[yi |xi, 1 ≤ i ≤ n]

)
,

then it is easy to see that

E[zi |xi, 1 ≤ i ≤ n] = 0,

and

V

[∑
i

zi | xi, 1 ≤ i ≤ n

]
= V

[∑
i

(V[ê(x) |xi, 1 ≤ i ≤ n])
− 1

2 w(xi − x)yi |xi, 1 ≤ i ≤ n

]
= (V[ê(x) |xi, 1 ≤ i ≤ n])

−1
∑
i

w(xi − x)2V[yi |xi, 1 ≤ i ≤ n]

= 1.

Assume for some ϵ > 0, ∑
i

E[z2+ϵ
i |xi, 1 ≤ i ≤ n] → 0,

then the Lindeberg-Feller CLT implies ∑
i

zi →d N (0, 1),

Finally note that

ê(x)− e(x)√
V[ê(x)|xi, 1 ≤ i ≤ n]

=
∑
i

zi +
E[ê(x) |xi, 1 ≤ i ≤ n]− e(x)√

V[ê(x) |xi, 1 ≤ i ≤ n]
,

so we need the condition to ensure bias would not show up asymptotically (this is generally achieved by

undersmoothing)

E[ê(x) |xi, 1 ≤ i ≤ n]− e(x)√
V[ê(x) |xi, 1 ≤ i ≤ n]

→ 0.
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(d) Propose an asymptotically valid 95% confidence interval for e(x), with x fixed. That is,

∀x : lim inf
n

P [e(x) ∈ C.I.(x)] ≥ 0.95.

Is this derived confidence interval equivalent to the uniform confidence band? That is, does it satisfy the

following probability expression?

lim inf
n

P [∀x : e(x) ∈ C.I.(x)] ≥ 0.95?

Explain your answer.

Solution: Assume we have a consistent estimate of the conditional variance, i.e.

V̂[ê(x) |xi, 1 ≤ i ≤ n]

V[ê(x) |xi, 1 ≤ i ≤ n]
→ 1,

then a valid 95% C.I. would be

C.I.(x) =

[
ê(x)± 1.96×

√
V̂[ê(x) |xi, 1 ≤ i ≤ n]

]
.

This is a pointwise confidence interval. In general, this is not equivalent to the uniform confidence interval

that satisfies lim infn P [∀x : e(x) ∈ C.I.(x)] ≥ 0.95.

(e) Conduct the following Monte Carlo experiment. You are free to use inbuilt commands or libraries for

matrix operations, dataframe structures, quantile calculations and plotting, but should not use any pre-

packaged local polynomial regression implementations.

Consider the following DGP

• xi ∼ Uniform(−1, 1);

• yi = 0.3x2
i − 1.5x3

i + 0.2x4
i − 0.002x5

i + εi;

• εi ∼ N (0, 0.12),

• Consider the second-order Epanechnikov kernel, K(u) = 3
4 (1− u2) for −1 ≤ u ≤ 1.

The dataset generated by this process is provided as a CSV on Moodle, named exercise3.csv.

The first column of the CSV contains the yi’s and the second column contains the xi’s.

i. Consider a degree 3 (p = 3) local polynomial estimator of µ(x), that is, ê(xi). Plot the CV(h), as

a function of h and compute the CV estimator, denoted ĥCV. Use h between 0.5 and 1.0 with 0.1

increments.

Solution: See code in ex 03 sols.R and Figure 1.

ii. Using the data-driven tuning parameter choice ĥCV, plot the following functions of x ∈ [−1, 1] (in one

single graph): (i) the true regression function; (ii) the estimated regression function ê(x); (iii) the

data. (Using a grid of 10 evaluation points should be enough.)

Solution: See code in ex 03 sols.R and Figure 2
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Figure 1: Cross validation for h ∈ [0.5, 1.0]
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Figure 2: Local polynomial estimate with ĥCV = 0.7 and true values
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