MATHb524 — Spring 2025
Problem Set: Week 3

1. (Optimal kernel) Consider the second-order Epanechnikov kernel defined as

xT
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Kp(z) = 4\/5(1 - 5>1{w<¢5}7

and note that [ |ul*|Kg(u)|du = 1. Let K, be another non-negative second-order kernel with [ |u|?|Kq(u)|du =
1. By considering e(z) = Ko(x) — Kg(x), or otherwise, show that the Epanechnikov kernel always has lower
risk than any K. That is, R(Ky) > R(Kg). Solution: Note that

/00 e(z) de = /OO z?e(z) doz = 0,

— 00 — 00

and e(x) > 0, for |z| > +/5. Now, using the fact that both kernels are non-negative second-order,

R(Ky) — R(Kp) = / ” Ko(2)? — Kp(2)? dz
_ [ " (@) (Ko(x) + Kp(z)) da

= R(e) + 2/OO e(z)Kg(x) da.
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But

)

/O:O e(2)Kg(z) do = % /i<1 - S?)e(z) do = % /|>f(f - 1)6(93) da > 0.

The result follows.

2. (Linear Smoothers, Cross-validation)

Let {(y;,7;) : 1 <i < n} be a random sample taking values in R%. A linear smoother is given by
n
é@) = wni(@)yi,  wnilz) =wlxr, w2, 0 D).
=1

Note that w,, ; () is only a function of {z; : 1 < i < n} and not of {y; : 1 <14 < n}. Recall that local polynomial
regression takes on the following form

¢ = e, arg min Z(yz —p(z; — ) e)’ Ky (z; — )
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where eq is the first basis unit vector and p(x) = (1,z,27,...,2P) is the polynomial basis up to order p.

(a) Show that local polynomial regression estimators can be written as linear smoothers and give the exact
form of the “smoothing weights” wy, ;(z).

Solution: Let

1 -2 - (z1—2)? Y1

1 29— - (zg—2x)P Y2
X=| . O wediag{Ky(mi—a), 1<i<n}, Y=,

1 zp—z - (zp—x)? Yn



and let e; be the (j + 1)-th unit basis vector. Then the estimator is given by
é(x) =e) (X'WX) ' X'WY
= Z e (X'WX)™!

= Z y17

where w(z; — ) = e (X'WX) ' p(z; — 2)Kp(x; — ).

p(z; — o) Kp(z; — )y

(b) Show the following simplified cross-validation formula holds for local polynomial regression. !

]- 2 . 1 " Yi — é(.’EZ) 2
n e(l) x’L - n ; <1 _ wnﬂ(xl) 9

where é;) = >, wn j(z)y; is the leave-one-out estimator and c denotes a tuning parameter (i.e., a
bandwidth h,, for local polynomials).

Solution:

Note that ), X; X, = X'X. Thus, by the hint, and the fact that W is a diagonal matrix,

(X'WX)™ = (X3 Wiy Xy + WiinXz)*l

Wiy X))~
= (X Wi X)L — 0 X0
XoWoXw) 1+WiiXi(XEi)W(i)X(l)) Lx]

Then,

X!

(2

Wi (X Wiy X)) " XX (X[ Wi X
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(X Wiy Xm) ' X]
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The leave-in predicted value at x is

é(z;) = ef( X'WX) ' X'WY

= ep(X'WX) "I X[WyYi + e (X'WX) 71 X[, Wiy Y
X NI X XX LX)l
= wy; + €, ((anW(i)X(i))_l - (1)3/ é[/)X)(()()Xg))(VzV)(i)(;’((()))VVI())(f()) > XiyWi Yo
= wy; + < _ oW W X)) X0 Xs ) 20
L+ WiilXa(X(y Wiy X)) 1 X5
=wy; + (1 — w)é) ().
Hence,

é(z;) =wy; + (1 —w) é(i)(l‘i),

I The following result is useful: for an invertible matrix A and a column vector v, and A # —1/(v’Av) the following holds
AA"Iyv/ AL

nN—1 _ A—-1_
(A+/\vv) =A 71+>\VIA_1V.



or equivalently

yi — é(x;)

m =y — €y (1),

which justifies the simplified cross-validation formula.

Providing regularity conditions, show that

¢V[é(i()Ti: ;(m) =7 e NOD.

where e(z) = E[Y|X = z]
Solution:

Note that the estimator is written as a weighted sum
é(x) = Zw(%‘ - )y,

and the weights w(x; — z) depends only on the covariates. Therefore we consider the centered quantities

1

Sz z= (V@) foi 1 <0 < nl)7F wle - o) (v - Ely i1 < <)),
then it is easy to see that
Elz |z, 1 <i<n]=0,

and

\Y% Zzl |z;,1<i<n| =V Z(V[é(m) \xi,lgign])_% w(x; — )y, |xi,1§i§n]
= (V[é(z) |z;, 1 <i<n])” Zw ; Vyi |xi, 1 < i <nl
=1.

Assume for some € > 0,

Z:IE[Z?+E |z;,1 <i<n]—0,

then the Lindeberg-Feller CLT implies
Z Zi —d N(O 1

Finally note that

é(z) — Z x) |z, 1 <i < n]—e(x)

\/[(x)|xz,1<z<n_ Z, V@) Jenl<i<n

so we need the condition to ensure bias would not show up asymptotically (this is generally achieved by

undersmoothing)

Elé(z) |zi, 1 <i<n]—e(x)

e eicica




(d)

Propose an asymptotically valid 95% confidence interval for e(z), with z fixed. That is,
Vo : liminf P le(z) € C.l.(z)] > 0.95.

Is this derived confidence interval equivalent to the uniform confidence band? That is, does it satisfy the

following probability expression?
liminf P [Vz : e(x) € C.l.(z)] > 0.957

Explain your answer.

Solution: Assume we have a consistent estimate of the conditional variance, i.e.

then a valid 95% C.I. would be

Cl(z) = {é(w) +1.96 x \/V[e(e) [as,1 < <]

This is a pointwise confidence interval. In general, this is not equivalent to the uniform confidence interval
that satisfies liminf, P [Vx : e(z) € C.I.(z)] > 0.95.

Conduct the following Monte Carlo experiment. You are free to use inbuilt commands or libraries for
matrix operations, dataframe structures, quantile calculations and plotting, but should not use any pre-

packaged local polynomial regression implementations.
Consider the following DGP
e z; ~ Uniform(—1,1);
o y; = 0.37 — 1.5z3 + 0.2z} — 0.002z7 + ;;
o ¢, ~N(0,0.12),
e Consider the second-order Epanechnikov kernel, K (u) = 2(1 — u?) for -1 <u < 1.
The dataset generated by this process is provided as a CSV on Moodle, named exercise3.csv.
The first column of the CSV contains the y;’s and the second column contains the x;’s.
i. Consider a degree 3 (p = 3) local polynomial estimator of u(z), that is, é(z;). Plot the CV(h), as
a function of h and compute the CV estimator, denoted hgy. Use h between 0.5 and 1.0 with 0.1

increments.
Solution: See code in ex_03_sols.R and Figure 1.

ii. Using the data-driven tuning parameter choice hey, plot the following functions of z € [—1,1] (in one
single graph): (i) the true regression function; (ii) the estimated regression function é(x); (iii) the
data. (Using a grid of 10 evaluation points should be enough.)

Solution: See code in ex_03_sols.R and Figure 2



cv(h)
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Figure 1: Cross validation for h € [0.5,1.0]
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Figure 2: Local polynomial estimate with hey = 0.7 and true values



