

MATH524 – Spring 2025
Problem Set: Week 2

1. **(Bias-variance trade-off)** Suppose f is a well-defined PDF and we want to estimate $f(0)$. Let $h > 0$ be a small positive number.

(a) Show that $f(0)$ can be estimated by $\hat{f}_n(0) = X/nh$, where X is the number of observations in an interval of length h that contains 0.

Hint: Start with estimating the probability $\mathbb{P}(-\frac{h}{2} < X < \frac{h}{2})$. **Solution:** Starting with the hint,

$$p_h = \mathbb{P}\left(-\frac{h}{2} < X < \frac{h}{2}\right) = \int_{-h/2}^{h/2} f(x) dx \approx hf(0).$$

Thus, $f(0) \approx p_h/h$. Let X be the number of observations in $(-h/2, h/2)$. Then $X \sim \text{Binom}(n, p_h)$. We know that p_h can be estimated by $\hat{p}_h = X/n$. Thus,

$$\hat{f}_n(0) \approx \frac{X}{nh}$$

(b) Show that the bias of this estimator takes the form Ah^2 and determine the exact value of A . **Solution:**

Again, using the fact that $X \sim \text{Binom}(n, p_h)$, $\mathbb{E}[X] = np_h$. Then, by second-order Taylor expansion around 0,

$$f(x) \approx f(0) + xf'(0) + \frac{x^2}{2}f''(0).$$

Then,

$$p_h = \int_{-h/2}^{h/2} f(x) dx \approx \int_{-h/2}^{h/2} \left(f(0) + xf'(0) + \frac{x^2}{2}f''(0) \right) dx = hf(0) + \frac{f''(0)h^3}{24}.$$

Combining this with the result from part (a),

$$\mathbb{E}[\hat{f}_n(0)] = \frac{\mathbb{E}[X]}{nh} = \frac{p_h}{h} \approx f(0) + \frac{f''(0)h^2}{24}.$$

This gives that the bias is

$$\mathbb{E}[(\hat{f}_n(0) - f(0))] \approx \frac{f''(0)h^2}{24}.$$

So, $A = f''(0)/24$.

(c) Show that the variance is of order $(nh)^{-1}$. **Solution:** We start by again using the fact that X is binomially distributed and so have variance $np_h(1 - p_h)$. Therefore,

$$\text{Var}(\hat{f}_n(0)) = \frac{\text{Var}(X)}{n^2h^2} = \frac{p_h(1 - p_h)}{nh^2} \approx \frac{p_h}{nh^2}$$

which follows from the fact that h is small and therefore $1 - p_h \approx 1$. Then,

$$\text{Var}(\hat{f}_n(0)) \approx \frac{hf(0) + \frac{f''(0)h^3}{24}}{nh^2} = \frac{f(0)}{nh} + \frac{f''(0)h}{24n} \approx \frac{f(0)}{nh}.$$

(d) Sketch the MSE of \hat{f}_n and interpret how the bias and variance change with h . **Solution:** The sketch should resemble a u-curve. This is the classical bias-variance picture that shows how larger values of h reduce bias but increase variance. The MSE optimal bandwidth is then typically chosen to balance the bias and variance, somewhere near the minimum of the MSE curve.

2. (**Scheffé's theorem**) Let (f_n) be a sequence of densities and f be another density such that $f_n \rightarrow f$ almost everywhere.

Show that

$$\int_{-\infty}^{\infty} |f_n(x) - f(x)| dx \rightarrow 0.$$

Hint: You may choose to prove this result by first considering the integral $g_n = f - f_n$ separately over $\{x : g_n(x) > 0\}$ and $\{x : g_n(x) \leq 0\}$ and using DCT.

Solution: As

$$\begin{aligned} \int_{-\infty}^{\infty} |f_n(x) - f(x)| dx &= \int_{-\infty}^{\infty} g_n(x) \mathbf{1}_{\{g_n(x) \geq 0\}} dx + \int_{-\infty}^{\infty} \{-g_n(x)\} \mathbf{1}_{\{g_n(x) \leq 0\}} dx \\ &= 2 \int_{-\infty}^{\infty} g_n(x) \mathbf{1}_{\{g_n(x) \geq 0\}} dx, \end{aligned}$$

since $\int_{-\infty}^{\infty} g_n(x) dx = 0$.

Now $g_n(x) \mathbf{1}_{\{g_n(x) \geq 0\}} \leq \max\{f(x) - f_n(x), 0\} \leq f(x)$, which is integrable, and $g_n \rightarrow 0$ almost everywhere by assumption. Thus

$$\int_{-\infty}^{\infty} |f_n(x) - f(x)| dx = 2 \int_{-\infty}^{\infty} g_n(x) \mathbf{1}_{\{g_n(x) \geq 0\}} dx \rightarrow 0,$$

by the dominated convergence theorem.

3. (**Properties of the local polynomial estimator**) Prove the following two properties of the local polynomial estimator:

(a) $\mathbb{E}[\hat{r}_n(x)] = \sum l_i(x)r(x_i)$ **Solution:** We know that

$$\hat{r}_n(x) = \sum_j \hat{\beta}_j x_j = x^T \hat{\beta} = l(x)^T Y$$

where $\hat{\beta} = (X^T X)^{-1} X^T Y$ and $l(x)^T = x^T (X^T X)^{-1} X^T$. Taking expectation on both sides,

$$\mathbb{E}[\hat{r}_n(x)] = \mathbb{E}[l(x)^T Y] = l(x)^T r(x) = \sum_i l_i(x)r(x_i),$$

by the linearity of expectation and mean-zero noise.

(b) $\text{Var}(\hat{r}_n(x)) = \sigma^2 \|l(x)\|^2$ **Solution:**

We already know that $\hat{r}_n(x) = \sum_i l_i(x)Y_i$. The variance follows directly,

$$\text{Var}(\hat{r}_n(x)) = \sigma^2 \sum_i l_i^2(x) = \sigma^2 \|l(x)\|^2.$$

4. (**Bias of local polynomial estimators**) Recall that for the regression model

$$y_i = r(x_i) + \varepsilon_i,$$

with $\mathbb{E}[\varepsilon_i|x_i] = 0$ and $\mathbb{E}[\varepsilon_i^2|x_i] = \sigma^2$, the Nadaraya-Watson estimator is a local constant estimator of the form

$$\hat{r} = \frac{\sum_i K\left(\frac{x-x_i}{h}\right) y_i}{\sum_j K\left(\frac{x-x_j}{h}\right)}.$$

For this question we assume K is a second-order kernel. You may assume sufficient smoothness of any functions necessary in evaluating expressions.

(a) Show that the regression function can be written as

$$r(x) = \frac{\int y f(x, y) dy}{f(x)}$$

where $f(x)$ is the marginal density of x_i . **Solution:** This formulation follows directly by defining

$$f(x) = \int f(x, y) dy$$

and

$$f(x, y) = \int K_h(x_i - x) K_h(y_i - y) dy.$$

Suppose that we have some fixed x for which we want to estimate the model. Note that we can equivalently write the regression model as

$$y_i = r(x) + (r(x_i) - r(x)) + \varepsilon_i.$$

(b) Using this reformulation of the regression model, show that we can write the regression function estimator at x as

$$\hat{r}(x) = r(x) + \frac{\hat{m}_1(x)}{\hat{f}(x)} + \frac{\hat{m}_2(x)}{\hat{f}(x)}$$

where \hat{m}_1 and \hat{m}_2 are functions of r , K and $\{x_i\}$. **Solution:** Taking the reformulation and multiplying by the kernel function and summing over the data on both sides of the equation,

$$\begin{aligned} & \frac{1}{nh} \sum_i K\left(\frac{x_i - x}{h}\right) y_i \\ &= \frac{1}{nh} \sum_i K\left(\frac{x_i - x}{h}\right) r(x) + \frac{1}{nh} \sum_i K\left(\frac{x_i - x}{h}\right) (r(x_i) - r(x)) + \frac{1}{nh} \sum_i K\left(\frac{x_i - x}{h}\right) \varepsilon_i \\ &= \hat{f}(x) r(x) + \hat{m}_1(x) + \hat{m}_2(x). \end{aligned}$$

Dividing by $\hat{f}(x)$ on both sides, we get the desired result.

(c) Compute the mean and variance of \hat{m}_2 . **Solution:** From the previous part we have

$$\hat{m}_2 = \frac{1}{nh} \sum_i K\left(\frac{x_i - x}{h}\right) \varepsilon_i.$$

Then,

$$\begin{aligned} \text{Var}(\hat{m}_2) &= \mathbb{E} \left[\left(\frac{1}{nh} \sum_i K\left(\frac{x_i - x}{h}\right) \varepsilon_i \right)^2 \right] - \mathbb{E} \left[\frac{1}{nh} \sum_i K\left(\frac{x_i - x}{h}\right) \varepsilon_i \right]^2 \\ &= \frac{\sigma^2}{nh^2} \mathbb{E}[K\left(\frac{x_i - x}{h}\right)^2], \end{aligned}$$

since by conditional independence of ε_i and x_i ,

$$\mathbb{E} \left[\frac{1}{nh} \sum_i K\left(\frac{x_i - x}{h}\right) \varepsilon_i \right] = 0.$$

Note that this gives us the fact that $\mathbb{E}[\hat{m}_2] = 0$. Now, all that remains is to compute the second moment of the kernel function which we can evaluate directly by change of variables.

$$\begin{aligned} \frac{1}{h} \int K\left(\frac{z - x}{h}\right)^2 f(z) dz &= \int K(u)^2 f(x + hu) du \\ &= g(K)f(x) + o(1), \end{aligned}$$

by taylor expansion of f . Note that we are using $g(K) = \int K^2(u) du$.

Thus,

$$\text{Var}(\hat{m}_2) = \frac{\sigma^2 g(K) f(x)}{nh} + o((nh)^{-1}).$$

(d) Compute the mean and variance of \hat{m}_1 . **Solution:** We start with the mean.

$$\begin{aligned} \mathbb{E}[\hat{m}_1] &= \mathbb{E} \left[\frac{1}{nh} \sum_i K\left(\frac{x_i - x}{h}\right) (r(x_i) - r(x)) \right] \\ &= \frac{1}{h} \mathbb{E} \left[K\left(\frac{x_1 - x}{h}\right) (r(x_1) - r(x)) \right] \\ &= \frac{1}{h} \int K\left(\frac{z - x}{h}\right) (r(z) - r(x)) f(z) dz \\ &= \int K(u) (r(x + hu) - r(x)) f(x + hu) du. \end{aligned}$$

Now, simply taylor expanding both r and f ,

$$\begin{aligned} &\int K(u) (r(x + hu) - r(x)) f(x + hu) du \\ &= \int K(u) r(x + hu) f(x + hu) du + \int K(u) r(x) f(x + hu) du \\ &= \int K(u) (r(x) + hur'(x) + \frac{(hu)^2}{2} r''(x)) (f(x) + huf'(x)) du + \int K(u) r(x) (f(x) + huf'(x)) du \\ &= \sigma_K^2 h^2 \left[\frac{r''(x)f(x)}{2} + r'(x)f'(x) \right] + o(h^2). \end{aligned}$$

Similar calculations should be repeated for the variance, which results in

$$\text{Var}(\hat{m}_1) = O(h/n).$$

Since the variance is of higher order, we have convergence of \hat{m}_1 in probability,

$$\sqrt{nh}(\hat{m}_1 - h^2 \sigma_K^2 f(x) \left[\frac{r''(x)f(x)}{2} + r'(x)f'(x) \right]) \xrightarrow{p} 0.$$

(e) Invoking the CLT, compute the limiting distribution of \hat{r} . What is the rate of convergence? Is the estimator asymptotically biased? **Solution:** Yes, the estimator is biased since \hat{m}_2 does not converge to 0. Putting together all the results on \hat{m}_1 and \hat{m}_2 , and using the fact that $\hat{f}(x) \xrightarrow{p} f(x)$,

$$\begin{aligned} \sqrt{nh}(\hat{r}(x) - r(x)) &= \sqrt{nh} \frac{\hat{m}_1}{\hat{f}(x)} + \frac{\sqrt{nh}\hat{m}_2}{\hat{f}(x)} \\ &\rightsquigarrow \mathcal{N} \left(h^2 \sigma_K^2 \left[\frac{r''(x)f(x)}{2} + r'(x)f'(x) \right], \frac{g(K)}{f(x)} \right). \end{aligned}$$

The rate of convergence is \sqrt{nh} .

(f) How would the parameters of the limiting distribution of \hat{r} change if x were a boundary point? **Solution:** The analysis of \hat{m}_1 would change since the estimated derivative of \hat{f} at the boundary will be biased from the data. We will not have the same convergence in probability of \hat{f} and as a result the convergence of \hat{r} would also have higher bias.