MATHb524 — Spring 2025
Problem Set: Week 2

1. (Bias-variance trade-off) Suppose f is a well-defined PDF and we want to estimate f(0). Let A > 0 be a

small positive number.

(a)

Show that f(0) can be estimated by fn(O) = X/nh, where X is the number of observations in an interval
of length h that contains 0.
Hint: Start with estimating the probability P(—% < X < ). Solution: Starting with the hint,

h/2
=By <X<g)= [ @)= hs(0)

Thus, f(0) = pp/h. Let X be the number of observations in (—h/2,h/2). Then X ~ Binom(n,ps). We
know that pj, can be estimated by p;, = X/n. Thus,

Show that the bias of this estimator takes the form Ah? and determine the exact value of A. Solution:
Again, using the fact that X ~ Binom(n, py), E[X] = npx. Then, by second-order taylor expansion around
0,

2
F() = F(0) +2f'(0) + 5 £(0).
Then,

f//(o)hS
24

m= [ s~ [ (70 +a0)+ 501 ) ds = nf(0) +

—h/2 —h/2

Combining this with the result from part (a),

f//(o)hQ
24

This gives that the bias is

So, A = f"(0)/24.
Show that the variance is of order (nh)~!. Solution: We start by again using the fact that X is

binomially distributed and so have variance npy (1 — py). Therefore,

2 Var(X)  pa(l—ps Ph
Var(fn(o)) = ng(hg) = (nh2 ) ~ W

which follows from the fact that h is small and therefore 1 — py, ~ 1. Then,

) hf(0) + " o)

Var(f,(0)) ~ n f"(0)h _ f(0)

nh?2 T nh 24n  nh




(d) Sketch the MSE of fn and interpret how the bias and variance change with h. Solution: The sketch
should resemble a u-curve. This is the classical bias-variance picture that shows how larger values of h
reduce bias but increase variance. The MSE optimal bandwidth is then typically chosen to balance the

bias and variance, somewhere near the minimum of the MSE curve.

2. (Scheffé’s theorem) Let (f,) be a sequence of densities and f be another density such that f, — f almost

everywhere.

Show that

| 1) = sl 0

Hint: You may choose to prove this result by first considering the integral g, = f — fn separately over {z :
gn(x) > 0} and {z : g,(x) <0} and using DCT.

Solution: As

[ i@ - 1@l de= [ g@ipwzo ot [ Co@g, @ do

=2 / gn(2)1ig, (2)>0y dz,

since [*_ gn(x) dz = 0.
Now gn ()1, (2)>0y < max{f(z) — fn(x),0} < f(x), which is integrable, and g, — 0 almost everywhere by

assumption. Thus

/_ | fn(z) — f(2)] dz = 2/ 9n(2) (g, (z)>0y dz — 0,

— 00

by the dominated convergence theorem.

. (Properties of the local polynomial estimator) Prove the following two properties of the local polynomial

estimator:

(a) E[fn(z)] = > lLi(z)r(z;) Solution: We know that
P
=Y By =aTB= i)Y
J

where 3 = (XTX)"'XTY and I(z)T = 2T(XTX)~1XT. Taking expectation on both sides,

E[fn(z)] = E[l(x)TY] = i(= Zz

by the linearity of expectation and mean-zero noise.
(b) Var(f,(z)) = o?||l(z)||* Solution:
We already know that 7, () = >, [;(x)Y;. The variance follows directly,

Var (7, (x —02212 ) = a?||i(z)]2.

4. (Bias of local polynomial estimators) Recall that for the regression model

yi = r(x;) + €4,



with E[e;|z;] = 0 and E[e?|x;] = 02, the Nadaraya-Watson estimator is a local constant estimator of the form

2K (Ifj)

For this question we assume K is a second-order kernel. You may assume sufficient smoothness of any functions

F=

necessary in evaluating expressions.

(a) Show that the regression function can be written as

_ Jyfy)dy
f(x)

where f(z) is the marginal density of z;. Solution: This formulation follows directly by defining

r(z)

f@) = [ fwdy
and
f(z,y) = /Kh(mi —x)Ky(ys —y) dy.

Suppose that we have some fixed z for which we want to estimate the model. Note that we can equivalently

write the regression model as
i = r(a) + (@) = (@) + &

(b) Using this reformulation of the regression model, show that we can write the regression function estimator
at x as
. mq(x me(x
P(z) =r(x) + Al( ) + A2( )
flx)  f(=)

where 7h; and g are functions of v, K and {z;}. Solution: Taking the reformulation and multiplying

by the kernel function and summing over the data on both sides of the equation,

1 T;i— T
il K i
nhzi: (=5 )y
T; 1 T;— X

zifL;K(“;x)T(m%;K( i) = @) + SR

= f(z)r(x) + my(z) + ma(z).
Dividing by f(z) on both sides, we get the desired result.
(¢) Compute the mean and variance of 2. Solution: From the previous part we have

B 1 T, — X
mg—%;K( - )ei

Then,




since by conditional independence of ¢; and z;,

nh

x)Ei] =0.

Note that this gives us the fact that E[rs] = 0. Now, all that remains is to compute the second moment

of the kernel function which we can evaluate directly by change of variables.

%/K(z;x dz—/K F(z + hu) du
)f( ) +o(1),
by taylor expansion of of f. Note that we are using ¢g(K) = [ K*(u) du.
Thus,
2
K
Var(mgy) = % +o((nh)™1).

(d) Compute the mean and variance of /1. Solution: We start with the mean.

E[m

i

— 1 | K0~ a)|

= [ KCEO06) - r@)fe)a:
/K r(x + hu) — r(x)) f(z + hu) du.

Now, simply taylor expanding both r and f,

/K r(xz + hu) — r(x)) f(z + hu) du

/K )r(z + hu) f(z + hu) du+/K (z)f(x + hu)du

(hu)?
N

/K x) + hur'(x) +

m (""";f ) 4 @) @] + ol2)

Similar calculations should be repeated for the variance, which results in

Var(mq) = O(h/n).

() (£ () + huf (2)) du + / K (u)r(z)(f(z) + huf'(x)) du

= KhQ[

Since the variance is of higher order, we have convergence of m; in probability,
1
Vnh(iy — h%f(f(x)[% +7'(z) f'(2)]) 0.
e) Invokin e compute the lmiting distribution of r. at 1s the rate of convergence! Is the
(e) Invoking the CLT, pute the limiting distributi f 7. What is th te of fex ? Is th
estimator asymptotically biased? Solution: Yes, the estimator is biased since 7y does not converge to
0. Putting together all the results on m; and Mo, and using the fact that f(w) LN f(x),

Vrh(i(z) — r(z)) = Vah - Vihiiny

f@) )
o (O o), 5.

The rate of convergence is vnh.



(f) How would the parameters of the limiting distribution of # change is  were a boundary point? Solution:
The analysis of m; would change since the estimated derivative of f at the boundary will be biased from
the data. We will not have the same convergence in probability of f and as a result the convergence of 7

would also have higher bias.



