
MATH524 – Spring 2025
Problem Set: Week 2

1. (Bias-variance trade-off) Suppose f is a well-defined PDF and we want to estimate f(0). Let h > 0 be a

small positive number.

(a) Show that f(0) can be estimated by f̂n(0) = X/nh, where X is the number of observations in an interval

of length h that contains 0.

Hint: Start with estimating the probability P(−h
2 < X < h

2 ). Solution: Starting with the hint,

ph = P(−h

2
< X <

h

2
) =

∫ h/2

−h/2

f(x) dx ≈ hf(0).

Thus, f(0) ≈ ph/h. Let X be the number of observations in (−h/2, h/2). Then X ∼ Binom(n, ph). We

know that ph can be estimated by p̂h = X/n. Thus,

f̂n(0) ≈
X

nh

(b) Show that the bias of this estimator takes the form Ah2 and determine the exact value of A. Solution:

Again, using the fact that X ∼ Binom(n, ph), E[X] = nph. Then, by second-order taylor expansion around

0,

f(x) ≈ f(0) + xf ′(0) +
x2

2
f ′′(0).

Then,

ph =

∫ h/2

−h/2

f(x) dx ≈
∫ h/2

−h/2

(
f(0) + xf ′(0) +

x2

2
f ′′(0).

)
dx = hf(0) +

f ′′(0)h3

24
.

Combining this with the result from part (a),

E[f̂n(0)] =
E[X]

nh
=

ph
h

≈ f(0) +
f ′′(0)h2

24
.

This gives that the bias is

E[(f̂n(0)− f(0))] ≈ f ′′(0)h2

24
.

So, A = f ′′(0)/24.

(c) Show that the variance is of order (nh)−1. Solution: We start by again using the fact that X is

binomially distributed and so have variance nph(1− ph). Therefore,

Var(f̂n(0)) =
Var(X)

n2h2
=

ph(1− ph)

nh2
≈ ph

nh2

which follows from the fact that h is small and therefore 1− ph ≈ 1. Then,

Var(f̂n(0)) ≈
hf(0) + f ′′(0)h3

24

nh2
=

f(0)

nh
+

f ′′(0)h

24n
≈ f(0)

nh
.
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(d) Sketch the MSE of f̂n and interpret how the bias and variance change with h. Solution: The sketch

should resemble a u-curve. This is the classical bias-variance picture that shows how larger values of h

reduce bias but increase variance. The MSE optimal bandwidth is then typically chosen to balance the

bias and variance, somewhere near the minimum of the MSE curve.

2. (Scheffé’s theorem) Let (fn) be a sequence of densities and f be another density such that fn → f almost

everywhere.

Show that ∫ ∞

−∞
|fn(x)− f(x)|dx → 0.

Hint: You may choose to prove this result by first considering the integral gn = f − fn separately over {x :

gn(x) > 0} and {x : gn(x) ≤ 0} and using DCT.

Solution: As∫ ∞

−∞
|fn(x)− f(x)| dx =

∫ ∞

−∞
gn(x)1{gn(x)≥0} dx+

∫ ∞

−∞
{−gn(x)}1{gn(x)≤0} dx

= 2

∫ ∞

−∞
gn(x)1{gn(x)≥0} dx,

since
∫∞
−∞ gn(x) dx = 0.

Now gn(x)1{gn(x)≥0} ≤ max{f(x) − fn(x), 0} ≤ f(x), which is integrable, and gn → 0 almost everywhere by

assumption. Thus ∫ ∞

−∞
|fn(x)− f(x)| dx = 2

∫ ∞

−∞
gn(x)1{gn(x)≥0} dx → 0,

by the dominated convergence theorem.

3. (Properties of the local polynomial estimator) Prove the following two properties of the local polynomial

estimator:

(a) E[r̂n(x)] =
∑

li(x)r(xi) Solution: We know that

r̂n(x) =

p∑
j

β̂jxj = xTβ̂ = l(x)TY

where β̂ = (XTX)−1XTY and l(x)T = xT(XTX)−1XT. Taking expectation on both sides,

E[r̂n(x)] = E[l(x)TY ] = l(x)Tr(x) =
∑
i

li(x)r(xi),

by the linearity of expectation and mean-zero noise.

(b) Var(r̂n(x)) = σ2∥l(x)∥2 Solution:

We already know that r̂n(x) =
∑

i li(x)Yi. The variance follows directly,

Var(r̂n(x)) = σ2
∑
i

l2i (x) = σ2∥l(x)∥2.

4. (Bias of local polynomial estimators) Recall that for the regression model

yi = r(xi) + εi,
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with E[εi|xi] = 0 and E[ε2i |xi] = σ2, the Nadaraya-Watson estimator is a local constant estimator of the form

r̂ =

∑
i K

(
x−xi

h

)
yi∑

j K
(

x−xj

h

) .

For this question we assume K is a second-order kernel. You may assume sufficient smoothness of any functions

necessary in evaluating expressions.

(a) Show that the regression function can be written as

r(x) =

∫
yf(x, y) dy

f(x)

where f(x) is the marginal density of xi. Solution: This formulation follows directly by defining

f(x) =

∫
f(x, y) dy

and

f(x, y) =

∫
Kh(xi − x)Kh(yi − y) dy.

Suppose that we have some fixed x for which we want to estimate the model. Note that we can equivalently

write the regression model as

yi = r(x) + (r(xi)− r(x)) + εi.

(b) Using this reformulation of the regression model, show that we can write the regression function estimator

at x as

r̂(x) = r(x) +
m̂1(x)

f̂(x)
+

m̂2(x)

f̂(x)

where m̂1 and m̂2 are functions of r, K and {xi}. Solution: Taking the reformulation and multiplying

by the kernel function and summing over the data on both sides of the equation,

1

nh

∑
i

K(
xi − x

h
)yi

=
1

nh

∑
i

K(
xi − x

h
)r(x) +

1

nh

∑
i

K(
xi − x

h
)(r(xi)− r(x)) +

1

nh

∑
i

K(
xi − x

h
)εi

= f̂(x)r(x) + m̂1(x) + m̂2(x).

Dividing by f̂(x) on both sides, we get the desired result.

(c) Compute the mean and variance of m̂2. Solution: From the previous part we have

m̂2 =
1

nh

∑
i

K(
xi − x

h
)εi.

Then,

Var(m̂2) = E

( 1

nh

∑
i

K(
xi − x

h
)εi

)2
− E[

1

nh

∑
i

K(
xi − x

h
)εi]

2

=
σ2

nh2
E[K(

xi − x

h
)2],
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since by conditional independence of εi and xi,

E

[
1

nh

∑
i

K(
xi − x

h
)εi

]
= 0.

Note that this gives us the fact that E[m̂2] = 0. Now, all that remains is to compute the second moment

of the kernel function which we can evaluate directly by change of variables.

1

h

∫
K(

z − x

h
)2f(z) dz =

∫
K(u)2f(x+ hu) du

= g(K)f(x) + o(1),

by taylor expansion of of f . Note that we are using g(K) =
∫
K2(u) du.

Thus,

Var(m̂2) =
σ2g(K)f(x)

nh
+ o((nh)−1).

(d) Compute the mean and variance of m̂1. Solution: We start with the mean.

E[m̂1] = E

[
1

nh

∑
i

K(
xi − x

h
)(r(xi)− r(x))

]

=
1

h
E
[
K(

x1 − x

h
)(r(x1)− r(x))

]
=

1

h

∫
K(

z − x

h
)(r(z)− r(x))f(z) dz

=

∫
K(u)(r(x+ hu)− r(x))f(x+ hu) du.

Now, simply taylor expanding both r and f ,∫
K(u)(r(x+ hu)− r(x))f(x+ hu) du

=

∫
K(u)r(x+ hu)f(x+ hu) du+

∫
K(u)r(x)f(x+ hu) du

=

∫
K(u)(r(x) + hur′(x) +

(hu)2

2
r′′(x))(f(x) + huf ′(x)) du+

∫
K(u)r(x)(f(x) + huf ′(x)) du

= σ2
Kh2[

r′′(x)f(x)

2
+ r′(x)f ′(x)] + o(h2).

Similar calculations should be repeated for the variance, which results in

Var(m̂1) = O(h/n).

Since the variance is of higher order, we have convergence of m̂1 in probability,

√
nh(m̂1 − h2σ2

Kf(x)[
r′′(x)f(x)

2
+ r′(x)f ′(x)])

p−→ 0.

(e) Invoking the CLT, compute the limiting distribution of r̂. What is the rate of convergence? Is the

estimator asymptotically biased? Solution: Yes, the estimator is biased since m̂2 does not converge to

0. Putting together all the results on m̂1 and m̂2, and using the fact that f̂(x)
p→ f(x),

√
nh(r̂(x)− r(x)) =

√
nh

m̂1

f̂(x)
+

√
nhm̂2

f̂(x)

⇝ N
(
h2σ2

K [
r′′(x)f(x)

2
+ r′(x)f ′(x)],

g(K)

f(x)

)
.

The rate of convergence is
√
nh.
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(f) How would the parameters of the limiting distribution of r̂ change is x were a boundary point? Solution:

The analysis of m̂1 would change since the estimated derivative of f̂ at the boundary will be biased from

the data. We will not have the same convergence in probability of f̂ and as a result the convergence of r̂

would also have higher bias.
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