MATHb524 — Spring 2025
Problem Set: Week 1

1. (Integrability) Let f and g be integrable functions.

(a) Show that max{f,g} = (f+ g+ |f —g|)/2 and min{f, g9} = (f + g — |f — g|)/2. Solution: recall
that |z] = z whenever z > 0 and —z otherwise. Thus, when f > ¢ we have that max {f,¢g} = f and
|f —gl = f—g, which gives (f +g+1|f—g))/2=(f+9+ f—9g)/2 = f, so the two functions coincide.
Similarly, when f < g we have max {f, g} =gand (f+g+|f—9|)/2=(f+g9— f+g)/2 = g which shows

that the two functions are equal. The case for min {f, g} is analogous.

(b) Show that max{f, g} and min{ f, g} are measurable and integrable. Solution: for the first case, we want to
show that [ |max{f, g} |du < co. From (a) we have that [ |max{f, g} |du= [|(f+g+|f—gl|)/2]|dp. Now,
applying the triangle inequality twice, we have that | f+g+|f—g|| < |f+g|+|f—g| < 2|f|+2|g| and thus by

properties (4) and (3) in the slides we get [ |(f+g-+|f—g))/2ldu < [ (1| + lgl) du = J |fldu+ lgldp < o0
by integrability of f and g. The case for the minimum is analogous.

2. (Mixed Random Variable) Let X ~ Uniform(0,1).

(a) Show that g.(x) = x1(xz > ¢) for ¢ € (0,1) is measurable. Solution: Note that g.(x) = fi(z) - fa(x)
where fi(z) = z and fa(z) = 1(z > ¢). Now, fz(z) is an indicator function on the Borel set (¢, +00),
so it is measurable, and fo(x) is a continuous function so it is also measurable. Finally, the product of

measurable functions is measurable, from which we conclude that g.(x) is measurable.

(b) Derive the d.f. of Y(¢) = g.(X), where ¢ € (0,1). Solution: clearly 0 < g.(X) <1soP(Y <y) =0 for
y<0and P(Y <y)=1for y > 1. Then, for y € [0,1],

PY<y)=PXLX>c)<y)=PX1U(X >c) <y, X >c)+P(X1(X >¢)<y,X <)
“P(X <3, X > ) + B(X <) = (Fx(y) — Fx(9)1(y > ¢) + Fx(0
=—ollyzc)+c

This yields:
0 ify<O
c if0<y<c

ifec<y<1

_= <

ify>1
3. (Mixed r.v., d.f. and density) Let X be a r.v. with absolutely continuous d.f. Fx(z) and Lebesgue density

f(z). Assume f(x) > 0 for all x € R. Let Y = max{a, X + b} for a,b € R.
(a) Derive the d.f. of Y. Solution: recall that max{a, X +b} = al(X <a—b)+ (X +0)1(X > a—b). Then,
P(Y <y) =P(max{a, X + b} <y)

P(max{a,X +b} <y, X <a—-0) +Pmax{a, X +b} <y,X >a—1b)
Pa<y,X<a—b)+P(X<y—0b,X >a—0)



which yields:
0 ify<a
Fy(y)=P(Y <y)=(Fx(a—b) ify=a
Fx(y—0b) ify>a

(b) Derive the density of ¥ w.r.t. the carrying measure y = Leb + J,. Solution: note that the d.f. is
discontinuous at point a (Y is a mixed r.v.). The density will be:

0 ify<a

(y) =% Fx(a—b) ify=a
fx(y—=0b) ify>a

dPy
fy(y) = W

4. (Weak Convergence) Let Xi,..., X, beiid., X,y = max;<;<, X; and X, ~ Gumbel(0, 1). Show that:
(a) If X; ~ Exp(1) then X(,) —logn —4 Xco.
Solution:
P(X(n) —log(n) < z) = P(X(n) < x + log(n))
— F(z +log(n)"
— (1 _ e—w—log(n))n

(-5

—e

— €

(b) If X;, ~ Logistic(0, 1) then X,y —log(n) =4 Xoo.

Solution:

P(X(n) —log(n) < x) = F(x 4 log(n))"

|
[

5. (Modes of Convergence) Let {X,, : n > 1} be a sequence of random variables.

(a) (—¢ implies Op(1)) Let X,, =4 Xoo. Show that X, is bounded in probability. Solution: let F,(z) and
F(z) denote the cdf of X,, and X at x, respectively. We want to show that for any ¢ > 0 3 M, : P(|X,,| >
M,) < e. Fix an arbitrary € > 0. Since F'(co) =1 and F'(—o0) = 0, we can find a large enough M} such
that F(—M}) <e/4 and F(M?) > 1 — /4. Since a cdf has at most a countable number of discontinuity
points, we can choose this M} such that F' is continuous at M. On the other hand, by convergence in
distribution we have that F,,(x) — F(z) for all x at which F is continuous. In particular, for M7, there
is an n. such that, for n > n.,

[Fn(=M7) = F(=M7)[ <e/4 and |F, (M) - F(M])| <e/4



In particular, note that this implies that for n > n., F,(—M*) < F(-M?)+¢/4 and 1 — F,(M}) <
1— F(M?)+¢e/4. Now, using that P(|X,| > M) =1 — F,(MZ?) + F,(—MZ) and applying the previous
inequalities, we get:
P(|X,| > M) <1— F(M?) +¢/4+ F(—M?) +¢/4

<1—-F(MX+F(—M?)+¢/2

<el/d+eldte/2=¢
for all n > n.. This means that X,, is bounded in probability for n > n.. We are left with the first n. — 1
terms in the sequence. However, since P(|X,,| > M) — 0 as M — oo, we can always find a large enough
M:* such that P(|X,| > M*) <eforn=1,2,--- ,n. — 1. By simply choosing M. = max{M*, M**} we
can bound the sequence for all n, which proves that X, is bounded in probability.

(b) (—r, implies —,) Let sup,>; E[|X,[P] < oo for p > 0. Show that X,, —r, X = X, —p Xeo-

Solution: by Chebyshev’s inequality, for all n and for all € > 0 we have:

E[|X, — Xoo|?
P(| X, — Xoo| >s)gu

ep
Now take the limit with n — oo:
E[|X, — Xx|P
lim P(|X,, — Xoo| > ¢) < lim M =0
n—oo n—o0o ep

by L, convergence.

(¢) (—, without moments) Give an example of a sequence X, such that (i) X,, =, Xoo with E[X,,] undefined
forallm =1,2,..., and (ii) E[X] < co. Solution: let X,, = X + % where, for example, X, ~ N(0,1)
and Z ~ Cauchy(0,1). Then the expectation is undefined for any n but X,, 2 X, because P(|X,, — Xoo| >
e) =P(|Z] > ne) - 0 as n — oo and E[X ] = 0.

6. (Non-iid LLNs) Let {X,, : n > 1} be a sequence of random variables. Show the following.

(a) (Heteroskedasticity) If {X,, : n > 1} are independent with

SRS

1 n n
i = — Y E[X; 52 = X, =
fin n; [Xi] = p and o ;V[ | = o(n),

then X,, —, u. Solution: note that

n

I = and VIX] = 2 3"V = o(1)

=
ks
I
3=

then

Then, by Markov inequality, for any & > 0,
_ 1 _
P[IX,—ul>2] < SE[(X—p)’| =0

Thus X,, —p .



(b) (Serial correlation) If {X,, : n > 1} are identically distributed with E[X;] = p and V[X;] = o2 for all 4,
and Cov[X;, X;] = p(|i — j|) for a function p(z) — 0 as  — oo, then X,, —, u. Solution: note that

E[X] = y. Then
=SV X
i=1

= % ZZCO’U (X,“X])

i=1 j=1
1 n n—1 n
=5 | LVIXI+2) ] ) Cov(X;, X))
i=1 i=1 j=i+1
o? 2 o
= T ;P(l = J)
)

Let’s break the double sum into two sets, Sy := {(4,7) : |¢ — j| < K} and Sy := {(4,5) : |i — j| > K} for
some K (which will be specified shortly):

dopli=i)=> pli—i)+> pli—3j)

i>j 51 Sa
Fix some € > 0. Because p(z) — 0 as © — oo, we can pick K = K(¢) such that p(z) < € for x > K.

Going back to our definition of the set S, we can see that our choice of K implies:
Zp(i—j) < Za < Ze=n26
SQ SZ ivj
On the other hand, by Cauchy-Schwarz inequality:
plli = i) = Cov [X:Xj] < (V[X,] V [X;])* = 0* < 00
for all 7, j. This will allow us to bound the first term in the double sum:

Zp(i—j) < 202 < nKo?
S S1

since, by construction of Si, there are less than nK terms in the sum (to see this, fix, say, ¢ = 1. In this
case j will go from 2 to K, which means there are K pairs of the form (1,7) in S;. We can repeat this n

times by varying i = 1,2, ...,n to see that there are nK pairs). This implies:
sz—j sz—j —|—sz—] <nKU +n’e
i>7 Sa

and therefore:

iV (i X@‘) - a? N 2(nKo? +n?) (2K +1)no? +n’  (2+1)Ko?

n2 n? n

So
lim E [(X—u)z} = lim V[X]<e Ve>0

n—oo n—oo

Since this is true for any arbitrary €, we get lim,,_,o, E [(X — H)Z] = 0 and thus by the Markov inequality
X —p pe



