
MATH524 – Spring 2025
Problem Set: Week 1

1. (Integrability) Let f and g be integrable functions.

(a) Show that max{f, g} = (f + g + |f − g|)/2 and min{f, g} = (f + g − |f − g|)/2. Solution: recall

that |z| = z whenever z ≥ 0 and −z otherwise. Thus, when f ≥ g we have that max {f, g} = f and

|f − g| = f − g, which gives (f + g + |f − g|)/2 = (f + g + f − g)/2 = f , so the two functions coincide.

Similarly, when f < g we have max {f, g} = g and (f + g+ |f − g|)/2 = (f + g− f + g)/2 = g which shows

that the two functions are equal. The case for min {f, g} is analogous.

(b) Show that max{f, g} and min{f, g} are measurable and integrable. Solution: for the first case, we want to

show that
∫
|max {f, g} |dµ < ∞. From (a) we have that

∫
|max {f, g} |dµ =

∫
|(f+g+|f−g|)/2|dµ. Now,

applying the triangle inequality twice, we have that |f+g+|f−g|| ≤ |f+g|+|f−g| ≤ 2|f |+2|g| and thus by

properties (4) and (3) in the slides we get
∫
|(f+g+|f−g|)/2|dµ ≤

∫
(|f |+ |g|) dµ =

∫
|f |dµ+

∫
|g|dµ < ∞

by integrability of f and g. The case for the minimum is analogous.

2. (Mixed Random Variable) Let X ∼ Uniform(0, 1).

(a) Show that gc(x) = x1(x > c) for c ∈ (0, 1) is measurable. Solution: Note that gc(x) = f1(x) · f2(x)
where f1(x) = x and f2(x) = 1(x > c). Now, f2(x) is an indicator function on the Borel set (c,+∞),

so it is measurable, and f2(x) is a continuous function so it is also measurable. Finally, the product of

measurable functions is measurable, from which we conclude that gc(x) is measurable.

(b) Derive the d.f. of Y (c) = gc(X), where c ∈ (0, 1). Solution: clearly 0 ≤ gc(X) ≤ 1 so P(Y ≤ y) = 0 for

y < 0 and P(Y ≤ y) = 1 for y > 1. Then, for y ∈ [0, 1],

P(Y ≤ y) = P(X1(X > c) ≤ y) = P(X1(X > c) ≤ y,X > c) + P(X1(X > c) ≤ y,X ≤ c)

= P(X ≤ y,X > c) + P(X ≤ c) = (FX(y)− FX(c))1(y ≥ c) + FX(c)

= (y − c)1(y ≥ c) + c

This yields:

FY (y) = P(Y ≤ y) =


0 if y < 0

c if 0 ≤ y ≤ c

y if c < y ≤ 1

1 if y > 1

3. (Mixed r.v., d.f. and density) Let X be a r.v. with absolutely continuous d.f. FX(x) and Lebesgue density

f(x). Assume f(x) > 0 for all x ∈ R. Let Y = max{a,X + b} for a, b ∈ R.

(a) Derive the d.f. of Y . Solution: recall that max{a,X + b} = a1(X ≤ a− b)+ (X + b)1(X > a− b). Then,

P(Y ≤ y) = P(max{a,X + b} ≤ y)

= P(max{a,X + b} ≤ y,X ≤ a− b) + P(max{a,X + b} ≤ y,X > a− b)

= P(a ≤ y,X ≤ a− b) + P(X ≤ y − b,X > a− b)
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which yields:

FY (y) = P(Y ≤ y) =


0 if y < a

FX(a− b) if y = a

FX(y − b) if y > a

(b) Derive the density of Y w.r.t. the carrying measure µ = Leb + δa. Solution: note that the d.f. is

discontinuous at point a (Y is a mixed r.v.). The density will be:

fY (y) =
dPY

dµ
(y) =


0 if y < a

FX(a− b) if y = a

fX(y − b) if y > a

4. (Weak Convergence) Let X1, . . . , Xn be i.i.d., X(n) = max1≤i≤n Xi and X∞ ∼ Gumbel(0, 1). Show that:

(a) If Xi ∼ Exp(1) then X(n) − log n →d X∞.

Solution:

P(X(n) − log(n) ≤ x) = P(X(n) ≤ x+ log(n))

= F (x+ log(n))n

=
(
1− e−x−log(n)

)n
=

(
1− e−x

n

)n

→ e−e−x

.

(b) If Xn ∼ Logistic(0, 1) then X(n) − log(n) →d X∞.

Solution:

P(X(n) − log(n) ≤ x) = F (x+ log(n))n

=

(
1

1 + e−x−log(n)

)n

=

[(
1 +

e−x

n

)n]−1

→
[
ee

−x
]−1

= e−e−x

.

5. (Modes of Convergence) Let {Xn : n ≥ 1} be a sequence of random variables.

(a) (→d implies Op(1)) Let Xn →d X∞. Show that Xn is bounded in probability. Solution: let Fn(x) and

F (x) denote the cdf of Xn and X∞ at x, respectively. We want to show that for any ε > 0 ∃Mε : P(|Xn| >
Mε) ≤ ε. Fix an arbitrary ε > 0. Since F (∞) = 1 and F (−∞) = 0, we can find a large enough M∗

ε such

that F (−M∗
ε ) ≤ ε/4 and F (M∗

ε ) ≥ 1− ε/4. Since a cdf has at most a countable number of discontinuity

points, we can choose this M∗
ε such that F is continuous at M∗

ε . On the other hand, by convergence in

distribution we have that Fn(x) → F (x) for all x at which F is continuous. In particular, for M∗
ε , there

is an nε such that, for n ≥ nε,

|Fn(−M∗
ε )− F (−M∗

ε )| ≤ ε/4 and |Fn(M
∗
ε )− F (M∗

ε )| ≤ ε/4
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In particular, note that this implies that for n ≥ nε, Fn(−M∗
ε ) ≤ F (−M∗

ε ) + ε/4 and 1 − Fn(M
∗
ε ) ≤

1 − F (M∗
ε ) + ε/4. Now, using that P(|Xn| > Mε) = 1 − Fn(M

∗
ε ) + Fn(−M∗

ε ) and applying the previous

inequalities, we get:

P(|Xn| > M∗
ε ) ≤ 1− F (M∗

ε ) + ε/4 + F (−M∗
ε ) + ε/4

≤ 1− F (M∗
ε ) + F (−M∗

ε ) + ε/2

≤ ε/4 + ε/4 + ε/2 = ε

for all n ≥ nε. This means that Xn is bounded in probability for n ≥ nε. We are left with the first nε − 1

terms in the sequence. However, since P(|Xn| > M) → 0 as M → ∞, we can always find a large enough

M∗∗
ε such that P(|Xn| > M∗∗

ε ) ≤ ε for n = 1, 2, · · · , nε − 1. By simply choosing Mε = max{M∗
ε ,M

∗∗
ε } we

can bound the sequence for all n, which proves that Xn is bounded in probability.

(b) (→Lp implies →p) Let supn≥1 E[|Xn|p] < ∞ for p > 0. Show that Xn →Lp X∞ =⇒ Xn →p X∞.

Solution: by Chebyshev’s inequality, for all n and for all ε > 0 we have:

P(|Xn −X∞| > ε) ≤ E [|Xn −X∞|p]
εp

Now take the limit with n → ∞:

lim
n→∞

P(|Xn −X∞| > ε) ≤ lim
n→∞

E [|Xn −X∞|p]
εp

= 0

by Lp convergence.

(c) (→p without moments) Give an example of a sequence Xn such that (i) Xn →p X∞ with E[Xn] undefined

for all n = 1, 2, . . ., and (ii) E[X∞] < ∞. Solution: let Xn = X∞ + Z
n where, for example, X∞ ∼ N (0, 1)

and Z ∼ Cauchy(0, 1). Then the expectation is undefined for any n but Xn
p→ X∞ because P(|Xn−X∞| >

ε) = P(|Z| > nε) → 0 as n → ∞ and E[X∞] = 0.

6. (Non-iid LLNs) Let {Xn : n ≥ 1} be a sequence of random variables. Show the following.

(a) (Heteroskedasticity) If {Xn : n ≥ 1} are independent with

µ̄n =
1

n

n∑
i=1

E[Xi] → µ and σ̄2
n =

1

n

n∑
i=1

V[Xi] = o(n),

then X̄n →p µ. Solution: note that

E[X̄] =
1

n

n∑
i=1

E[Xi] = µ̄n and V[X̄] =
1

n2

n∑
i=1

V[Xi] = o(1)

then

E
[(
X̄ − µ

)2]
= E

[(
X̄ − µ̄n + µ̄n − µ

)2]
= E

[(
X̄ − µ̄n

)2
+ (µ̄n − µ)

2
+ 2

(
X̄ − µ̄n

)
(µ̄n − µ)

]
= E

[(
X̄ − µ̄n

)2]
+ (µ̄n − µ)

2
+ 2 (µ̄n − µ)E

[
X̄ − µ̄n

]
= V[X̄] + (µ̄n − µ)

2 → 0 as n → ∞

Then, by Markov inequality, for any ε > 0,

P
[
|X̄n − µ| > ε

]
≤ 1

ε2
E
[(
X̄ − µ

)2]→ 0

Thus X̄n →p µ.
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(b) (Serial correlation) If {Xn : n ≥ 1} are identically distributed with E[Xi] = µ and V[Xi] = σ2 for all i,

and Cov[Xi, Xj ] = ρ(|i − j|) for a function ρ(x) → 0 as x → ∞, then X̄n →p µ. Solution: note that

E[X̄] = µ. Then

E
[(
X̄ − µ

)2]
= V[X̄]

=
1

n2
V

(
n∑

i=1

Xi

)

=
1

n2

n∑
i=1

n∑
j=1

Cov (Xi, Xj)

=
1

n2

 n∑
i=1

V [Xi] + 2

n−1∑
i=1

n∑
j=i+1

Cov (Xi, Xj)


=

σ2

n
+

2

n2

∑
i>j

ρ(i− j)

Let’s break the double sum into two sets, S1 := {(i, j) : |i− j| < K} and S2 := {(i, j) : |i− j| ≥ K} for

some K (which will be specified shortly):∑
i>j

ρ(i− j) =
∑
S1

ρ(i− j) +
∑
S2

ρ(i− j)

Fix some ε > 0. Because ρ(x) → 0 as x → ∞, we can pick K = K(ε) such that ρ(x) < ε for x ≥ K.

Going back to our definition of the set S2, we can see that our choice of K implies:∑
S2

ρ(i− j) <
∑
S2

ε <
∑
i,j

ε = n2ε

On the other hand, by Cauchy-Schwarz inequality:

ρ(|i− j|) = Cov [XiXj ] ≤ (V [Xi]V [Xj ])
1/2

= σ2 < ∞

for all i, j. This will allow us to bound the first term in the double sum:∑
S1

ρ(i− j) <
∑
S1

σ2 < nKσ2

since, by construction of S1, there are less than nK terms in the sum (to see this, fix, say, i = 1. In this

case j will go from 2 to K, which means there are K pairs of the form (1, j) in S1. We can repeat this n

times by varying i = 1, 2, ..., n to see that there are nK pairs). This implies:∑
i>j

ρ(i− j) =
∑
S1

ρ(i− j) +
∑
S2

ρ(i− j) < nKσ2 + n2ε

and therefore:

1

n2
V

(
n∑

i=1

Xi

)
<

σ2

n
+

2(nKσ2 + n2ε)

n2
=

(2K + 1)nσ2 + n2ε

n2
=

(2 + 1)Kσ2

n
+ ε

So

lim
n→∞

E
[(
X̄ − µ

)2]
= lim

n→∞
V[X̄] < ε ∀ε > 0

Since this is true for any arbitrary ε, we get limn→∞ E
[(
X̄ − µ

)2]
= 0 and thus by the Markov inequality

X̄n →p µ.

4


