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We now consider the density (or distribution) estimation problem. If we make some parametric
assumptions on the density function then the problem boils down to estimating the finite collection
of parameters that identify the density, typically done with the maximum likelihood estimator
(MLE).

If, however, we would like to make fewer restrictive assumptions on the family of distributions that
the true density belongs to, the MLE no longer applies and we need a different set of tools to answer
the question.

The natural first step in this case is to look at the empirical function. We start by considering the
empirical CDF.

1 Empirical density estimation
Assume we have n i.i.d. data points, X1, . . . , Xn generated from some probability density function f .
The CDF is then defined as F(x) =

∫ x

−in f ty
f (t)dt. The empirical CDF (ECDF) is then defined as

Fn(x) =
1
n

∑
1(Xi ≤ x).

By the strong law of large numbers, it can be shown that Fn(x)
a.s.
→ F(x) for all x ∈ R as n → ∞.

Thus, Fn is a consistent estimator of the CDF. Now, the question is: How can we estimate the PDF
from the empirical CDF estimator? From our understanding of derivatives, the natural solution is to
approximate the derivative of the CDF,

f (x) ≈
F(x + h) − F(x − h)

2h

for sufficiently small h > 0. Then, we plug-in Fn for F,

f̂n(x) =
Fn(x + h) − Fn(x − h)

2h
.

f̂n is known as the Rosenblatt estimator. An equivalent formulation of the estimator is

f̂ R
n (x) =

1
2nh

∑
i

1(x − h < Xi ≤ x + h) =
1

nh

∑
i

K
(Xi − x

h

)
,

where K(u) = 1
21(−1 < u ≤ 1) (uniform kernel).
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2 Kernel density estimation
The Rosenblatt estimator can be generalized to a collection of estimators, known as the kernel
density estimators,

f̂n(x) =
1
n

∑
i

Kh(Xi, ; x),

where K : R → R is an integrable function that satisfies
∫

K(u)du = 1. Note that the structure of
this estimator is very similar to the local linear regression estimator.

Importantly, if K is non-negative and X1, . . . ,Kn are fixed, the mapping of x 7→ f̂n(x) is a valid
probability density.

2.1 Kernel functions
We have already seen some common kernel functions in the previous lecture. Here we list a few
more kernel functions.

• Biweight: K(u) = 15
16 (1 − u2)1(|u| ≤ 1)

• Silverman: K(u) = 1
2 exp(−|u|/

√
2) sin(|u|/

√
2 + π/4)

2.2 MSE and Bias-Variance trade-off
Now, we investigate the reliability (or accuracy) of the kernel density estimator by evaluating its
MSE:

MSE(x) = E f [( f̂n(x) − f (x))2].

Note that the expectation is with respect to the true density, f . We start with the bias-variance
decomposition of the MSE:

MSE(x) = Bias2( f̂n(x)) + V( f̂n(x))

where
Bias( f̂n(x)) = E f [ f̂n(x)] − f (x)

and
V( f̂n(x)) = E f [( f̂n(x) − E f [ f̂n(x)])2].

We will analyze the bias and variance separately.

2.2.1 Bias

Let us first write out the bias in its most simplified form:

Bias( f̂n(x)) = E f [ f̂n(x)] − f (x) =
1
h

∫
K

(u − x
h

)
f (u)du − f (x).
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To make any progress in understanding how this bias changes with h (the only hyper-parameter),
we need to make some assumptions about the class of functions f that and the kernel function K.
Consider the following:

Definition 1 (Hölder function class). Suppose T ⊂ R and β and L are two positive numbers. The
class of functionsH(β, L) is called the Hölder class if the set of l = ⌊β⌋ times differentiable functions
f : T → R whose l-th derivative satisfies

| f (l)(x) − f (l)(x′)| ≤ L|x − x′|β−l ∀x, x′ ∈ T

Definition 2 (l-th order kernels). Assume l ≥ 1 is an integer. K is an l-th order kernel if the functions
u 7→ u jK(u) for j = 0, . . . , l are integrable and satisfy∫

K(u)du = 1
∫

u jK(u)du = 0, j = 1, . . . , l − 1,

and ∫
ulK(u)du > 0.

Definition 3 (Symmetric kernels). A kernel is symmetric if K(u) = K(−u). In this case, all odd
moments of the kernel are necessarily 0. Therefore, the order of a symmetric kernel is always an
even number.

Many of the most common kernels (like the examples in Section 2.1 and in Chapter 2) are second-
order kernels (symmetric, non-negative kernels are second-order kernels). We will see what
higher-order kernel functions look like later.

Now, we define f ∈ F(β, L), to mean:

F(β, L) = { f | f ≥ 0, ∫ f (x)dx = 1, and f ∈ H(β, L)}

Proposition 1 (Bias rate)
Suppose K is an order l = ⌊β⌋ kernel and f ∈ F(β, L). Furthermore, assume∫

|u|β|K(u)|du < ∞.

Then, for all x ∈ R, h > 0 and n ≥ 1,

|Bias( f̂n(x))| ≤ Chβ

where
C =

L
l!

∫
|u|β|K(u)|du.
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2.2.2 Variance

The following proposition provides control on the variance.

Proposition 2 (Variance bound)
Suppose f (x) < fmax < ∞ for all x ∈ R. Let K : R→ R be a function such that∫

K2(u)du < ∞.

Then, for all x ∈ R, h > 0 and n ≥ 1,

V( f̂n(x)) ≤
C
nh

where
C = fmax

∫
K2(u)du.

Note that this result shows that if the bandwidth is chosen to depend on n, h = hn such that nhn → ∞

as n→ ∞ and hn → 0, the variance will converge to 0.

Putting together the bias and variance bounds, we see that the MSE is bounded by

MSE ≤ C1h2β +C2
1

nh
.

It is easy to see from this bound that the bias and variance terms depend on the bandwidth in
opposite ways. This is precisely what leads to the parabolic shape of the MSE curve (plotted against
h), and mathematically describes the bias-variance trade-off. As we have described previously, large
h leads to increased bias, which is often termed over-smoothing.

To choose the optimal bandwidth, we can minimize the MSE bound with respect to h:

ĥ = argmin
h>0

C1h2β +C2
1

nh

=

(
C2

2βC1

) 1
2β+1

n−
1

2β+1

= O
(
n−

1
2β+1

)
This optimal bandwidth gives

MSE(x) = O(n−
2β

2β+1 ).

It turns out that this bound can be established uniformly (i.e., over all values of x) as well, through
the following theorem:
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Theorem 1 (Uniform MSE bound)
Suppose K is an order l = ⌊β⌋ kernel and f ∈ F(β, L). Furthermore, assume that∫

|u|β|K(u)|du < ∞

and ∫
K2(u)du < ∞.

For some known constant c > 0, set h = cn−
1

2β+1 . Then, for n ≥ 1, f̂n satisfies

sup
x∈R

sup
f∈F(β,L)

E f [( f̂n(x) − f (x))2] ≤ Cn−
2β

2β+1 ,

where C is a positive constant that depends on β, c, L and K.

The proof of the theorem relies on verifying that the assumptions of Proposition 2 are satisfied
uniformly and then applying both Proposition 1 and 2.

The conclusion of Theorem 1 establishes the rate of convergence of the kernel density estimator as
n−

β
2β+1 .

2.3 Higher-order kernels
Theorem 1 assumes that bounded, order-l kernels exist. We have already seen examples of kernel
for l = 2. Now, we provide a method for constructing higher-order kernels.

Start with the orthonormal basis of Legendre polynomials in L2([−1, 1], dx) defined by

φ0(x) = 1, φm(x) =

√
2m + 1

2
1

2mm!
dm

dxm

[
(x2 − 1)m

]
, m = 1, 2, . . .

This basis satisfies the property that∫ 1

−1
φm(u)φk(u)du = 1(m = k)

Proposition 3 (Constructing l-th order kernel)
The function defined by

K(u) =
l∑

m=0

φm(0)φm(u)1(|u| ≤ 1)

is an l-th order kernel.
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Remark 1 (Positivity constraint) It follows from Definition 2 that some kernels may take negative
values on a set of positive Lebesgue measure. As a result, the estimators f̂n based on such kernels
can also take negative values. This property is sometimes emphasized as a drawback of estimators
with higher order kernels, since the true density f itself will always be nonnegative. However, this
remark is of minor importance because we can always use the positive part estimator:

f̂ +n (x) ≜ max
{
0, f̂n(x)

}
whose risk is smaller than or equal to the risk of f̂n :

E f

[
( f̂ +n (x) − f (x))2

]
≤ E f

[
( f̂n(x) − f (x))2

]
, ∀x ∈ R

In particular, Theorem 1 remains valid if we replace f̂n by f̂ +n . Thus, the estimator f̂ +n is nonnegative
and attains the fast convergence rates associated with higher order kernels.

3 Multivariate extension
The collection of kernel density estimators we have studied so far can also be extended to the
multidimensional case (d > 1). For example, if d = 2, supposed {(X1

i , X
2
i )}ni=1 ∈ R

2 are i.i.d. with a
joint density f (x) = f (x1, x2), the kernel estimator takes the form:

f̂n(x) =
1

nh2

∑
i

K(X1
i ; x1)K(X2

i ; x2)

for some kernel K and bandwidth h > 0. This multiplicative nature of the kernel applied to each
dimension is referred to as the product kernel.

For more general d, we can write the estimator as

f̂ (x) =
1

nh1 · · · hd

n∑
i=1

 d∏
j=1

K

X j
i − x j

h j


 .

Note that here one can choose a different kernel and bandwidth based on the covariate, if desired.
The risk of this estimator is given by

1
4
σ4

K

 d∑
j=1

h4
j

∫
f 2

j j(x)dx +
∑
j,k

h2
jh

2
k

∫
f j j fkkdx

 +
(∫

K2(x)dx
)d

nh1 · · · hd

where f j j is the second partial derivative of f . The optimal bandwidth for this estimator is given
by hi ≡ h = O

(
n−1/(4+d)

)
, leading to a risk of order O

(
n−4/(4+d)

)
. We see that the risk increases

rapidly with dimension. From this formulation we can see the effect of increased dimensionality on
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the estimator. This curse of dimensionality implies that the accuracy of the estimator deteriorates
quickly as dimension increases.

To get a sense of how serious this problem is, consider the following table from Silverman (1986)
which shows the sample size required to ensure a MSE less than 0.1 at 0 when the true density is a
multivariate normal and the optimal bandwidth is used.

Dimension Sample Size
1 4
2 19
3 67
4 223
5 768
6 2790
7 10,700
8 43,700
9 187,000

10 842,000

This is clearly not good for practical purposes. As a result of this, the confidence intervals
(constructed analogously to the one-dimensional case) get increasingly wide as d increases. It is
important to highlight here that the problem is not the method of estimation, but rather, the wide
bands correctly reflect the difficulty of the problem. We will discuss this curse of dimensionality
and other estimation tools that may be used to resolve it later in the course.

4 Connecting density estimation and regression
There is a useful trick for converting a density estimation problem into a regression problem. This
trick was made rigorous by Nussbaum (1996). By converting to regression, we can use all the tools
we developed in the previous chapter, including the method for constructing confidence intervals.

Suppose, as we have thus far, X1, . . . , Xn ∼ F with density f = F′. WLOG, suppose the data are on
[0, 1]. Divide the interval [0, 1] into k equal width bins where k ≈ n/10. Define

Y j =

√
k
n
×

√
N j +

1
4

where N j is the number of observations in bin j. Then,

Y j ≈ r
(
t j

)
+ σε j
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where ε j ∼ N(0, 1), σ =
√

k
4n , r(x) =

√
f (x) and t j is the midpoint of the jth bin. To see why, let B j

denote the jth bin and note that

N j ≈ Poisson
(
n
∫

B j

f (x)dx
)
≈ Poisson

n f
(
t j

)
k


such that E[N j] = V(N j) ≈ n f (t j)/k. Applying the delta method, we see that E[Y j] ≈

√
f (t j) and

V(Y j) ≈ k/(4n).

We have thus converted the density estimation problem into a non-parametric regression problem
with equally spaced Xi’s and constant variance. We can now apply our favorite non-parametric
regression method to generate an estimator r̂n and set

f̂n(x) =
(r+(x))2∫ 1

0
(r+(s))2ds

,

with r+(x) = max{r̂n(x), 0}. In particular, we can construct confidence intervals.

5 Asymptotic (sub-)optimality
We have evaluated the point-wise MSE behavior of the kernel density estimator. However, another
method of assessing the performance of the estimator could be to analyze the integrated mean
squared-error (IMSE). This type of evaluation may be more relevant when one wants good control
on the expected error as opposed to the error at any single evaluation point. The IMSE is defined as

E f [∫ ( f̂n(x) − f (x))2dx],

which by the Tonelli-Fubini theorem and the bias-variance decomposition simplifies to∫
MSE( f̂n(x))dx =

∫
Bias2( f̂n(x))dx +

∫
V( f̂n(x))dx.

Now in order to bound the IMSE, we repeat the exercise of bounding the integrated bias and variance
terms separately under analogous assumptions as for bounding the MSE. We start with the variance
bound:

Proposition 4 (Integrated variance bound)
Suppose K : R→ R satisfies ∫

K2(u)du < ∞.

Then for any h > 0, n ≥ 1 and any probability density function f ,∫
σ2(x)dx ≤

1
nh

∫
K2(u)du.
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Note that here that like in Proposition 2, Proposition 4 does not make any structural assumptions
on f . However, the bias bound will require structural assumptions on f similar to the Hölder class
restriction in Proposition 1.

Definition 4 (Sobolev class). Let β ≥ 1 be an integer and L > 0. The Sobolev class S (β, L) is the
set of all β − 1 times differentiable functions f : R→ R with f (β−1) being absolutely continuous and∫

( f (β)(x))2dx ≤ L.

Then, let F (β, L) = { f ∈ S (β, L) : f ≥ 0,
∫

f (x)dx = 1}. Then, the bias bound is given by the
following proposition:

Proposition 5 (Integrated bias bound)
Assume f ∈ F (β, L) and K be an order β kernel with∫

|u|β|K(u)|du < ∞.

Then, for any h > 0, n ≥ 1, ∫
Bias2(x)dx ≤ C2h2β.

where
C =

L
l!

∫
|u|β|K(u)|du.

From these two results, we get the IMSE bound

IMSE ≤ C2h2β +
1

nh

∫
K2(u)du.

The IMSE is minimized at

h∗n =


∫

K2

2βC2


1

2β+1

n−
1

2β+1

with optimal order

IMSE = O
(
n−

2β
2β+1

)
.

Notice that the behavior of the IMSE is very similar to that of the MSE.

The natural assumption from the MSE and IMSE bounds would be to select the bandwidth and
kernel that minimizes the expressions for some chosen density f . Lets first look at the following
result
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Lemma 1
Suppose the kernel K satisfies:

∫
K2 < ∞,

∫
u2|K(u)|du < ∞ and define S K =

∫
u2K(u) , 0. Assume

further that f is differentiable, the first derivative is absolutely continuous and
∫

( f (2)(x))2dx < ∞.
Then, for all n ≥ 1,

IMSE =
[

1
nh

∫
K2(u)du +

h4

4
S 2

K

∫
( f (2)(x))2dx

]
(1 + o(1)),

where the o(1) term depends on f and approaches zero as h→ 0.

Using this result, if we minimize for h and K, we obtain the “optimal” bandwidth

hIMS E(K) =


∫

K2

nS 2
K

∫
( f (2))2

1/5

and the “optimal” kernel shape

K IMS E(u) =
3
4

(1 − u2)+.

Note that this is actually just the Epanechnikov kernel. Of course, in practice using the IMSE-
optimal bandwidth is not possible since it depends on the second derivative of the true density
function. This idea of substituting in hIMS E to the KDE, is called the oracle estimator, since it
depends on unknown quantities.

From Lemma 1, the asymptotic IMSE, plugging in for the Epanechnikov kernel and the IMSE-
optimal bandwidth, is

lim
n→∞

n4/5E[∫ ( f E(x) − f (x))2dx] =
34/5

51/54

(∫
( f (2)(x))2dx

)1/5

.

It may seem reasonable to claim that this is the best IMSE that can be obtained and the oracle
estimator is optimal, given that we have use IMSE optimal kernel and bandwidth. However, this is
not accurate. The following result should explain why:

Lemma 2
Assume that f is differentiable, the first derivative is absolutely continuous and

∫
( f (2)(x))2dx < ∞.

Let K be an order 2 kernel (i.e., S K = 0) with
∫

K2 < ∞. Then, for any ε > 0, the kernel estimator
with h = n−1/5ε−1

∫
K2 satisfies

lim sup
n→∞

n4/5E[∫ ( f̂n(x) − f (x))2dx] ≤ ε.

The same is true for f̂ +n = max(0, f̂n).

We see that for all ε > 0 small enough the estimators f̂n and f̂ +n of Lemma 2 have smaller
asymptotic IMSE than the Epanechnikov oracle under the same assumptions on f. Note that f̂n, f̂ +n
are completely data-dependent estimators, not oracles. So, if the performance of estimators is
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measured by their asymptotic IMSE for a fixed f there are several estimators that are strictly better
than the Epanechnikov oracle. Furthermore, Lemma 2 implies

inf
Tn

lim sup
n→∞

n4/5E f [∫ (Tn(x) − p(x))2dx] = 0,

where infTn is the infimum over all the kernel estimators. The positive part estimator f̂ +n is included
in Lemma 2 on purpose. In fact, it is often argued that one should use nonnegative kernels because
the density itself is nonnegative. This argument would support the “optimality” of the Epanechnikov
kernel because it is obtained from minimization of the asymptotic IMSE over nonnegative kernels.

Lemma 2 constructs a counterexample. The estimators f̂n and f̂ +n given in this lemma are by no
means advocated for as being good. In fact, they can be rather counter-intuitive. For example,
notice that the bandwidth h contains an arbitrarily large constant factor ε−1. This factor is used to
diminish the variance term, whereas, for fixed density f , the condition

∫
u2K(u)du = 0 eliminates

the main bias term if n is large enough, that is, if n ≥ n0, starting from some n0 that depends on f .
This elimination of the bias is possible for fixed f but not uniformly over the Sobolev class with
β = 2 (and more generally, for many large class of functions f ∈ F ). The message of the lemma,
then, is to show that as soon as we consider the problem of asymptotic optimality for a fixed density,
even counter-intuitive estimators can outperform the oracle.

This idea of fixed f asymptotics providing inconsistent ideas of optimality will be a strong motivator
for the minimax theory and uniform optimality we will discuss in the next few chapters.
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