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Today, neural networks need no introduction. Neural networks have become synonymous with
machine learning. However, it is worth understanding the origins of the neural network estimation
procedure if we hope to making claims about the accuracy and robustness of these estimators. The
idea of a neural network first came about from the goal of using a mathematical formulation (called
a neuron) to approximate the behaviour of a human brain. The first proposal of this mathematical
neuron was published by McCulloch and Pitts (1943) wherein the authors introduce the concept
of neuron by virtue of binary thresholding. As can be seen in Figure 1 the neuron takes a linear
combination of the inputs and applies a thresholding function to provide an output.

Figure 1: A McCulloch-Pitts neuron

Soon after, Rosenblatt (1958) applied the neuron to pattern recognition and introduced the concept
of a perceptron (a neuron with a different thresholding function) and proved its convergence
(Rosenblatt, 1962). The neural network, a complex structure of multiple neurons was then a natural
extension.

1 Mathematical formulation
The neurons that most commonly make up the operations of a typical neural network today are
usually smoothed versions of the neuron operation proposed by McCulloch and Pitts.

g(x) = σ(aTx + b)

where x ∈ Rd, a ∈ Rd, b ∈ R and σ(·) : R → [0, 1] is known as the sigmoid function. A neural
network is a combination of multiple neurons operating simultaneously on the input:

f (x) =
k∑

i=1

ciσ(aT
i x + bi) + c0.
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Figure 2: An artificial neuron

The function f is called a feedforward neural network with one hidden layer of k neurons. See
Figure 3 for a visualization of such an estimator.

Figure 3: A feedforward neural network

The specific form of the sigmoid σ can be quite general but there are certain conditions it must
satisfy to provide a contractable output f .

Definition 1 (Squashing functions). A sigmoid function is called a squashing function if it is
nondecreasing, limx→−∞ σ(x) = 0 and limx→∞ σ(x) = 1.

The most commonly used squashing functions have at most countable number of discontinuities and
as a result are measurable functions. These are the kinds of functions we will study for mathematical
convenience. Some examples of such functions that are also commonly used in practice:

• Thresholding: σ(x) = 1(x ∈ [0,∞))

• Ramp: σ(x) = x1(x ∈ [0, 1]) + 1(x ∈ [1,∞))

• Cosine: σ(x) = 1
2 (1 + cos(x + 3π/2))1(x ∈ [−π/2, π/2]) + 1(x ∈ (π/2,∞))

• Logistic: σ(x) = (1 + exp(−x))−1

• Arctan: σ(x) = 1
2 +

1
π

arctan(x)
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• Gaussian: σ(x) = 1
√

2π

∫ x

−∞
exp(−y2/2)dy.

Our goal for this chapter will be to show consistency of the neural network regression estimator. We
will assume i.i.d. data and choose to estimate the parameters of the model (a, b, c) by minimizing
the empirical squared error:

1
n

n∑
i=1

( f (Xi) − Yi)2.

In order to make reasonable progress with this, as always, we will need to place some constraints
on the class of possible regression functions.

FNN =

 f (x) =
kn∑
j=1

c jσ(aT
j x + b j) + c0 : kn ∈ N, a j ∈ R

d, b j ∈ R,

kn∑
j=1

|c j| ≤ βn


The NN regression estimator, mn ∈ FNN is then defined as

1
n

n∑
i=1

(mn(Xi) − Yi)2 = min
f∈FNN

1
n

n∑
i=1

( f (Xi) − Yi)2.

We will assume that the minimizing function exists but will not require it to be unique. Under
some additional assumptions on the width (number of neurons in a layer, kn) of the network and the
magnitude of the parameters βn, we can show strong universal consistency of the one hidden layer
feedforward neural network.

Theorem 1 (Consistency of NNs)
For the class FNN let mn be the empirical risk minimizing estimator. If kn, βn → ∞ and

knβ
4
n log(knβ

2
n)

n
→ 0,

then,

E

[∫
(mn(x) − m(x))2µ(dx)

]
→ 0

for all joint distributions of X,Y such that E[Y2] < ∞. Additionally, if there exists a δ > 0 such that
β4

n/n
1−δ → 0, then ∫

(mn(x) − m(x))2µ(dx)→ 0.

Before we prove this theorem, we will show a powerful approximation result for the class FNN .
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Theorem 2 (Universal approximation)
Let σ be a squashing function and let K be a compact subsect of Rd. Then, for every continuous
function f : Rd → R and every ε > 0, there exists a neural network

h(x) =
k∑

j=1

c jσ(aT
j x + b j) + c0

such that

sup
x∈K
| f (x) − h(x)| < ε.

Proof of Theorem 2. The proof will be done in parts.

Part 1. Cosine network universal approximation The first step will show that the clas of cosine
networks uniformly approximates the space of real continuous functions.

Consider the class of cosine networks:

F =

 f (x) =
k∑

j=1

c j cos(aT
j x + b j), k ∈ N, a j ∈ R

d, b j, c j ∈ R

 .
We note that F is closed under addition, multiplication and scalar multiplication. Closed under
multiplication follows from the cosine identity:

cos a cos b =
1
2

(cos(a + b) + cos(a − b)).

We will say that F separates K if for every x, y ∈ K, x , y there is a function f ∈ F such that for
ever x ∈ K, f (x) , f (y). F vanishes at no point of K if there exists f ∈ F such that for every x ∈ K,
f (x) , 0.

We observe that the cosine network class separates points on K and vanishes nowhere on K by the
following argument: For some x, y ∈ K, x , y and some a ∈ Rd, b = 0, we have cos(aTx + b) ,
cos(aTy + b) (as long as a is chosen such that aTx, aTy ∈ (−π, π) and aTx , aTy). Now, select b
such that cos b , 0 and a ≡ 0. Then, for all x ∈ K, we see that cos(aTx + b) , 0. Then, by the
Stone-Weierstrass theorem (Rudin, 1964), F is uniformly dense in the space of real continuous
functions on K.

Part 2. Cosine squasher approximation The next step is to show that the class of cosine squasher
functions approximates the class of cosine networks.

Let c(x) = 1
2(1 + cos(x + 3π/2))1(x ∈ [−π/2, π/2]) + 1(x ∈ (π/2,∞)). Now, we will show that a

collection of the cosine squasher functions can approximate cos(·) on any compact interval[−M,M].
Define

f (u) =
l∑

j=1

γ jc(αT
j u + β j).
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We will first show that f can reconstruct 2(cos(u) + 1) on any compact interval since changing any
of the parameters γ, α, β allow us to shift and scale the result to then reconstruct cos(u). Note that

(cos(u) + 1)1(u ∈ [−π, π]) = 2(c(u + π/2) − c(u − π/2)).

And so, by adding a finite number of such shifted functions we can reconstruct the cosine on any
compact interval. If the neural network is constructed using the cosine squasher, we have proven
the result of the theorem and we could end the proof here.

Part 3. Arbitrary squasher approximation Now, we show that any other squasher function can
approximate the cosine squasher and therefore the theorem holds for neural networks constructed
with any reasonable squashing function. That is, for every ε > 0 and arbitrary squashing function σ,
there is a neural network h such that

sup
u∈R
|h(u) − c(u)| < ε.

We start by choosing k such that 1/k < ε/4. By construction, there exists an M > 0 such that
σ(−M) < ε/(2k) and σ(M) > 1−ε/(2k). By continuity and monotonicity of c, we can find constants
r1, . . . , rk such that c(ri) = i/k for i = 1, . . . , k−1 and c(rk) = 1−1/(2k). Now, set ai = 2M/(ri+1− ri)
and bi = M(ri + ri+1)/(ri − ri+1). This means that aiu+ bi is a straight line through the points (ri,−M)
and (ri+1,M). Note also that ai > 0. Then, for the network

h(u) =
1
k

k−1∑
j=1

σ(a ju + b j),

we have that

|c(u) − h(u)| < ε

on each of the subintervals (−∞, r1], (r1, r2], . . . , (rk,∞). We can show this through the following
argument. Let i = 1, . . . , k − 1 and u ∈ (ri, ri+1], then i/k ≤ c(u) ≤ (i + 1)/k. For j ∈ {1, . . . , i − 1},

σ(a ju + b j) ≥ σ(a jr j+1 + b j) = σ(M) ≥ 1 −
ε

2k

and for all j ∈ {i + 1, . . . , k − 1}

σ(a ju + b j) ≤ σ(a jr j + b j) = σ(−M) <
ε

2k
.

Then,

|c(u) − h(u)|

≤

∣∣∣∣∣∣∣c(u) −
1
k

i−1∑
j=1

σ(a ju + b j)

∣∣∣∣∣∣∣ + 1
k
σ(aiu + bi) +

1
k

k−1∑
j=i+1

σ(a ju + b j)
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≤

∣∣∣∣∣c(u) −
i − 1

k

∣∣∣∣∣ +
∣∣∣∣∣∣∣ i − 1

k
−

1
k

i−1∑
j=1

σ(a ju + b j)

∣∣∣∣∣∣∣ + 1
k
σ(aiu + bi) +

1
k

k−1∑
j=i+1

σ(a ju + b j)

≤

(
i + 1

k
−

i − 1
k

)
+

(
i − 1

k
−

i − 1
k

(1 −
ε

2k
)
)
+

1
k
+

k − 1 − i
k

ε

2k

=
2
k
+

i − 1
k
ε

2k
+

1
k
+

k − 1 − i
k

ε

2k

≤
3
k
+
ε

2k
≤

3
4
ε +
ε2

8
≤ ε.

For u ∈ (−∞, r1], by c(r1) = 1/k and the fact that σ(−M) < ε/(2k),

|c(u) − h(u)| ≤ max
{

1
k
,

k − 1
k
ε

2k

}
< max{ε/4, ε/8} < ε.

Similarly, for u ∈ (rk,∞),

|c(u) − h(u)| = |1 − c(u) − (1 − h(u))| ≤ max{|1 − c(u)|, |1 − h(u)|}

= max
{

1 − (1 −
1
2k

), 1 −
k − 1

k
(1 −

ε

2k
)
}

= max
{

1
2k
,

1
k
+
ε

2k
(1 −

1
k

)
}

≤ max
{

1
2k
,

1
k
+
ε

2k

}
< max

{
ε

8
,
ε

4
+
ε2

8

}
< ε

Parts 2 and 3 of the proof together show that for every ε > 0, M > 0 and any squashing function,
σ, there exists a neural network that deviates from the cosine function by at most ε on the interval
[−M,M]. The only remaining piece of the proof is to extend this to any compact set K ∈ Rd.

Part 4. Extension to arbitrary compact sets We start by defining an abitrary cosine network
g(x) =

∑k
i=1 c̃i cos(ãT

i x + b̃i) We want to show that for any squashing function σ and compact set
K ∈ Rd, there exists another network s(x) =

∑k
i=1 ci cos(aT

i x + bi) such that

sup
x∈K
|s(x) − g(x)| < ε.

Sine K is compact and the inputs to the squashing function (aT
i x + bi) are continuous, there is a

finite M such that supx∈K |a
T
i x + bi| ≤ M. Then, by the conclusions of Parts 2 and 3,

sup
x∈K
|

k∑
i=1

c̃i cos(ãT
i x + b̃i) −

k∑
i=1

c̃iCM,ε(ãT
i x + b̃i)| ≤

k∑
i=1

|c̃i| sup
u∈[−M,M]

| cos(u) −CM,ε(u)| < ε.

where CM,ε is the appropriately scaled and shifted σ neural network. The conclusion of the theorem
follows from this inequality combined with the conclusion of Part 1 with the triangle inequality. ■
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We have shown through Theorem 2 that neural networks can approximate any real-valued continuous
function when appropriately scaled and shifted. This result takes care of the approximation error for
the class of continuous functions. In order to prove the statement in Theorem 1, we also need to
control the estimation error. As we have seen in previous chapters, the bounding of the estimation
error will come from VC arguments. We now look at three key VC and covering number arguments
that will help in completing the proof of Theorem 1.

Lemma 1
Let F be a class of real functions on Rm and let g : R → R be some nondecreasing function. Let
G = {g ◦ f : f ∈ F }. Then,

VC(G+) ≤ VC(F +).

Proof of Lemma 1. Suppose some collection of points (s1, t1), . . . , (sn, tn) are shattered by G+. Then,
there will exist a collection of functions f1, . . . , f2n ∈ F such that the vector

(1(g( f j(s1)) ≥ t1), . . . , 1(g( f j(sn)) ≥ tn)) (1)

takes on all 2n values for j = 1, . . . , 2n. For all 1 ≤ i ≤ n, define

ui = min
1≤ j≤2n

{ f j(si) : g( f j(si)) ≥ ti}

li = max
1≤ j≤2n

{ f j(si) : g( f j(si)) < ti}.

By the monotonicity of g, ui > li and so li < (li + ui)/2 < ui. Furthermore,

g( f j(si)) ≥ ti → f j(si) ≥ ui → f j(si) >
ui + li

2
.

Similarly,

g( f j(si)) < ti → f j(si) ≤ li → f j(si) <
ui − li

2
.

And so,

(1( f j(s1) ≥
u1 + l1

2
), . . . , 1( f j(sn) ≥

un + ln

2
))

take on the same values as (1) for all j. Thus, (s1, (u1 + l1)/2), . . . , (sn, (un + ln)/2) is shattered by
F +. ■

The next two lemmas show the relationship between composition of functions and covering numbers.

Lemma 2 (Covering numbers for sums of functions)
Let F and G be two function classes on Rm Define F ⊕ G = { f + g : f ∈ F , g ∈ G}. Then, for any
data, zn

1 and ε, δ > 0, we have

N(ε + δ,F ⊕ G, L1(zn
1)) ≤ N(ε,F , L1(zn

1))N(δ,G, L1(zn
1))
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Proof of Lemma 2. The proof of this theorem will be done in the exercises. ■

Lemma 3 (Covering numbers for products of functions)
Let F and G be two function classes on Rm such that | f (x)| ≤ M1 and |g(x)| ≤ M2 for all x ∈ Rm,
f ∈ F and g ∈ G. Define F ⊙ G = { f · g : f ∈ F , g ∈ G}. Then, for any data, zn

1 and ε, δ > 0, we
have

N(ε + δ,F ⊙ G, L1(zn
1)) ≤ N(ε/M2,F , L1(zn

1))N(δ/M1,G, L1(zn
1))

Proof of Lemma 3. Let { f1, . . . , fK} and {g1, . . . , gL} be minimal ε/M2 and δ/M1 covers of F and G
respectively. Then, for every f ∈ F , g ∈ G, there exists a k ∈ [K], l ∈ [L] such that

1
n

∑
| f (zi) − fk(zi)| <

ε

M2
,

1
n

∑
|g(zi) − gl(zi)| <

δ

M1
,

and | fk| ≤ M1, |gl| ≤ M2. Then, by the triangle inequality,

1
n

∑
| f (zi)g(zi) − fk(zi)gl(zi)| =

1
n

∑
| f (zi)(g(zi) + gl(zi) − gl(zi)) − fk(zi)gl(zi)|

≤
1
n

∑
|gl(zi)( f (zi) − fk(zi))| +

1
n

∑
| fk(zi)(g(zi) − gl(zi))|

≤ M2
1
n

∑
| f (zi) − fk(zi)| + M1

1
n

∑
|(g(zi) − gl(zi)|

< ε + δ

and so { fkgl : k ∈ [K], l ∈ [L]} is an (ε + δ)-cover of F ⊙ G. ■

We are now ready to prove Theorem 1.

Proof of Theorem 1. The approximation error given by

inf
f∈Fn

∫
| f (x) − m(x)|2µ(dx)

vanishes as kn, βn → ∞ if ∪k∈NFk is dense in L2(µ) for every µ. The proof of denseness is an analytic
proof that uses Fourier transforms. For the sake of time and maintaining emphasis on statistical
concepts we will skip the proof of this part and simply take the result as given.

Now, we are left with controlling the estimation error. Recall Theorem 2 from Chapter 7, which
tells us that we can assume |Y | ≤ L almost surely and all that remains to be proven is

sup
f∈Fn

∣∣∣∣∣∣∣1n
n∑

j=1

| f (X j) − Y j|
2 − E[| f (X) − Y |2]

∣∣∣∣∣∣∣→ 0.

8



We will show this by first defining Z = (X,Y),Zi = (Xi,Yi) and

H = {h : Rd → R : ∃ f ∈ Fns.t. h(x, y) = | f (x) − y|2}.

WLOG we can assume that βn ≥ L (since L is some constant and βn → ∞). In this case, for all
h ∈ H

0 ≤ h(x, y) ≤ 2β2
n + 2L2 ≤ 4β2

n.

Then, by Lemma 1 from Chapter 5, we have for any ε > 0,

P

sup
f∈Fn

∣∣∣∣∣∣∣1n
n∑

i=1

| f (Xi) − Yi|
2 − E

[
| f (X) − Y |2

]∣∣∣∣∣∣∣ > ε


P

sup
h∈H

∣∣∣∣∣∣∣1n
n∑

i=1

h(Zi) − E [h(Z)]

∣∣∣∣∣∣∣ > ε


≤ 8E[N(
ε

8
,H , L1(Zn

1))] exp(−
nε2

128(4βn)2 ).

We need to bound the expected covering number. Let hi(z) = | fi(x) − y|2 for some fi ∈ Fn. Then,

1
n

n∑
i=1

|h1(Zi) − h2(Zi)| =
1
n

n∑
i=1

|| f1(Xi) − Yi|
2 − | f2(Xi) − Yi|

2|

=
1
n

n∑
i=1

| f1(Xi) − f2(Xi)|| f1(Xi) − Yi + f2(Xi) − Yi|

≤ 4βn
1
n

n∑
i=1

| f1(Xi) − f2(Xi)|.

Thus,

N(
ε

8
,H , L1(Zn

1)) ≤ N(
ε

32βn
,Fn, L1(Xn

1)).

Now, let us define three function classes:

G1 = {aTx + b : a ∈ Rd, b ∈ R}

G2 = {σ(aTx + b) : a ∈ Rd, b ∈ R}

G3 = {cσ(aTx + b) : a ∈ Rd, b ∈ R, c ∈ [−βn, βn]}.

It is clear from the construction that G1 is a linear vector space of dimension d + 1. Then, by
Theorem 9 from Chapter 5, VC(G+1 ) ≤ d + 2. Furthermore, since σ is nondecreasing, Lemma 1
directly gives the bound VC(G+2 ) ≤ d + 2. Then, by Theorem 12 from Chapter 5,

N(ε,G2, L1(Xn
1)) ≤ 3

(
2e
ε

log
3e
ε

)d+2

.
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By Lemma 3, we can see that

N(ε,G3, L1(Xn
1)) ≤ N(ε/2, {c : |c| ≤ βn}, L1(Xn

1))N(ε/2βn,G2, L1(Xn
1))

≤
4βn

ε
3
(
6eβn

ε

)2d+4

.

≤

(
12eβn

ε

)2d+5

.

Finally, by applying Lemma 2,

N(ε,Fn, L1(Xn
1)) ≤ N(

ε

kn + 1
, {c0 : |c0| ≤ βn}, L1(Xn

1))N(
ε

kn + 1
,G2, L1(Xn

1))kn

≤
2βn(kn + 1)
ε

(
12eβn(kn + 1)

ε

)kn(2d+5)

≤

(
12eβn(kn + 1)

ε

)kn(2d+5)+1

.

Putting all the bound together and scaling the ε’s appropriately,

P

 sup
f∈Tβn (Fn)

∣∣∣∣∣∣∣1n
n∑

i=1

| f (Xi) − Yi|
2 − E

[
| f (X) − Y |2

]∣∣∣∣∣∣∣ > ε


≤ 8
(
384eβ2

n(kn + 1)
ε

)kn(2d+5)+1

exp
(
−

nε2

128 · 24β4
n

)
.

Then applying the union bound and Borel-Cantelli, the conclusion of the theorem follows. ■

A final note regarding the results of this chapter: We have shown strong universal consistency of
the one-layer feedforward neural network with growing number of neurons (kn). This approach,
however, tells us nothing about the rate at which the consistency is achieved. It is not obvious from
this proof approach what we would expect the rate of convergence to be. In general, with machine
learning type estimators, as we have seen in Chapter 7 and this chapter, consistency proofs either
provide a sub-optimal rate of convergence or provide no insight into the true rate of convergence.

Furthermore, we have only shown consistency of one-layer neural networks. In practice, not only
are deeper neural networks more commone, but the architecture of these deep neural networks is
also often much more complicated than the feedforward structure. Most theoretical generalizations
of this chapter remain open questions.
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