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We have already seen a type of partitioning estimator in the form of splines. Splines use a pre-
determined scheme to partition the support space of the data and then generate estimates of the
regression function based on the data in each resulting partition. We can think of many other modern
estimators that have similar underlying structure of partitioning the space in order to generate
estimates that can adapt to different features of the regression function that depend on the input.
For example, decision trees and neural networks are very popular modern estimation tools that are
based on partitioning schemes. And so, it may be beneficial to identify a general result that can be
used for establishing consistency of partitioning-based estimators.

In this chapter we will focus only on consistency results. As it turns out minimax or uniform results
may not hold for many such estimators. In fact, in some cases (like with neural networks), this
remains an open question and an active area of research.

1 A general consistency result
Lets consider the class of functions G with functions g : Rd → R and partition P such that

G ◦ P =

 f : Rd → R| f =
∑
A∈P

gA1(A) for some gA ∈ G(A ∈ P)

 .
Here, each function of G ◦ P is obtained by applying a different function of G in each set in P. Lets
start with the simple case of G = Gc, where Gc is the set of all constant functions. The least-squares
estimator, given by the function f such that

min
f∈Gc◦Pn

1
n

n∑
i=1

| f (Xi) − Yi|
2. (1)

One can check that the least-squares estimator is given by

m̂n(x) =
∑

i Yi1(Xi ∈ A(x))∑
i 1(Xi ∈ A(x))

, (2)

where A(x) is the cell of the partition A ∈ Pn for which x ∈ A. Furthermore, note that m̂n ∈ Gc ◦ P

since it is the sample average of the data within each cell of the partition, which is constant given
the data.

We will be interested specifically in estimators that use a data-dependent partitioning scheme. The
reason this specific class of estimators is interesting to consider is that the construction of the

1



estimator requires using the data (at least) twice. First, the data is used to generate some partition
Pn = Pn(Dn) ∈ Rd, where Dn = {(Xi,Yi)}ni=1. Then, the partition is used to define the estimator
m̂n(x) by applying some pre-determined mapping to the Yi for which the corresponding Xi fall into
the same partition as x. If the function is a simple averaging of the data in the partition, the estimator
is precisely the m̂n estimator defined earlier. More complicated operations on the data will lead to
different function classes G ◦ P and thus lead to different least-squares estimators. Importantly, by
interpreting these estimators as least-squares estimators for different function classes, we can hope
to use the tools and theory we have established previously for consistency. But in order to use these
methods, we need to work with a truncation of the estimator:

Definition 1 (Truncation). Let βn ∈ R+ such that βn → ∞ as n→ ∞. Then define the truncation

mn(x) = Tβn(m̂n(x)) (3)

where

TL(u) =

u if |u| ≤ L
Lsign(u) otherwise.

Why truncate? Recall the proof of the ULLN in Chapter 5. Truncation allowed for the use of
concentration inequalities that involve covering numbers and VC dimension, which we can hope to
analyze for a data-dependent partitioning scheme and as a result hopefully also prove consistency
of such estimators.

Next, we introduce the partitioning number. This will help relate the VC dimension to the random
partitioning scheme involved in constructing m̂n

Definition 2 (Partitioning number). Let Π be a family of partitions of Rd. For a set of xn
1 =

{x1, . . . , xn} ⊆ R
d, let ∆(xn

1,Π) be the number of distinct partitions of xn
1 induced by elements of Π,

i.e., ∆(xn
1,Π) is the number of different partitions {xn

1 ∩ A : A ∈ P} of xn
1 for P ∈ Π. The partitioning

number ∆n(Π) is defined by

∆n(Π) = max
{
∆(xn

1,Π) : x1, . . . , xn ∈ R
d
}
.

In other words, the partitioning number is the maximum number of different partitions of any n
point set that can be induced by members of Π.

Recall the examples from Chapter 5 when we defined VC dimension. The difference here is that we
consider Π to be a particular collection of partitions (that may be dependent on other features of the
problem) instead of considering all possible sets in a class. The VC dimension of a set allows the
elements of the set to have non-zero intersections while the partitioning number only considers sets
that form a valid partition of the space.

Example 1. Let Πk be the collection of all partitions of R into k intervals. Then, a partition of
xn

1 induced by an element of Πk is given by some numbers 0 ≤ i1 ≤ . . . ≤ ik−1 ≤ n such that the
partition is given by

{x1, . . . xi1}, {xi1+1, . . . , xi2}, . . . , {xik−1+1, . . . , xn}.
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A counting argument is then needed to identify the partitioning number here. There are a total of(
(n+1+(k−1)−1)

k−1

)
=

(
n+k−1

n

)
such tuples for splitting xn

1. Thus,

∆(xn
1,Πk) =

(
n + k − 1

n

)
.

Let Π be a family of finite partitions of Rd. Then the maximum number of sets contained in a
partition P ∈ Π is defined as

M(Π) = max{|P| : P ∈ Π}.

Furthermore, set

Πn = {Pn({xi, yi}
n
i=1) : {xi, yi}

n
i=1 ∈ R

d × R}

to be the collection of partitions that contain all the data-dependent partitions Pn. We now state
one of the main result for establishing consistency of partitioning estimators under fairly general
conditions.

Theorem 1
Let mn be defined by (2) and (3). Assume βn → ∞ as n→ ∞,

M(Πn)β4
n log(βn)
n

→ 0, (4)

log(∆n(Πn))β4
n

n
→ 0, (5)

β4
n

n1−η → 0

for some η > 0, all as n→ ∞. Furthermore, suppose

inf
S :S⊆Rd ,µ(S )≥1−δ

µ({x : diam (An(x) ∩ S ) > γ})→ 0 a.s. (6)

for all γ > 0, δ ∈ (0, 1). Then, ∫
|mn(x) − m(x)|2µ(dx)→ 0 a.s.

Note that assumption (4) implies that the maximum number of cells in the partition does not grow
too fast. Assumption (5) requires the the log-partitioning number is small compared to the sample
size and Assumption (6) ensures that the size of the cells converges to zero in some sense.

We will now work towards proving this result. First, we identify that the proof of the theorem
implicitly will require the proof of two related statements:

inf
f∈Tβn (Gc◦Pn)

∫
( f (x) − m(x))2µ(dx)→ 0 (7)

3



and

sup
f∈Tβn (Gc◦Pn)

∣∣∣∣∣∣∣1n ∑
i

| f (Xi) − Yi,L|
2 − E[| f (X) − YL|

2]

∣∣∣∣∣∣∣→ 0 (8)

for all L > 0 where YL = Y1(|Y | ≤ L) and Yi,L = Yi1(|Yi| ≤ L).

Note that in (8), we have used the observation that since Gc ◦Pn is a collection of piecewise constant
functions, Tβn(Gc ◦ Pn) is the collection of functions from Gc ◦ Pn that are bounded in absolute
value by βn.

The reduction of Theorem 1 to proving (7) and (8) is due to the following result that we will take
as given for this course. Motivation for why we would expect this result to hold will be worked
through in the exercises.

Theorem 2
Let F (Dn) be a class of functions f : Rd → R and consider the estimator that satisfies (1) and (3).
If βn → ∞,

lim
n→∞

inf
f∈Fn,∥ f ∥∞≤βn

∫
| f (x) − m(x)|2µ(dx) = 0,

and

lim
n→∞

sup
f∈Tβn (Fn)

∣∣∣∣∣∣∣1n
n∑

j=1

| f (X j) − Y j,L|
2 − E[| f (X) − YL|

2]

∣∣∣∣∣∣∣ = 0

for all L > 0, then

lim
n→∞

∫
|mn(x) − m(x)|2µ(dx) = 0.

The same holds for equivalent statements with expectations.

Before proving Theorem 1, we will note the following result that establishes a relationship between
covering numbers and partitioning numbers.

Lemma 1
Let 1 ≤ p < ∞ and Π be a family of partitions of Rd. Let G be a class of functions for g : Rd → R.
Then, for each xn

1 ∈ R
d and ε > 0,

N(ε,G ◦ Π, Lp(xn
1)) ≤ ∆(xn

1,Π)

 sup
zm

1 ∈x
n
1,m≤n

N(ε,G, Lp(zm
1 ))

M(Π)

Proof of Lemma 1. For simplicity, lets denote

N = sup
zm

1 ∈x
n
1,m≤n

N(ε,G, Lp(zm
1 )).
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Now, fix x1, . . . , xn and ε > 0. Let P = {A j} ∈ Π be an arbitrary partition. Then, we can identify the
partition of xn

1 as the collection of sets B j = xn
1 ∩ A j. For each j, we can choose an ε-cover that is no

larger than N (this is always possible by definition of N). This means, for each j, we have a set GB j

of functions such that for each g ∈ G, there exists a ḡ ∈ GB j that satisfies

1
|B j|

∑
x∈B j

|g(x) − ḡ(x)|p ≤ εp.

Then, let f ∈ G ◦ Π such that f =
∑

A∈P′ fA1A for some partition P′ ∈ Π that induces the same
partition on xn

1 as P. This implies that for each A ∈ P′ there exists some ḡ j ∈ GB j (the j is such that
A ∩ xn

1 = B j) such that

1
|B j|

∑
x∈B j

| fA(x) − ḡ j(x)|p ≤ εp.

For f̄ =
∑

A∈P′ ḡA∩xn
1
1A∩xn

1
,

1
n

n∑
i=1

| f (xi) − f̄ (xi)|p =
1
n

∑
j

∑
x∈B j

| f (x) − f̄ (x)|p <
1
n

∑
j

|B j|ε
p = εp.

This means that for each P ∈ Π, there exists an ε cover that is no larger than NM(Π). Furthermore,
by definition there are at most ∆(xn

1,Π) distinct partitions on xn
1 by members of Π. This completes

the bound. ■

We are now ready to prove Theorem 1.

Proof of Theorem 1. We already established that by Theorem 2, we only need to show (7) and (8).

Lets first prove (7). Using standard analysis tools, it can be shown that m can be approximated
arbitrarily closely in L2 by functions in C∞c (compactly supported) on Rd. Thus, we can focus only
on m ∈ C∞c . By the assumption that βn → ∞, we can further restrict ourselves to ∥m∥∞ ≤ βn. Now,
take ε > 0 and δ ∈ (0, 1). For some S ⊆ Rd, conditional on the data, define fS ∈ Tβn(Gc ◦ Pn) as

fS =
∑
A∈Pn

m(zA)1A∩S

for some zA ∈ A such that zA ∈ A ∩ S if A ∩ S , ∅. Set γ > 0 such that |m(x) − m(z)| < ε for all
∥x − z∥ < γ. Then, for z ∈ S ,

| fS (z) − m(z)|2 < ε21(diam(A(z) ∩ S ) < γ) + 4∥m∥2∞1(diam(A(z) ∩ S ) ≥ γ).

Then,

inf
f∈Tβn (Gc◦Pn)

∫
( f (x) − m(x))2µ(dx)
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≤ inf
S :µ(S )≥1−δ

∫
( fS (x) − m(x))2µ(dx)

≤ inf
S :µ(S )≥1−δ

∫
S
| fS (x) − m(x)|2µ(dx) + 4∥m∥2∞µ(R

d\S )

≤ inf
S :µ(S )≥1−δ

∫
S
| fS (x) − m(x)|2µ(dx) + 4∥m∥2∞δ

≤ inf
S :µ(S )≥1−δ

∫
S

(
ε21(diam(A(z) ∩ S ) < γ) + 4∥m∥2∞1(diam(A(z) ∩ S ) ≥ γ)

)
µ(dx) + 4∥m∥2∞δ

≤ ε2 + 4∥m∥2∞ inf
S :µ(S )≥1−δ

µ({x ∈ Rd : diam(A(x) ∩ S ) ≥ γ}) + 4∥m∥2∞δ

→ ε2 + 4∥m∥2∞δ→ 0

by appropriate choice of ε and δ. The last line follows by Assumption (6).

Now, we prove (3). Since Tβn(Gc ◦ Pn) ⊆ Tβn(Gc ◦ Πn), it is sufficient to prove (3) for Tβn(Gc ◦ Πn).
Using Lemma 1 from Chapter 5, we can establish that

P

 sup
f∈Tβn (Gc◦Πn)

∣∣∣∣∣1n ∑
| f (Xi) − Yi,L|

2 − E[| f (X) − YL|
2]
∣∣∣∣∣ > ε

≤ 8E
[
N

(
ε

32βn
,Tβn(Gc ◦ Πn), Lp(Xn

1)
)]

exp
(
−

nε2

128(4β2
n)2

)
.

Then, using Lemma 1 and Theorem 12 from Chapter 5,

N
(
ε

32βn
,Tβn(Gc ◦ Πn), Lp(Xn

1)
)
≤ ∆(Πn) sup

zm
1 ∈X

n
1,m≤n

N
(
ε

32βn
,Tβn(Gc), Lp(zm

1 )
)
.

≤ ∆(Πn)
(
333eβ2

n

ε

)2M(Π)

,

since V(Tβn(Gc)) ≤ 1. Thus,

P

 sup
f∈Tβn (Gc◦Πn)

∣∣∣∣∣1n ∑
| f (Xi) − Yi,L|

2 − E[| f (X) − YL|
2]
∣∣∣∣∣ > ε

≤ 8∆(Πn)
(
333eβ2

n

ε

)2M(Π)

exp
(
−

nε2

2048β4
n

)
.

≤ 8 exp
(
log(∆(Πn)) + 2M(Πn) log

333eβ2
n

ε
−

nε2

2048β4
n

)
= 8 exp

− n
β4

n

 ε2

2048
−

log(∆(Πn))β4
n

n
−

2M(Πn)β4
n log 333eβ2

n
ε

n


 .

The conclusion follows by the assumptions and the Borel-Cantelli lemma. ■
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This theorem implies that if Pn is a finite data-dependent partition and m̂n is the partitioning estimate
(without truncation), and the following conditions are satisfied:

∃kn ∈ Z+ s.t. ∀A ∈ Pn, µn(A) ≥ kn
log n

n
lim
n→∞

diam(An(X))
p
= 0 as kn → ∞.

Then, m̂n is weakly universally consistent. A complete proof of this implication can be found in
Breiman et al. (1984).

Definition 3 (Weak universal consistency). A sequence of regression function estimates mn is weakly
universally consistent if

lim
n→∞
E

[∫
(mn(x) − m(x))2µ(dx)

]
= 0

for all joint distributions of (X,Y) with E[Y2] < ∞.

Lets now look a two concrete examples of how the consistency result can be applied.

2 Cubic partitioning estimators
Lets start with the partitioning scheme that generates partitions that are hyper-cubes, defined as
[Ln,Un)d that are then split into equidistant hyper-cubic cells.

Pk = {R
d\[Ln,Un)d}∪

{[Ln + i1hk, Ln + (i1 + 1)hk) × . . . × [Ln + idhk, Ln + (id + 1)hk) : i1, . . . , id ∈ {0, . . . , k − 1}}

where hk = (Un − Ln)/k is the grid size. The partitioning scheme can be made data-dependent in
the choice of k in some range [kmin, kmax] that depends only on the sample size. Observe that this is
a simplified version of CART, or more generally, decision tree estimators. Using Theorem 1, the
following consistency theorem can be established for this partitioning scheme.

Theorem 3
If Ln → −∞,Un → ∞, (Un − Ln)/kmin → 0,

(kd
max + log n)β4

n log(βn)
n

→ 0,

with βn → ∞, β4/n1−δ → 0, for some δ > 0. Then, with the cubic partitioning Pn = Pk for
kmin ≤ k ≤ kmax, mn is strongly universally consistent.

Definition 4 (Strong universal consistency). A sequence of regression function estimates mn is
strongly universally consistent if

lim
n→∞

∫
(mn(x) − m(x))2µ(dx) = 0

with probability 1 for all joint distributions of (X,Y) with E[Y2] < ∞.
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An important observation is that Theorem 3 allows for any data-dependent selection of k. This
means that standard approaches like sample-splitting or cross-validation are valid methods for
selecting k that directly give a strongly consistent estimator. If we place restrictions on how k is
chosen (i.e., chosen in a specific meaningful manner), we can improve the assumptions by up to log
factors. It turns out that the strong consistency result of Theorem 3 also holds for the non-truncated
partitioning estimator, but the proof of that result is significantly more involved.

Proof of Theorem 3. We need to verify the conditions of Theorem 1 for

Πn = {Pk}kmin≤k≤kmax .

We can first directly compute

M(Πn) = (kmax)d + 1.

For ∆(Πn), first condition on some xn
1 ∈ R

d. The partition induced by somePk is uniquely determined
by a vector ak = (a1,k, . . . , an,k), where

al,k =

0 if xl ∈ R
d\[Ln,Un)d

(i1, . . . , id) if xl ∈ [Ln + i1hk, Ln + (i1 + hk)) × . . . [Ln + idhk, Ln + (id + hk)).

By construction, if k1 < k2, hk1 > hk2 . Thus, the corresponding allocations al,k1 and al,k2 are such that
i1 ≤ j1, . . . id ≤ jd. Thus, if k varies from 1 to kmax, there are at most kd

max changes in the components
of ak. Thus, ∆(xn

1,Πn) ≤ nkd
max. These bounds of ∆(Πn), M(Πn) can be plugged in to see that the

first 4 conditions of Theorem 1 are satisfied. For the final condition, let γ > 0 and δ ∈ (0, 1). By the
assumptions of Theorem 3, for sufficiently large n,

µ([Ln,Un)d) ≥ 1 − δ and d
Un − Ln

kmin
≤ γ.

Then,

inf
S :S⊆Rd ,µ(S )≥1−δ

µ({x : diam (An(x) ∩ S ) > γ}) ≤ µ({x : diam (An(x) ∩ [Ln,Un)d) > γ})

≤ µ

(
{x : d

Un − Ln

kmin
} > γ

)
→ 0 a.s.

for sufficiently large n. This verifies all the conditions of Theorem 1 and so the result applies to the
cubic partitioning estimator. ■

3 Nearest neighbour clustering
We can now look at an adaptive version of the kNN algorithm, where now we choose the cluster
centers based on the observed data. The algorithm works as follows. There exists a function C that
clusters the observations into one of k clusters with the distance metric:

∥x −C(x)∥ = min
c j: j=1,...,k

∥x − c j∥
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where c j : j = 1, . . . , k are the centers of the clusters. For the nearest neighbour algorithm, ties
are typically broken by choosing the center that has the minimal corresponding index j. In some
cases the collection of cluster centers is known apriori. More often, however, we would like to
learn the cluster centers and only pre-decide the number of clusters (possibly in a data-dependent
way). In this case, we will use the squared-loss metric. Suppose E[∥X∥2] < ∞. The risk of the kNN
algorithm is

R(C) = E[∥X −C(x)∥2]

and the empirical risk is

Rn(C) =
1
n

n∑
i=1

∥Xi −C(Xi)∥2 =
1
n

n∑
i=1

min
j
∥Xi − c j∥

2.

In order to control the complexity when the number of clusters is data-dependent, that is k = kn, we
will control

Rn(C) = min
|C|≤kn

Rn(C).

It can be shown that this clustering scheme will exist and is obtainable for some collection of
cluster centers that belong to a compact set. The consistency of this k-NN algorithm is given by the
following result.

Theorem 4 (k-NN strong consistency)
Suppose βn, kn → ∞ as n→ ∞ and

k2
nβ

4
n log n
n

→ 0,
β4

n

n1−δ → 0

as n → ∞ for some δ > 0. Suppose mn is constructed using the partition defined by the k-NN
algorithm. Then, mn is strongly consistent for every joint distribution of (X,Y) with E[∥X∥2] < ∞
and E[Y2] < ∞.

Proof of Theorem 4. For the sake of time, we will only outline the proof. Some parts of the proof
will be explored in the exercises. Once again, the proof requires verifying the conditions of
Theorem 1 and then invoking its conclusion. ∆(Πkn) can be bounded by using the VC bounding
arguments from Chapter 5. It should be clear that from definition, M(Πn) = kn. Then, it remains to
verify (6). This condition requires a more careful study and involves first showing that Rn(Cn)→ 0
as n→ ∞ and the showing that diameter of any single cluster region converges to 0 as n→ ∞. ■
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