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Now that we have expanded our tool set to deal with uniform consistency of estimators, there are
two new interesting questions that arise. Lets stick with the KDE as our working example here. We
want to answer the following:

1. Can the rate of convergence (established from the uniform consistency result) be improved
upon by any other estimators for the Holder class of probability functions, F(5, L)?

2. What is the best possible rate of convergence for this class of functions?

To answer these questions, we need to first introduce the concept of minimaxity:

inf sup E/[(f(x) - f(x))"]  Vx,
I feF

where f is any estimator. This statement means we are attempting to identify the estimator that
provides the best rate of convergence over all possible functions for the class of functions defined

by F(B, L).

Recall that we have previously seen that for the kernel density estimator,

sup sup Ep[(fu(x) — F))] < Cn .

xeR feF(B.L)

This is an upper bound on the maximum risk for a specific (kernel) estimator. To complement the
upper bound, we would be interested in a lower bound of the type

A

Y sup E/[(f(x) — fu(x))*] = Cy2,
feF(B,L)

where ¢, is some positive sequence that approaches zero as n — oo and C is some positive constant.
We have so far restricted our analysis to (I)MSE loss metrics. There may be other symmetric loss or
distance metrics, d(-, -), that can be used to answer similar questions about optimality. i.e., bounds
of the form

sup E[d(f, /)],

feF

where d can be a pointwise or integrated metric. The upper bounds we have come across so far
imply the existence of a constant C < co such that

lim sup v, inf sup E[d( f.H1<C. (1)

n—oo n fef



Matching lower bounds would suggest there exists a ¢ < oo such that

lim inf 2 inf sup B[d( f.hH1=c. )

n—oo " feF
If we can establish both the lower and upper bounds, we can define the optimal rate of convergence:

Definition 1 (Optimal rate of convergence). A positive sequence Y, is called the optimal rate of
convergence of estimators on (¥ ,d) if (1) and (2) hold. Then, the estimator f that satisfies

supE/[d(f, )] =< ¢

feF

is called the minimax optimal estimator (or the rate-optimal estimator).

We will use tools from empirical process theory to establish general methods for identifying optimal
rates of convergence and in particular, by the end of this chapter we will prove the following lower
bound:

inf sup E/[(f(x)~ f(0)P] > Cn ¥,
f feF@B.L)
This lower bound will allow us to conclude that KDE is minimax-optimal for F (83, L) by showing
that the KDE achieves the best rate of convergence (up to constants) over all possible estimators.

We will start with more tractable examples to build intuition and develop the tools necessary to
prove nonparametric minimaxity for different function classes.

1 Examples

1.1 Parametric model

Starting in the parametric setting gives a smaller, possibly nicer space to work with for establishing
notions of minimaxity. Lets start with the class of Gaussian distributions with unknown means.
That is, ¥ = {N(u, 1) : u € R}. Our objective function will simply be the mean 6(F) = u, the
only unknown parameter of the function. Consider the least-squares loss function in defining the
minimax risk as:

R, = inf sup EB[(&, — u)*].
oy

For such parametric models, recall that under some regularity conditions, the MLE risk is bounded
by tr[/(8)~']/n at the true parameter 6, where 1(6) is the Fisher information matrix (and for typical
models this will be of the order d/n). It can also be shown that there is a local minimax lower
bound (local in the sense that the sup is taken only over a neighborhood around the true 6) of the
same order tr[/(6)~']/n. Thus, the MLE is locally minimax. In fact, this bound can be extended to
global minimaxity of the MLE by making uniform bound arguments over all local neighborhoods
around all 6 € ©. This is due to theory developed by Hajek and Le Cam, but we won’t go into the
technical details of this theory. We’ll focus on non-parametric minimax theory that is applicable to
the estimators and function classes we have considered so far.



1.2 Non-parametric models
1.2.1 Estimation with random X

Let Q be a fixed distribution on [0, 1]¢ (e.g., the uniform distribution), and let (x;, y;) L. P, with
Yi = f(xi) + &, Xi ~ Qa & ~ N(Oa 0-2)9 and Xi 1L &is (3)

for some fixed o> > 0. Let §(P) = f, the entire regression function. Suppose that P is the
set of regression distributions P of the form (3) for which f € ¥, (for example, ¥ defined on
[0,1]%). To study function estimation at a single point (e.g., the origin), take the squared loss,
d(f, f) = (f(0) — £(0))2. The minimax risk is then

R, = inf supE[(f(0) - f(0))*].
;o feF

1.2.2 Estimation with fixed X

Consider the regression model with fixed covariates. That is,
vi=f(x)+e, xfixed, &~N@O,0%, and x; L &.

We can still define the minimax risk as before, where now the expectation is understood to be
only with respect to the distribution on y (since x is not random). This requires some notational
adjustment because now the y; are independent but no longer i.i.d. Similarly, we will need to be
careful with some of the techniques that will be introduced in the remainder of this chapter, because
as written we assume i.i.d. data. In several cases, these adjustments will be straightforward and the
minimax risk for the random and fixed covariate models will behave in the same manner. However,
there will be some cases in which the two models behave very differently. We’ll briefly touch upon
this at the end.

1.2.3 Estimation in L,

Lets go back to (3), but with an L, loss function d( f ) =1 f - f ||i2. This has minimax risk

R, = inf sup B[[(f(x) - f(x))*dQ].
/o feF

1.2.4 Estimation in empirical L,

Now, consider the L, loss function with respect to the empirical distribution of X: d(f, f) =

If = f12g,, = IF = fllz = n7" 2u(F(x) = f(x))*. This has minimax risk

1 A
R, = inf sup —E[X,(f(X;) — f(X))*].
fofer



2 [Estimation to testing

Recall that, typically, we are interested in the order of the rate of convergence (dependency on n) '
instead of the full explicit form of the minimax risk R, (i.e., we usually ignore constants). As it
turns out, finding a lower bound on R, will require a totally different technique than what we have
used to derive upper bounds for specific estimators. We will develop a general formulation of the
common approach to lower bounds first and then look at some specific examples.

Our first step is to show how lower bounds can be obtained via a "reduction" to the problem of
obtaining lower bounds for the probability of error in a certain testing problem. We do so by
constructing a suitable packing of the parameter space (recall from Chapter 5 our definition of
packing numbers).

In this section we focus on the function class of probability distributions, i.e., ¥ = . More
precisely, suppose that S = {Py,..., Py} C P is a 20-separated set contained in the space 6(F),
meaning a collection of elements’ d(6;,60) > 20 for all j # k. The minimax risk can then be
bounded from below as:

R, = inf sup Ep[d(8(P), §)] > inf max Ep [d(6;,0)],
b pep § Pes 7

where we use the shorthand 6; = 6(P;). For each 6;, let us choose some representative distribution

P j-that is, a distribution such that 6 (P j) = 6; and then consider the N-ary hypothesis testing problem

defined by the family of distributions {P ni=1,...,N } In particular, we generate a random variable
Z by the following procedure:
1. Sample a random integer J from the uniform distribution over the index set [N] :={1,..., N}.
2. Given J = j, sample Z ~ Py,.

We let Q denote the joint distribution of the pair (Z, J) generated by this procedure. Note that the
marginal distribution for Z is given by the uniformly weighted mixture distribution Q := % Z?’:l Py,.
Then, given a sample Z from this mixture distribution, we consider the N-ary hypothesis testing
problem of determining the randomly chosen index J. The decision rule for this hypothesis test
can be defined as ¢ : Z — [N], and the associated probability of error is given by Q(y/(Z) # J). In
order to control this error probability, we will need to define the following two quantities

s = r?;&ll? d(0;, )

" = argmin d(6;, 0).
J

'We may also be interested in how it depends on auxiliary parameters that define . For example, in function
estimation if ¥ is a norm ball in some function space, then we may also be interested in how R, scales with the radius of
this ball—and indeed, below, we’ll track minimax rates as a function of n and the Lipschitz constant L of the regression
function (when |f(x1) — f(x2)| < L|x; — x3]).

“Notice we only define the packing number with a weak inequality, as opposed to with the strict inequality
d(0}, 6;) > 20 used in the definition in Chapter 5. This is purely to simplify the calculations later on.
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Furthermore, we will need to assume that our chosen distance d satisfies a quasi-triangle inequality,
d6,0) < C(d®6,0")+d,0"))

with some global constant C > 0. It should be obvious that any valid metric will satisfy this property
with C = 1. If d(x,y) = |[|x — yllg, then the property is satisfied with C = 2.

These quantities can now be used to obtain a lower bound on the minimax risk as shown in the
following lemma:

Lemma 1 (Testing lower bound)
Let S = {Py,...,Py} C P be any 20-packing set, and d(-,-) be a nonnegative symmetric loss
function satisfying the quasi-triangle inequality with some constant C > 0. Then,

, . s . , s .
R, = “{f :;lelg Ep[d(6(P),6)] > i 1gfrg}2§( Py # j) > 2 13f oW +J), 4)

where the infimum is over all maps ¥ and s = min ., d(6;, 6).

This result is known as the standard reduction for minimax lower bounds. Finding the tightest lower
bound requires a careful selection of the set of distributions in S. If S is too big then s will be small.
But if § is too small then maxp s P;(yy # j) will be small. Note that the right-hand side of the
bound (4) involves two terms, both of which depend on the choice of . By construction, s/2C is
increasing in ¢, so that it is maximized by choosing ¢ as large as possible. On the other hand, the
testing error Q(Y(Z) # J) is defined in terms of a collection of 29-separated distributions. As 6 — 0,
the underlying testing problem becomes more difficult, and so that, at least in general, we should
expect that Q(W(Z) # J) grows as ¢ decreases. For a given choice of ¢, the other additional degree
of freedom is our choice of packing set, and we will see a number of different constructions for this
shortly.

Proof of Lemma 1. By Markov’s inequality, for each j, and any ¢ > 0,
Ep,[d(6;,0)] > tP(d(0;,0) > 1),
and thus,

>t (d(,.0) >
R, >t ngfr}%aelg( Pi(d6;,0) > 1).

Any value of # will give us a valid lower bound. However, we are interested in finding the value of ¢
that gives us the best lower bound. To find this “best” ¢, we look at the minimum distance between
our contenders 6, j = 1,...,N.

Suppose that the true parameter is 6; (i.e., Y* = k # j): we then claim that the event {d(@k, 6) < 6}
ensures that the test y* is correct. In order to see this implication, note that, for any other index
J € [N], an application of the triangle inequality guarantees that

s < d6),6)
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< Cd(9;,0) + Cd(6:,0)
<2Cd(;,9).

Where we used the quasi-triangle inequality for the second inequality, and the fact that d(6y, 6) <
d(o;, 0) in the third line. As a result, we have shown that

Wt # j=d6;,0) > s/2C)
and so :
P, (d(ej, 0) > %) > Py % )).

Now, plugging in for t = s/(2C), we can derive a the following lower bound:

S . LA
> — (W i
R, > 3C 12f122§< Py (0) # )),

Thus, given access to 0, it tries to pick out which one of {Qj}?’: , it thinks is most likely. We can
further lower bound the right-hand side by considering all hypothesis tests based on the data. The
full infimum over all tests can only be smaller, from which the claim follows. [ ]

3 Distance between probability measures

In order to proceed with analyzing the minimax risk quantity for any of the notions from the previous
section (or indeed any other minimax risk quantity), we need to capture the distance/divergence
between functions from the class # over which we want to bound the risk. The KL divergence is
one of the most common quantities used to describe the variation of functions within a class P.

Definition 2 (KL divergence). Let (X, A) be a measurable space and let P and Q be two probability
measures on this space. Suppose v is a o-finite measure on (X, A) such that P and Q are both
absolutely continuous with respect to v. i.e., P < vand Q < v. Let p = dP/dv and g = dQ/dv
(such a measure v will always exist because it can always take the trivial form v = P + Q by
the Lebesgue decomposition theorem). The Kullback-Leibler (KL) divergence between the two
distributions P, Q is then defined as

dP
KL(P, Q) = flog (E) dP = flog (%)p(z)du

The following observations of the KL divergence can be made directly from its definition:

Lemma 2 (Properties of KL divergence)
The following properties hold for the KL divergence.

1. KL(P,Q) > 0and KL(P,Q) =0 iff P = Q.
2. KL(., ") is not a distance. (see: KL(P, Q) # KL(Q, P)).
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3. IfP =@ Piand Q = &, 0i, KL(P, Q) = X\, KL(P;, Q).

The following fact will be useful for us. For two Gaussian densities, P = N(6, %) and Q = N(u, o),
we have

(0 —p)’
KL(P, Q) = .
(P.Q) =75

There are many other notions of distances on distributions (TV, L;, Hellinger, x?, etc.) that
have relationships to allow moving between the different metrics, including relationships to KL
divergence. We will not review these here, but will simply define other distances and use known
relationships as they naturally arise. Some of these definitions and properties will be explored in the
exercises.

4 Le Cam’s method

Le Cam’s method is an application of this general idea for N = 2. This should also help us build
intuition for what to expect when we move to a more general N case. Consider two hypotheses:
6y = 0(Py) and 0; = 6(P;), so that s = d(6,, 6,).

Theorem 1 (Le Cam’s lower bound)
Let Py, Py € P, and let d(-, -) be a nonnegative, symmetric loss function satisfying the quasi-triangle
inequality with some constant C > 0. Then,

d(QOv 91) —nKL(Po.P
R, > nKL(Po, 1).
8C ¢
We also have

> d(909 91)

R, >
4C

[1 =TV, P)I,
where TV(P, Q) = % f |p(z) — q(2)|dz denotes the total variation distance between distributions P, Q
with densities p, q.

The lower bounds in Theorem 1 require the following facts about affinity, TV distance, and KL
divergence of distributions P, Q with densities p, q.

. f p(2) A q(z)dz = 1 = TV(P, Q) (Scheffé’s Theorem, see exercise sheet 7).
. f p(2) A q(z)dz > 1e KPR (see exercise sheet 8).

« KL(P", Q") = nKL(P, Q).

Proof of Theorem 1. For simplicity, we will start with n = 1 (i.e., only one sample). Then, by
Lemma 1,

s . .
R, > ilt{;f?i&)f Py + )).
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By the property that max; X; > X,,,
s
R, > —1inf [P 0)+P D].
1c f[Po # 0) + Piy # 1]

The reason we use the average for the lower bound is the following result (which is derived from
the Neyman-Pearson test):

_ [0 it po@ 2 pi(2)
Y. (2) = . :
1 if po(2) < p1(2)
We will use (without proof) the fact that (which follows from the Neyman-Pearson lemma)

igf[Po(l/' #0)+ Pi(y # D] = Po(y. # 0) + Pi(. # 1).

Now we compute

PO(W*¢0)+P1(¢*¢1):I

P1>Ppo

po(2)dz + f p1(2)dz
po=pi1

= f 20(2) A pi(z)dz + f Po(2) A p1(2)dz
P1>Ppo

Pozp1

= fPO(Z) A pi(z)dz.

Thus,
SPO(w*;éO)'FPI(W*;tl) Sf
R, > — A
e > =1c | P®@ pi(2)dz.
Now, if we have n > 1i.i.d. samples, we replace py and p; with pj(z) = [1iL; po(z:) and pf(z) =
[T, p1(z:), and by the same arguments, we have
R, > —I[P 0)+P 1 A d 5
4C[ o #0)+ Py # 1] = ic fpo(z) pi(z)dz. %)

The integral on the right-hand side above is often called the affinity between pj and p'. The proof of
both parts of the statement follows essentially by applying the corresponding relationship between
the loss metric and the affinity integral to the bound in (5) with S = {Py, P,} and s = d(6,, 6,). i.e.,

d(6,,0
R, > (jc D[Py #0) + Pr(y # 1)]

d(eo’ 01) n n

= 1c Po(@) A pl(2)dz

> d(go, Hl)e—KL(Pg,P’l’) — d(eo, gl)e—nKL(Po,Pl)

8C 8C
and similarly,
d 6, 0

o2 ey 2 0)+ Py # 1]



_d(6,01)
T 4C
_ d(6,6)
- 4C

P2 A Pl(2)dz

(1 -TV(Py, P)))

A useful corollary of Le Cam’s KL bound in Theorem 1 is the following.

Corollary 1

Under the same conditions on d(-,-) as in Theorem I, suppose there exists Py, P, € P such that
KL(Py, P1) < (log2)/n. Then R, > d(6,,6,)/(16C).

Example 1 (KDE lower bound). We can demonstrate the applicability of Le Cam’s method by
considering our KDE example. Let’s start by defining our problem in terms of the minimaxity setup
we have introduced in this chapter. For simplicity, consider the input distribution to be uniform,
O = Unif ([O, 1]d), and just take o> = 1. Consider ¥ = C'(L; [0, 11)¢, the space of functions that
are L-Lipschitz continuous on [0, 1. i.e., there exists a positive constant L such that

[f(x1) = f(x2)l < Llx; = xa.

and consider pointwise risk at the x = 0, in squared loss,

R, = inf supE[(f(0) - f(0))’].
;o feF

Recall that in this context, 6, = fy(0) and 6, = f1(0), where fy, fi are functions in F. Let’s
suppose fo = 0 (the zero function). Let K be any I-Lipschitz function supported on the unit €,
ball {x : ||x], < 1}, such that K(0) = 1 and 0 < fK(x)2dx < oo. Then let fi(x) = LhK(x/h), for a
value h > 0 that we will choose later. It should be clear from the construction that f, is L-Lipschitz
continuous. Let’s now compute the KL divergence.

KL(Po, P1) = f po(x. ) log(P2Y)
[0, 1]‘1 l( )

po(y | x)
— 1 dyd
f[o . f Poly | 9 log(T x)) ydix

4)
= log(——————)dyd
L,mf PO loel S )

_ f KL(N(0, 1), N(fi(x), 1))dx
[0,114

)dydx

1
=5 fi(x)*dx
[0,1}¢
L2h2
-— K(x/h)*dx
2 [0,1]‘1



L2h2+d||K||§
< —F—
2
In the second line, we use the fact that po(x) = py(x) = 1 for all x; in the fifth, we use the closed-form
expression for the KL divergence between normals; and in the sixth and seventh, we recall the

definition of fi and use variable substitution to compute the integral, denoting ||K ||% = f K(x)%dx.
Now, by setting h = ((21og 2)/(L2n||K||§))1/(2+d), KL(Py, Py) < (log2)/n.

Then, by Corollary 1,

2

inf sup E[(F0) - f0)] > 2O
I fec\ ;10,119 32
L*h?

- 32

= L2d/(2+d)n—2/(2+d)

This means we have found a tight lower bound and KDE achieves the point-wise minimax optimal
rate of convergence.

Example 2 (Lipschitz function, fixed X). Suppose we now look at the fixed-X regression model.
Then y;,i = 1,...,n are independent but no longer i.i.d.. It turns our that very few changes will
be required to amend the arguments given above with Le Cam’s method in the i.i.d. case. Careful
inspection shows that we must only replace Pl j= 0,1 with Pjy X---XPj,, j = 0,1, whose densities
are [1i=, pji(z:), j = 0, 1, and then the lower bounds would still hold. The KL bound from Theorem I
simply becomes
R. > d(6o, 91)6_ 2im; KL(Poi,P1i)
"7 8C

Using an analogous construction to that from the random-X setting, we define f, = 0 and fi(x) =
LhK(x/h), where K is 1-Lipschitz, supported on the unit ball, with K(0) = 1, and now satisfies
IK|? = }l YL K(x)* = c for some 0 < ¢ < oo that does not depend on n.

Satisfying this last requirement, which requires us to construct K so that we have precise control
over its empirical norm, is easiest to do when x;,i = 1,...,n are on a regular lattice in [0, 114,
which is a typical assumption in fixed-X lower bounds. Similar calculations to the previous example
can be used to show

L*h? &
n

1 n
= Z KL(Py;, P1;) = Z K(x;/h) < L*h**.
n i=1 2 i=1

If we set h < (L*n)~"/C*®  then we get

inf  sup  E[(f(0) — f(0)*] 2 £i(0)* = L2h* < [24/C+Dp 2/,
I fecy(L:[0,11%)

just as in the random-X setting.

10



However, Le Cam will not always provide useful bounds. Lets take the following regression
example.

Example 3 (A bad choice for Le Cam). Consider the regression model

Yi= f(i/n) + g

where f € H(1,1) = O (Holder class). We can show the following risk upper bound for the L,
loss:

. 1 1/3
limsup sup E[|If - fI%] < ( Og”)
n—oo  H(1,1) n

Lets consider the following pair of hypotheses:
0o=fo(x)=0  and 6 = fi(x) = 2zn)" sin(2nnx).

Notice that for evaluating at the points of the regression, fy(i/n) = fi(i/n) = 0,Vi. This implies that
Py = P, for the observed data Y1, ...,Y,. It can be shown using the Neyman-Pearson bound from
the proof of Le Cam that p,, > 1/2. Then, with the L, loss,

d(fo, £1) = llfo = fille = @an)™".
Then we can repeat the steps of lower bounding the rish with s = (4nn)™' to show

liminf n %R, > c.
n—oo
Clearly this does not match the upper bound. And so, the question remains as to whether the upper
bound is also rate-optimal. It turns out that we need to use a more involved multiple hypothesis
lower bound in order to prove the rate-optimality. We will come back to this example later.

5 Fano’s method

Intuitively, it should be clear that Le Cam’s method - which only allows us to construct a pair of
hypotheses - will likely be insufficient. Recall, however, that the standard reduction in Lemma 1
was based on an arbitrarily large but finite set S = {Py, ..., Py} € . Like we did in the derivation
of Le Cam’s method, we can use the fact that a maximum is no smaller than an average, which gives

N
R, > —

1 <& Ky
inf— ) P, ) = — inf J).
2 5510 N; W £ )) o m oW +J)

Now, in order to understand the interpretation of this bound, we need to understand a simple, yet
well-known result from information theory, known as Fano’s inequality. The idea of behind this
inequality comes from thinking about the data as being generated from the two step-process outlined

11



in Section 2. Recall that when we think of the data Z as being generated from a mixture distribution
Q where the true distribution is uniformly randomly chosen from N possible values, we are trying
to use the information in Z to correctly identify the true mixture component. Then, we can think of
the difficulty of the minimaxity problem as largely dependent on the relationship between Z and J.

Let’s take the most extreme relationship to see precisely what this implies. If Z L J, then Z contains
no information about J and furthermore, the joint density of Z and J splits into the product of their
marginals. If the joint density looks very different from the product of the marginals, we could
argue that Z and J are unlikely to be independent of each other and therefore, Z may contain more
information about J than if the joint density looked more like the product of the marginals. This
naturally fits into the concept of distance or divergence between two distributions as a metric for
identifying how difficult the problem is to solve through the amount of information Z contains about
J. In Information Theory this concept is called mutual information as is defined as

I(Z;J) = KL(Qz;, 0z0)).

In our particular case, since we assume that J follows a uniform distribution over N values, we can
use the third property of KL from Lemma 2 to further decompose the mutual information into

1 _
1Z:0) = D KL(P;, D).
J

Now, we can see that the mutual information is small only if the P;, j = 1,...,N are hard to
distinguish from each other. Or in other words, if the elements of the packing set are too close to
each other, 1.e., ¢ 1s too small. This quantification of the packing set will help us establish a lower
bound that accounts for the trade-off when more elements are added to S .

In particular, Fano’s inequality tells us that for any i,

1(Z;J) +1og?2 o1 nB + log 2

1 n
— P N> 1 —
NJZ_:J Wiz log N B log N

where = max ;. KL(P;, Py), 1s also known as the maximum KL-gap. Putting this together with

the general bound from Lemma 1 gives the following result.

Theorem 2 (Fano’s lower bound)
Let Py,...,Py € P, and let d(-,-) be a nonnegative symmetric loss satisfying the quasi-triangle
inequality for some C > 0. Then

ani 1_I(Z;J)+10g2 Zi 1_nﬁ+log2
2C log N 2C log N

where s is the minimum distance, and B is the maximum KL-gap.

While the second inequality is one way of controlling mutual information, another method that may
also be useful employs convexity of the KL divergence:

1
1Z:0) < 55 Z KL(P;, Py).
Jik
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Finally, we state a simple corollary of Fano’s method.

Corollary 2
Under the same conditions on d(-,-) as in Theorem 2, suppose there exists Py, ..., Py € P such that
N >4 and B < (log N)/(4n). Then R, > s/(8C).

5.1 Selecting hypothesis classes

The bound in Theorem 2 depends largely on selecting a reasonable 6. Here we will briefly touch
upon how this can be done to ensure the lower bound remains non-trivial. We will use sets of the
form § = {P, : w € Q}, where

Q={0,1}" ={w = (w1,...,wy,) :w; €{0,1},i=1,...,m}.

Q is also known as a hypercube. There are 2" elements in Q. For w, v € Q, define the Hamming
distance:

H(w,v) = > 1(w; # v)
i=1

One "problem" with a hypercube (in terms of using it to index distributions), is that some pairs
P, P, might be very close together which will make the minimum d-gap (what we call s) too small
(in a relative sense). This will result in a poor lower bound.

We can try to fix this problem by pruning the hypercube. That is, we will seek some subset Q" C Q
covering nearly all the elements of 2, but where each pair P,,, P, is ‘far apart’ in Hamming distance,
for w, v € Q" with w # v. It may help to think of this as an approach to selecting the elements of the
packing set with respect to the Hamming distance instead of in some L, norm. The technique for
constructing such a subset is outlined by the Varshamov-Gilbert lemma.

Lemma 3 (Varshamov-Gilbert)
Let Q = {0, 1}", where m > 8. Then there exists a pruned hypercube Q' = {wy,...,wy} C Q such
that

e N >2"8 and
. H(a)j,a)k) > m/8 for each j # k.

For our purposes we will take this result as a given. See (Tsybakov, 2009, Chapter 2.6) for a
complete proof of this lemma. Lets now see how we can combine this information theoretic result
with Fano’s method to establish an integrated-loss minimax bound.

Example 4 (Lipschitz functions, L, norm). Consider the random-X regression setting (3) with the
squared L, loss:
dF =171 = [ - feoras
[0,1]
As before, let K be a 1-Lipschitz function supported on the unit €, ball {x : ||x|, < 1}, such that
KO0)=1and0 < fK(x)zdx < oo, For an integer r > 0 (we will set the value later), define the grid
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points

xa:("“‘”2,...,“"”2)e[0,1]d, fora e [V,

r r

where [r] ={1,...,r}. Let h = 1/(2r) and define the functions

X — X,

go(x) = LhK( ), fora e [r]d.

It is straightforward to check that each g, is L-Lipschitz, and that each of the g,’s have non-
overlapping support. Now, enumerate these functions as g\, . .., gm for m = r%, and define

fuol0) = ) wigidx),  forw {0, 1)".
i=1

In other words, we construct each hypothesis f,, by adding together some finite subset of the
locally-supported kernels g1, . .., g, indexed by w.

For w,v € Q, since the functions g, have non-overlapping support,

m 2
f (fo(0) = f(x))dx = f (Z (@i =) gi(x)) dx
(0,11 (0,13

i=1
1\2
= H(w. )21 f K(—) dx
[0.1]¢
= Hw, LR K]f;
where H(w, V) is the Hamming distance, and ||K ||§ = f K(x)*dx. A similar calculation to the

pointwise loss case shows that for the hypotheses P, P, corresponding to the regression functions
fw, fv; resp€CtiV€ly,

1
KL (Py, P)) = 5 f (fu(x) = f(x))*dx

(0,134
= H(w,v) - L’I**||K]}3/2.

At this point we can apply the Varshamov-Gilbert lemma to define the hypercube subset ) =
{wl, ... ,a)N} C Q = {0, 1}, with cardinality N > 2™8, such that H(a)j,wk) > m/8 for each j # k.
Then for each j = 1,...,N, denote by P; the distribution corresponding to the regression function
Jw;- Observe that, from the integrated loss and the lower bound on the Hamming distance over
distinct pairs in ',

. 2 Moo 00dy 112 2 -2
s = njﬁ;l]{lllfw,- — Jullz 2 §L K, = cL7r
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Meanwhile, by the KL distance and the trivial upper bound on the Hamming distance of m,
B = max KL(P,, Py) < §L2h2+d||K||§ = del*r 2,
J#
Now, we would like to have B < (log N)/(4n) in order to be able to apply Corollary 2. Recalling
that N > 2% we have log N > (log2)m/8 = (log 2)r4/8, so we want
4cL?r™? < (log2)r!/(16n),

which implies we must choose r = [¢'(L*n)"/?>*9] for some constant ¢’ > 0. Corollary 2 then tells
us (using the fact that squared loss satisfies the quasi-triangle inequality with C = 2 ) that

inf  sup B[ [ (Fx) — f(x))%dx] > —

' fectwiio,9) [0, 16
B cL?r2
16

= [2d/Q+d), =2/ 2+d)
A similar calculation is possible (and the same rate holds) for the fixed-X case, but we will skip the
details.

Cautionary note: The fixed-X minimax rate is not always the same as the random-X rate. In fact,
often it is necessary to be careful in setting up the minimax estimation problems, because in some
cases, the answers may be trivial. Of course there is much more that can be discussed based on
approaches to minimaxity for different function classes, but we leave this tangent here for now.

There are many more methods for constructing lower bounds than just the Le Cam and Fano
methods. We won’t cover these, but the interested reader can see Yu (1997) and (Tsybakov, 2009,
Chapter 2.7) for other techniques.
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