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So far we have focused on specific non-parametric estimators of functions of i.i.d. data. We have
evaluated these estimators against measures like the mean-squared error, bias and integrated mean
squared error. While these estimators were natural in the parametric setting for point estimates, they
don’t always make sense when evaluating estimators for functions. Consider for example, the CDF
F and our empirical CDF estimator given by

Fn(x) =
1
n

∑
i

1(Xi ≤ x).

We know that Fn(x) is binomially distributed with mean F(x) and variance F(x)(1 − F(x))/n. We
have already seen that by LLN, the estimator is consistent and by the CLT it is asymptotically
normal with mean 0 and variance F(x)(1− F(x)). However, these results only capture the properties
of the estimator at a given point x. These results tell us nothing about how we expect the estimator
to perform over the entire domain, or what the worst case behavior of the estimator may look like
when F can be any possible CDF. To address such questions, instead of thinking of the ECDF as a
point estimate for an infinite sequence of x, we need to think of the estimator as a random function.

Lets consider the induced random probability measure from the i.i.d. sample Pn as an integral
operator on L1(P) where

Pn( f ) =
1
n

∑
i

f (Xi).

The population analogue of which is the limiting measure,

P( f ) = E[ f (X)].

We can then study the ECDF (an similar functionals) as a stochastic process, (Pn f − P f : f ∈ F )
for F ⊆ L1(P).

1 A new statistic
Lets start with looking at the result of LLN again. We see that for the ECDF, LLN implies

Fn(x)
a.s.
→ F(x) for every x.

When we want to understand functional behavior, we want to make conclusions of the form

∥Fn − F∥∞ →?

1



We can then use the test statistic ∥Fn − F∥∞ = supx |Fn(x) − F(x)|, and attempt to understand its
distribution under the null hypothesis. This statistic is also known as the Kolmogorov-Smirnov
statistic.

2 Uniformity of the ECDF
The following theorem establishes the behavior of the Kolmogorov-Smirnov statistic.

Theorem 1 (Glivenko-Cantelli)
Suppose X1, . . . , Xn

i.i.d.
∼ F. Then, ∥Fn − F∥∞

a.s.
→ 0.

Proof of Theorem 1. By SLLN, Fn(x)
a.s.
→ F(x) and Fn(x−)

a.s.
→ F(x−) for every x. For a fixed ε > 0,

there exists a partition −∞ = t0 < t1 < . . . < tk = ∞ such that F(ti−) − F(ti−1) < ε for every i
(when F jumps by more than ε, the pont is taken to be one of the points in the partition). Then, for
ti−1 < x < ti,

Fn(x) − F(x) ≤ Fn(ti−) − F(ti−) + ε,
Fn(x) − F(x) ≥ Fn(ti−1) − F(ti−1) − ε.

We then see that

∥Fn − F∥∞ = sup
x∈R
|Fn(x) − F(x)| ≤ max

i∈{1,...,k}
|Fn(tk) − F(tk)| + ε.

Since maxi∈{1,...,k} |Fn(tk) − F(tk)| → 0 almost surely by SLLN, we can choose k appropriately such
that ∥Fn − F∥∞ ≤ ε, giving us almost sure convergence.. ■

We can use this result to define a new class of measurable functions: the Glivenko-Cantelli class.

Definition 1 (P-GC). A class of measurable functions F is P-GC if

∥Pn( f ) − P( f )∥F = sup
f∈F
|Pn( f ) − P( f )|

a.s.
→ 0.

Any finite class of integrable functions can be shown to be P-GC. But it should be straightforward
to see that the class of all square-integrable is not P-GC.

While this notion of uniform (almost sure over the whole space) convergence is already a very
powerful feature of the ECDF, we can make the following stronger statement about the empirical
CDF.

Theorem 2 (Dvoretzky-Kiefer-Wolfowitz inequality)
Suppose X1, . . . , Xn

i.i.d.
∼ F. Then, for every ε > 0,

P(sup
x∈R
|F̂n(x) − F(x)| > ε) ≤ 2e−2nε2
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This result allows for the direct construction of non-parametric confidence intervals: Let ε2
n =

log(2/α)/(2n), L(x) = max{F̂(x) − εn, 0} and U(x) = max{F̂(x) + εn, 1}. Then,

P(∀x : L(x) ≤ F(x) ≤ U(x)) ≥ 1 − α.

This is a fully non-parametric confidence band for the ECDF.

Corollary 1 (Uniform Glivenko-Cantelli)
Suppose X1, . . . , Xn

i.i.d.
∼ F. Let F be a class of functions that is uniformly bounded (i.e., ∥F∥∞ ≤

b,∀F ∈ F ). Then, for every ε > 0,

sup
F∈F
P(sup

m≥n
sup
x∈R
|F̂m(x) − F(x)| > ε)→ 0

as n→ ∞.

The proof of the corollary follows from a union bound and applying the DKW inequality.

We have used GC to extend LLN to a uniform notion. Can we do something similar to extend the
CLT? We start by defining the empirical process Gn =

√
n(Fn − F) and the associated covariance

function Σ = Cov[Gn(xi),Gn(x j)] = E[F(xi ∧ x j)] − E[F(xi)]E[F(x j)]. Then, the Gaussian process
indexed by F is given by GF ∼ N(0,Σ). We consider the Skorohod space D[−∞,∞], defined as
follows.

Definition 2 (Skorohod space). Let (M, d) be a metric space and E ⊆ R. Functions f : E → M
such that for every t ∈ E,

• the left limit f (t−) = lims→t− f (s) exists

• the right limit f (t+) = lims→t− f (s) exists and is equal to f (t)

(i.e., f is right-continuous with left limits), are known as cadlag functions. The collection of these
functions makes up the Skorohod space, typically denoted as D(M).

The Skorohod space equipped with the uniform norm wherein the limiting process GF is referred to
as a Brownian bridge (a conditional Gaussian process). Now, we can state Donsker’s theorem.

Theorem 3 (Donsker)
Suppose X1, . . . , Xn

i.i.d.
∼ F. Then,

√
n(Fn−F) converges in the space D[−∞,∞] to a random element

GF , whose distribution is the Brownian bridge with mean zero and covariance function Σ.

This theorem in combination with additional methods for handling random functions can be used
to yield strong results on the functional approximation of the ECDF. Here we briefly discuss the
concept of strong approximations. Consider a probability space with i.i.d {Xi} ∼ F and a sequence
of Brownian bridges GF,n such that, almost surely,

lim sup
n→∞

√
n

(log n)2 ∥
√

n(Fn − F) −GF,n∥∞ < ∞,
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Then, by Donsker’s theorem we have distributional convergence. Furthermore, a bound of the type

P

(
∥
√

n(Fn − F) −GF,n∥∞ >
a log n + x
√

n

)
≤ be−cx

for some fixed constants a, b, c and every x > 0 can be established. This is known as the Komlos-
Major-Tusnady (KMT) approximation (or Hungarian embedding).

Now, analogous to the GC function class, we can define the Donsker class. Consider the empirical
process evaluated at f , given by Gn( f ) =

√
n(Pn( f ) − P( f )). By the multivariate CLT, for any finite

set of functions fi with P( f 2
i ) < ∞,

(Gn( f1), . . . ,Gn( fk))⇝ (GP( f1), . . . ,GP( fk))

where the covariance of the multivariate normal on the right-hand side is given by Σ f g = P( f g) −
P( f )−P(g). Then, by the Donsker theorem, this result can be made uniform in the class of functions.

Definition 3 (Donsker class). A class of measurable functions F is P-Donsker if the sequence
{Gn( f ) : f ∈ F } converges in distribution to a limiting process in the L∞(F ) space. The limit
process is given by a Gaussian process GP with zero mean and covariance Σ f g = P( f g) − P( f )P(g).

The Donsker class includes the requirement that all sample paths f 7→ Gn( f ) are uniformly bounded
for all n and all realizations of {Xi}. This is automatically satisfied if, for example, F has a finite
and integrable envelope function: | f (x)| < Fe(x) < ∞ for every x and f . Note that this definition
does not require Fe to be uniformly bounded.

Once again, we see that any finite class of square-integrable functions is P-Donsker. However,
infinite classes of square-integrable functions will not always be P-Donsker.

So far, we have focused our definitions and results to the class of functions that are associated with
the ECDF. More generally, we would like to establish results of the type

sup
f∈Fn

∣∣∣∣∣1n ∑
f (Xi) − E[ f (X)]

∣∣∣∣∣ n→∞
−→ 0 a.s.

wherein Fn is a general function class. Recall that by the SLLN we can establish the following
under the assumption that for some f such that E[| f (X)|] < ∞,

lim
n→∞

∣∣∣∣∣1n ∑
f (Xi) − E[ f (X)]

∣∣∣∣∣ = 0 a.s.

The following inequality will allow us to extend this statement to the class Fn, provided that
f : Rd → [0, B] (all functions are bounded).

P

(∣∣∣∣∣1n ∑
f (Xi) − E[ f (X)]

∣∣∣∣∣ > ε) ≤ 2 exp
(
−2

nε2

B2

)
.
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This inequality is widely referred to as Hoeffding’s inequality. Which, with the union bound, can be
extended to the whole class as

P

sup
f∈Fn

∣∣∣∣∣1n ∑
f (Xi) − E[ f (X)]

∣∣∣∣∣ > ε ≤ 2|Fn| exp
(
−2

nε2

B2

)
.

Of course, for the statement to be non-vacuous, we need Fn to be a finite class.

We will now develop notions to define the size of classes to help further identify other definitions of
“finite” function classes.

3 Bracketing numbers
We will first introduce the idea of measuring function class sizes measured by the bracketing number.
Start by defining the bracketing entropy for the Lr(P) norm as

∥ f ∥P,r = (P(| f |r))1/r.

Given two functions l and u, the bracket [l, u] is the collection of all functions f such that l ≤ f ≤ u.
An ε-bracket in Lr(P) is the bracket such that P((u − l)r) < ε. Then, the bracketing number
N[](ε,F , Lr(P)) is the minimum number of ε-brackets needed to cover F . By definition, u and l
need to have finite Lr(P) norm but they do not have to belong to F .

Now we can use this measure of class size to identify P-GC and P-Donsker classes:

Theorem 4 (GC identification)
Every class F of measurable functions with a finite L1-bracketing number (N[](ε,F , L1(P)) < ∞)
for every ε > 0 is P-GC.

We would like to work with the bracketing number. Unfortunately in many cases, N[](ε,F , Lr(P))→
∞ as ε→ 0. For Donsker classes, fortunately, a sufficient condition is that the class size (bracketing
number) does not grow too fast. The rate of growth can be understood with the L2-bracketing
integral:

J[](δ,F , L2(P)) =
∫ δ

0

√
log N[](ε,F , L2(P))dε.

Theorem 5 (Donsker class identification)
Every class F of measurable functions with a finite bracketing integral (J[](1,F , L2(P)) < ∞) is
P-Donsker.

Note that J[] is a decreasing function of ε. Since
∫ 1

0
ε−rdε converges for r < 1 and diverges for r ≥ 2,

the finite integral condition translates to the log-bracketing number growing slower than (1/ε)2.

Lets now look at some simple examples of how the bracketing number for different classes can be
computed and then used to identify GC and Donsker classes.
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Example 1 (Distribution function). Let F = { f : f (x) = 1(x), x ∈ R}. Then, the process Gn( f ) is
the empirical process we are already familiar with. We can directly identify from the theorems that
the class is both Glivenko-Cantelli and Donsker. Lets start with the bracketing number. Consider
the brackets [1(xi−1), 1(xi)] for a set of ordered points −∞ = x0 < x1 < · · · < xk = ∞ such that
F(xi) − F(xi−1) < ε for each i. Then, by construction each bracket has size ε in L1 and k can be
chosen carefully to be smaller than 2/ε. Now, since P( f 2) ≤ P( f ) and 0 ≤ f ≤ 1 for all f ∈ F, the
L2 brackets are no larger than

√
ε. Thus, N[](

√
ε,F , L2) ≤ (2/ε). Of course, the bracketing integral

is also bounded by this argument.

Example 2 (Parametric class). Consider F = { fθ : θ ∈ Θ} be a collection of measurable functions
and let Θ ⊂ Rd be bounded. Suppose there exists a measurable function m s.t.

| fθ1 − fθ2 | ≤ m(x)∥θ1 − θ2∥

for all θ1, θ2. If P(|m|r) < ∞, then, there exists a constant K such that

N[](ε∥m∥P,r,F , L2) ≤ K
(
diam(Θ)

ε

)d

for every 0 < ε < diam(Θ). This gives a bounded bracketing integral, and so the class F is Donsker.

4 Covering numbers
An alternative to computing the bracketing number for identification of GC or Donsker classes is to
instead compute the Lp-covering number, N(ε,F , Lp), which is the minimal number of Lp balls of
radius ε needed to cover F . Usually, we take p = 2.

Definition 4 (ε-covering). Let ε > 0 and F = { fi : Rd → R} be a set of functions. The finite
collection of functions { f j}

N
j=1 such that for each f ∈ F there is a j = j( f ) ∈ {1, . . . ,N} such that

∥ f − f j∥∞ := sup
x
| f (x) − f j(x)| < ε,

is called an ε-cover of F with respect to the L∞ norm.

Definition 5 (ε-covering number). Let ε > 0 and F = { fi : Rd → R} be a set of functions. We use
N(ε,F , L2) to be the size of the smallest ε cover of F . N(ε,F , L2) = ∞ if there does not exist any
finite cover.

Lemma 1
Let F = { f : Rd → [0, B]} and ε > 0. Then,

P

sup
f∈Fn

∣∣∣∣∣1n ∑
f (Xi) − E[ f (X)]

∣∣∣∣∣ > ε ≤ 8E[N(ε/8,F , Xn
1)] exp

(
−

nε2

128B2

)
.

where the Xn
1 implies we use the empirical measure with respect to the observed data.
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Figure 1: Sup norm distance between function g and member g j of cover is less than ε (taken from
Györfi et al. (2006))

As it turns out, all the results with bracketing numbers can be replaced by the uniform covering
number supP N(ε∥F∥r,F , Lr(P)) where the supremum is over all probability measures P for which
F is not identically zero. The uniform entropy integral is then defined as

J(δ,F , L2) =
∫ δ

0

√
log sup

P

N(ε∥F∥2,F , L2)dε

Then, we can state the alternative theorems:

Theorem 6 (GC identification)
For the class F of measurable functions with a finite covering number (supP N(ε∥F∥1,F , L1(P)) <
∞) for every ε > 0. If P(F) < ∞, then F is P-GC.

Theorem 7 (Donsker class identification)
Every class F of measurable functions with a finite covering integral (J(1,F , L2) < ∞) and
P(F2) < ∞ is P-Donsker.

5 Packing numbers
We now introduce one final notion of class size:

Definition 6 (Lp packing numbers). Let ε > 0 and F = { f : Rd → R}, 1 ≤ p < ∞ and ν is a
probability measure on Rd. For every finite collection f1, . . . , fN ∈ F with

∥ f j − fk∥Lp(ν) ≥ ε

for all 1 ≤ j < k ≤ N is called an ε-packing of G for the Lp norm. LetM(ε,F , Lp(ν)) be the largest
possible ε-packing and set it equal to infinity if there exists a packing for every N.

Now we can establish the following relationship between covering and packing numbers.
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Lemma 2
F = { f ∈ Rd} and ν is a probability measure with p ≥ 1, ε > 0. Then,

M(2ε,F , Lp(ν)) ≤ N(ε,F , Lp(ν)) ≤ M(ε,F , Lp(ν)).

6 VC Dimension
Lets now turn back to the covering number. It turns out that there is a special class of functions for
which the covering numbers can be easily computed: the Vapnik-C̆ervonenkis (VC) class.

Definition 7 (Shattering coefficient). LetA be a class of subsets. For some x1, . . . , xn ∈ R
d, define

s(A, {x1, . . . , xn}) = |{A ∩ {x1, . . . , xn} : A ∈ A}|,

as the number of different subsets that can be generated by intersecting elements of A with the
collection of points. A is said to shatter {x1, . . . , xn} if each of the 2n subsets can be picked out by
some element A ∈ A. The shatter coefficient ofA is given by

S (A, n) = max
{x1,...,xn}⊆Rd

s(A, {x1, . . . , xn}).

i.e., the shatter coefficient is the maximal number of different subsets of n points that can be picked
up by sets fromA.

It should be clear from the definition that s(A, {x1, . . . , xn}) ≤ 2n and S (A, n) ≤ 2n. Furthermore,
if S (A, n) < 2n, then by construction s(A, {x1, . . . , xn}) < 2n for all x1, . . . , xn. Importantly, if
s(A, {x1, . . . , xn}) < 2n then there exists a subset of {x1, . . . , xn} that cannot be picked out by any set
inA.

The VC dimension, V(A), is then defined as the smallest n for which no set of size n can be shattered
byA or, (essentially) equivalently, sometimes, as the largest n for which the set can be shattered.
Note that these definitions are equivalent up to being off by exactly 1.

Definition 8 (VC dimension). A , ∅ is a class of subsets. The VC dimension is defined to be

V(A) = sup{n : S (A, n) = 2n} = inf{n : S (A, n) < 2n} − 1.

The collection C is called a VC class if V(C) is finite. We can define VC classes of functions in a
similar manner. F is a VC class of functions if all {(x, t) : f (x) < t} for all f ∈ F forms a VC class
of sets in X × R. There is a one-to-one correspondence in the definition of VC classes for sets and
functions: A collection of sets C is a VC class if and only if the collection of 1(C),C ∈ C is a VC
class of functions.

Example 3. The class {(−∞, b], b ∈ R} cannot shatter any two distinct points in R. Thus, the VC
dimension is 1.

While the class {(a, b], a, b ∈ R} can shatter any two point set in R. However, this class cannot
shatter any combination of 3 points on R. Thus, the VC dimension of this class is 2.
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The next lemma presents the surprising fact that if the shattering coefficient is strictly less than 2n it
can be bounded by a polynomial of degree V(A).

Lemma 3 (Sauer-Shelah)
LetA be a collection of sets in Rd with VC dimension V(A). Then,

S (A, n) ≤
V(A)∑
i=0

(
n
i

)

Theorem 8 (Bounded shattering coefficient)
LetA be a collection of sets in Rd with VC dimension V(A) < ∞. Then,

S (A, n) ≤ (n + 1)V(A)

and for all n ≥ V(A),

S (A, n) ≤
(

en
V(A)

)V(A)

Proof of Theorem 8. By Lemma 3 and the binomial theorem,

S (A, n) ≤
V(A)∑
i=0

(
n
i

)
=

V(A)∑
i=0

n!
(n − i)!i!

≤

V(A)∑
i=0

(
V(A)

i

)
ni = (n + 1)V(A).

If V(A)/n ≤ 1, then by Lemma 3 and the binomial theorem, again,(
V(A)

n

)V(A)

S (A, n) ≤
(
V(A)

n

)V(A) V(A)∑
i=0

(
n
i

)
≤

V(A)∑
i=0

(
V(A)

n

)i (n
i

)
≤

n∑
i=0

(
V(A)

n

)i (n
i

)
=

(
1 +

V(A)
n

)n

≤ eV(A)

■

The following lemma relates the VC class to the covering number (and therefore implicitly also to
the packing number).

Lemma 4
There exists a universal constant K such that for any VC class F , 0 < ε < 1 and r ≥ 1

sup
P

N(ε∥Fe∥r,F , Lr) ≤ KVC(F )(16e)VC(F )
(
1
ε

)r(VC(F )−1)

.
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This statement tells us that VC classes have covering numbers that are bounded by some polynomial
in ε−1, and are thus considered to be relatively small. This bound also shows that VC classes satisfy
the conditions for P-GC and P-Donsker.

The following result on the VC dimension of vector spaces is very useful in practice.

Theorem 9
Let G be an r-dimensional vector space of real-valued functions on Rd (i.e., dim(G) = r < d) and let

A = {{x : g(x) ≥ 0} : g ∈ G}.

Then,

V(A) ≤ r.

Proof of Theorem 9. In order to prove this theorem, note that it is sufficient to show that no set of
size r + 1 can be shattered. WLOG lets select {x1, . . . , xr+1} ∈ R

r+1 (all distinct). Define the map
M : G → Rr+1 as

M(g) = (g(x1), . . . g(xr+1))T.

M(G) is then a linear subspace of Rr+1 and the dimensionality of M(G) must be no larger than that
of G, i.e., dim(M(G)) ≤ r. Thus, there is a non-zero vector γ ∈ Rr+1 such that γTM(g) = 0 for all
g ∈ G. i.e., γ is orthogonal to M(G). We can assume that at least one of the γi is negative (otherwise
replace γ with −γ). This means that∑

i:γi≥0

γig(xi) =
∑
i:γi<0

−γig(xi)

for all g ∈ G. Suppose there is a g ∈ G that picks out precisely the corresponding xi for which γi > 0.
In this case, the LHS above would be non-negative (γi ≥ 0 and g(xi) ≥ 0 implies γig(xi) ≥ 0). But
then the RHS would be negative and so we have a contradiction. Thus, {xi, . . . , xn+1} cannot be
shattered. ■

7 Uniform Law of Large Numbers
We have already seen a version of this uniform law of of large numbers for the empirical CDF in the
Glivenko-Cantelli theorem. Ideally we would like to generalize this uniform bound to other types of
functions. Our work with covering numbers and VC dimension will help us formalize precisely this
idea.

Theorem 10 (Uniform Law of Large Numbers (ULLN))
Suppose X1, . . . , Xn are i.i.d. on some measurable space {X,F }. Let G be a class of measurable
functions on X. Then,

sup
g∈G

∣∣∣∣∣∣∣1n ∑
i

g(Xi) − E[g(X)]

∣∣∣∣∣∣∣ a.s.
→ 0

as n→ ∞.
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Theorem 1 is a special case of this by taking G = {1(· ≤ x), x ∈ R}. In general, to establish the
ULLN for a class of functions, the size of G must be controlled in some way.

We will prove the following version of ULLN:

Theorem 11 (ULLN for VC bounded functions)
Let G : Rd → R be a class of measurable functions and let

G : Rd → R, G(x) := sup
g∈G
|g(x)|, x ∈ Rd

be an envelope of G. Assume E[G] < ∞ and for

G+ = {{(x, t) ∈ Rd × R; t ≤ g(x)}; g ∈ G},

with VC(G+) < ∞ (G+ is called the subgraph of G). Then,

sup
g∈G

∣∣∣∣∣∣∣1n ∑
i

g(Xi) − E[g(X)]

∣∣∣∣∣∣∣ a.s.
→ 0

as n→ ∞.

Before we prove this result we need the following bound.

Theorem 12
Let G = {g : Rd → [0, B]} with VC(G+) ≥ 2 and let p ≥ 1. Let ν be a probability measure on Rd

and let 0 < ε < B/4. Then,

M(ε,G, Lp(ν)) ≤ 3
(
2eBp

εp log
2eBp

εp

)VC(G+)

We will use this additional result, without proof, to prove Theorem 11.

Proof of Theorem 11. For some L > 0,

GL = {g1(G ≤ L) : g ∈ G}.

For any g ∈ G,∣∣∣∣∣∣∣1n ∑
i

g(Xi) − E[g(X)]

∣∣∣∣∣∣∣
≤

∣∣∣∣∣∣∣1n ∑
i

g(Xi) −
1
n

∑
i

g(Xi)1(G(Xi) ≤ L)

∣∣∣∣∣∣∣ +
∣∣∣∣∣∣∣1n ∑

i

g(Xi)1(G(Xi) ≤ L) − E[g(X)1(G(X) ≤ L)]

∣∣∣∣∣∣∣
+ |E[g(X)1(G(X) ≤ L)] − E[g(X)]|

≤

∣∣∣∣∣∣∣1n ∑
i

g(Xi)1(G(Xi) ≤ L) − E[g(X)1(G(X) ≤ L)]

∣∣∣∣∣∣∣ + 1
n

∑
i

G(Xi)1(G(Xi) > L) + E[G(X)1(G(X) > L)].

11



This implies that

sup
g∈G

∣∣∣∣∣∣∣1n ∑
i

g(Xi) − E[g(X)]

∣∣∣∣∣∣∣
≤ sup

g∈GL

∣∣∣∣∣∣∣1n ∑
i

g(Xi) − E[g(X)]

∣∣∣∣∣∣∣ + 1
n

∑
i

G(Xi)1(G(Xi) > L) + E[G(X)1(G(X) > L)].

Using the fact that E[G(X)] < ∞ and the SLLN,

1
n

∑
i

G(Xi)1(G(Xi) > L)
a.s.
→ E[G(X)1(G(X) > L)].

Furthermore, by definition of G,

E[G(X)1(G(X) > L)]→ 0 as L→ ∞.

Then, we only need to show

sup
g∈GL

∣∣∣∣∣∣∣1n ∑
i

g(Xi) − E[g(X)]

∣∣∣∣∣∣∣ a.s.
→ 0

in order to complete the proof. Note that the functions in GL are bounded in absolute value by L by
definition. Now, for any ε > 0, we can apply Lemmas 1 and 2 and Theorem 12 to get the following:

P

sup
g∈GL

∣∣∣∣∣∣∣1n ∑
i

g(Xi) − E[g(X)]

∣∣∣∣∣∣∣ > ε
 ≤ 8E[N(ε/8,GL, Xn

1)] exp
(
−

nε2

128(2L)2

)
≤ 8E[M(ε/8,GL, Xn

1)] exp
(
−

nε2

512L2

)
≤ 24

(
32eL
ε

log
48eL
ε

)VC(G+L )

exp
(
−

nε2

512L2

)
If a collection of points are shattered by G+L then they are also shattered by G+. This means that
VC(G+L) ≤ VC(G+) which implies

P

sup
g∈GL

∣∣∣∣∣∣∣1n ∑
i

g(Xi) − E[g(X)]

∣∣∣∣∣∣∣ > ε
 ≤ 24

(
32eL
ε

log
48eL
ε

)VC(G+)

exp
(
−

nε2

512L2

)
.

The RHS of this inequality can be shown to be summable for each ε > 0, which combined with the
Borel-Cantelli lemma yields the desired result and concludes the proof.

■
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8 Kolmogorov–Smirnov testing
We can now return to the Kolmogorov-Smirnov test (widely referred to as a goodness of fit test).
The hypothesis is formulated as follows:

H0 : X ∼ F H1 : X∼× F.

The idea now is to use ∥Fn − F∥∞ = supx |Fn(x)− F(x)| as the test statistic for testing the hypothesis.
We have already seen that GC and Donsker convergence results depend on bracketing numbers in
L1 and L2, respectively. We have also established that the limiting distribution of the empirical CDF
is a Brownian bridge. It can be seen that under the null hypothesis that the i.i.d. sample is generated
by F,

√
n∥Fn − F∥ =

√
n sup

x
|Fn(x) − F(x)|

n→∞
−→ sup

x
|GF(x)|,

where GF is the Brownian bridge. It turns out that if F is continuous under the null, the statistic
converges to the Kolmogorov distribution (supx∈[0,1] |G(x)|), which in itself does not depend on F.

Then, using properties of the Kolmogorov distribution, the critical region for any level α can be
determined. For example, at the 5% level, the null is rejected if

sup
x
|Fn(x) − F(x)| >

1.358
√

n
.

9 Applications
We will now look at two specific applications of the theory developed in this chapter. In particular,
we will take two fairly general class of estimators and use empirical process theory to prove uniform
consistency.

9.1 M-estimation
We will first look at empirical risk minimization, or what may be familiar as M-estimation. This
estimation procedure is concerned with estimators of the form

θ̂n = argmax
θ∈Θ

Pn(mθ) = argmax
θ∈Θ

1
n

∑
i

mθ(Xi)

where Xi ∼ F and take values in some well-defined space X. mθ : X → R is typically a real-valued
loss function parametrized by θ ∈ Θ. θ̂n is called the M-estimator. The mapping

θ 7→ −Pn(mθ) = −
1
n

∑
i

mθ(Xi)

can be understood as the empirical risk, and so θ̂n is the empirical risk minimizer. The MLE, L2

regression estimator, Median and Mode estimators are all examples of M-estimators.

The general approach for proving this uniform consistency is done in two steps:

13



1. First, the rate of convergence is estimated by controlling the uniform deviation given by
sup |P(mθ) − Pn(mθ)|, then

2. Show that mθ̂n
is close to mθ0 .

We will follow this structure here.

Lets assume that Θ is a metric space equipped with the metric function d. We will use our empirical
process theory to prove consistency of the M-estimator. That is, we will show that

d(θ̂n, θ0)
p
→ 0 where θ0 = argmax

Θ

P(mθ).

We introduce the following notation to simplify our derivation.

Mn(θ) = Pn(mθ) and M(θ) = P(mθ), ∀θ ∈ Θ.

We further assume that the class of M-estimators F = {mθ : θ ∈ Θ} is P-GC and that θ0 is a
well-separated maximizer, i.e.,, for every δ > 0,

M(θ0) > sup
θ:d(θ,θ0)≥δ

M(θ).

Now, fix some δ > 0 and let

ψ(δ) = M(θ0) − sup
θ:d(θ,θ0)≥δ

M(θ)

Then, observe that

{d(θ̂n, θ0) ≥ δ} ⇒ M(θ̂n) ≤ sup
θ:d(θ,θ0)≥δ

M(θ)

⇔ M(θ̂n) − M(θ0) ≤ −ψ(δ)

⇒ M(θ̂n) − M(θ0) + (Mn(θ0) − Mn(θ̂n)) ≤ −ψ(δ)
⇒ 2 sup

θ

|Mn(θ) − M(θ)| ≥ ψ(δ)

Therefore,

P(d(θ̂n, θ0) ≥ δ) ≤ P(sup
θ

|Mn(θ) − M(θ)| ≥ ψ(δ)/2)→ 0

by the fact that F is Glivenko-Cantelli.

Of course, we still need to verify this assumption that F is GC. This can be done by bounding the
L1 bracketing number. An example of this will be worked through in the exercises.
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9.2 Kernel density estimation

Lets now look at our working example of the kernel density estimator. Recall our setup: {X1, . . . , Xn}
iid
∼

F on R. Suppose F corresponds to the distribution with a continuous density f and ∥ f ∥∞ < ∞. Let
K : R→ R be a kernel function. Then, recall that the KDE is defined as

f̂n,h(x) =
1

nh

∑
i

K
(Xi − x

h

)
= Pn (KhX − x))

Now, if we choose hn → 0 at the right rate, we can show uniform consistency of the KDE. Starting
with the decomposition

f̂n,h(x) − f (x) = f̂n,h(x) − fh(x) + fh(x) − f (x)

where

fh(x) = P (Kh(X − x)) =
∫

K(u) f (x − hu)du

is the smoothed version of f̂n,h. Proving the convergence of fh(x) − f (x) only requires smoothness
conditions. For example, if f is uniformly continuous, then

sup
h≤bn

sup
x
| fh(x) − f (x)| → 0

for any sequence bn → 0. We are only left with f̂nh(x) − fh(x), which can be re-written as

(Pn − P)(Kh(X − x)).

Think of the KDE as a process indexed by the evaluation point x and h, instead of a point estimator.
Then, we can form the class of functions

F = {y 7→ K ((y − x)/h) : x ∈ R, h > 0}.

If the kernel is right-continuous with bounded variation, the covering number can be bounded

N(ε∥K∥∞,F , L2) ≤ (A/ε)V ,

for some constants A > e2, V ≥ 2 (depending on the precise form of the kernel). Then, by the
Glivenko-Cantelli theorem, it follows directly that

sup
h>0,x
|(Pn − P)(K((X − x)/h)|

a.s.
→ 0.

Note that there is a h−1 term in the Kernel function that is not accounted for in F . To get the right
rate of convergence (especially in higher dimensions where the correction h−d is larger), maximal
inequalities (like of the form in Hoeffding’s inequality) and strong approximation tools will need to
be used.
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