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Lets now zoom out and look at the larger picture we have tried to understand thus far. We have
attempted to, in its most general form, study the functional

θ = θ(F), F ∈ F

where F is a class of distributions. So far we have been concerned with the non-parametric
estimation of θ(F) = F and θ(F) = E[F] in the form of our density and regression estimation
problems respectively.

While we have assessed our non-parametric estimators through the MSE, there may be reasons to
ask a different set of questions regarding these estimators. In particular we may want to find out the
following:

1. Does there exist unbiased estimator θ̂ for θ for all F ∈ F ?.

2. If such an estimator exists, what is it? If several exist, which is the best?

In particular, are there alternatives to the kernel estimators that are unbiased in finite sample? Do
these estimators have better asymptotic properties than kernel estimators? Or is there a trade-off
between the finite-sample and asymptotic properties?

Lets start by investigating the first question of existence. We can say that a functional θ defined on
F admits an unbiased estimator if and only if there is a function h of d variables, x = [x1, . . . , xd]
such that

θ(F) =
∫

h(x1, . . . , xd)F(dx)

for all F ∈ F . WLOG h is assumed to be symmetric. Our regression set up fits into this definition
as θ(F) = EF[h(X1, . . . , Xd)], for [X1, . . . , Xd] i.i.d.

∼ F.

1 V-statistics
Lets now take the plug-in regression estimator, with n i.i.d. samples

θ(F̂n) =
1
nd

∑
i1,...id

h(Xi1, . . . , Xid)
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If d = 2, we can re-write the estimator as

Vn =
1
n2

n∑
i=1

n∑
j=1

h
(
Xi, X j

)
=

2
n2

∑
i< j

h
(
Xi, X j

)
+

1
n2

n∑
i=1

h (Xi, Xi)

We are essentially splitting the double sum into a sum that only contains the diagonal elements and
another sum containing the remaining entries. Then, taking expectations, we get

E[Vn] =
n − 1

n
θ(F) +

1
n
E[h(Xi, Xi)].

Here we see the advantage of splitting the original double-sum. As n→ ∞, the first term converges
to the true functional and the second term, which is the bias, converges to zero.

2 U-statistics
The V-statistic clearly had a non-negligible bias in finite samples. So our next step is to construct an
unbiased statistic that will not suffer from this bias. We should be able to convince ourselves that
the following symmetric estimator is unbiased:

Un(X1, . . . , Xn) =
(
n
r

)−1 ∑
1≤i1<...<ir≤n

h(Xi1 , . . . , Xir )

This estimator, also known as a U-statistic, was first introduced by Hoeffding in 1948. h is
typically called the kernel, with its order being determined by the function space it maps from. i.e.,
h : Rr → R is a symmetric function (kernel) of order r.

It turns out this estimator is the only symmetric estimator which is unbiased for all F for which
θ(F) exists, and it can be shown to have smaller variance than any other such unbiased estimator
(i.e., it is UMVU).

How does this estimator compare to the V-statistic we constructed? Actually, we can show that the
V-statistic can be written as a function of the U-statistic. For simplicity we choose r = 2, but this
relationship generalizes for any r. Note that the U-statistic is

Un =

(
n
2

)−1 ∑
i< j

h(Xi, X j) =
2

n(n − 1)

∑
i< j

h(Xi, X j)

This sum is exactly the off-diagonal term in the V-statistic expansion. So now we simply re-scale
the U-statistic by (n − 1)/n and we get

Vn =
1
n2

∑
i

h(Xi, Xi) +
n − 1

n
Un.
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Asymptotically,

√
n(Vn − θ) =

n − 1
n
√

n(Un − θ)

+

√
n

n2

n∑
i=1

[h(Xi, Xi) − θ].

Therefore, Vn and Un are asymptotically equivalent. Importantly, note that U-statistics are unbiased
while V-statistics are only asymptotically unbiased.

We now provide some concrete examples of U-statistics.

Example 1 (Mean). Take
θ(F) = E[X1]

with the plug-in estimator

Un =
1
n

n∑
i=1

Xi = Un.

Here, h(x) = x.

Example 2 (Functions of moments). Suppose we want to estimate more generic functions of
moments of the distribution.Consider for example, the squared mean:

θ = E[X]2

It turns out that there is no degree-1 kernel function that can be used for constructing a U-statistic
for this problem. We have to use a degree-2 kernel: h(x1, x2) = x1x2. The U-statistic is given by

U =
1

n(n − 1)

∑
i< j

XiX j.

Example 3 (Variance). Now we may think of using the second moment and squared-mean U-
statistics to generate an estimate for the variance.

V(X) = E[X2] − E[X]2.

Plugging in,
V(X) = E[X2

1 − X1X2].

However, we notice that this corresponds to f (x1, x2) = x2
1 − x1x2, which is not symmetric. We have

to symmetrize the function:

h(x1, x2) =
1
2

[ f (x1, x2) + f (x2, x1)] =
x2

1 − 2x1x2 + x2
2

2
=

(x1 − x2)2

2
.
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Then, the estimator of the U-statistic is given by:

Un =

(
n
2

)−1 ∑
i< j

(Xi − X j)2

2
=

1
n − 1

∑
i

(Xi − X̄n)2.

Example 4 (Gini mean difference). If we consider the absolute deviation (also known as the Gini
mean difference),

θ(F) = E[|X1 − X2|],

the corresponding U-statistic is

Un =

(
n
2

)−1 ∑
i< j

∣∣∣Xi − X j

∣∣∣ ,
with h(x1, x2) = |x1 − x2|.

2.1 Bounded differences
The following property of U-statistics can be very helpful in establishing tail bounds:

Theorem 1 (Bounded difference of U-statistics)
Suppose r = 2. If |h(x1, x2)| ≤ B a.s. Then,

P(|U − E[U]| ≥ t) ≤ 2 exp
(
−nt2

8B2

)
.

The proof of this theorem follows directly given the following inequality bound,

Lemma 1 (Bounded differences inequality)
Suppose f : Xn → R such that for all x1, . . . , xn, x′i ∈ X,

| f (x1, . . . , xn) − f (x1, . . . , xi−1, x′i , xi+1, . . . , xn)| ≤ Bi.

Then,

P(| f − E[ f ]| ≥ t) ≤ 2 exp
(
−2t2∑

i B2
i

)
.

and the observation that for x, x′ differing in a single coordinate,

|U − U′| ≤
1(
n
2

) ∑
i< j

|h(xi, x j) − h(x′i , x
′
j)| ≤

2B(n − 1)(
n
2

) =
4B
n
.
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3 Variance of U-statistics
Now, we want to understand the variance of U-statistics, in order to answer the question of the ‘best’
unbiased statistic. In order to compute the variance most efficiently we first need to understand
projections and the Hoeffding decomposition. We will use the following vector space, known as the
Hilbert space in the forthcoming analysis:

Definition 1 (Hilbert space). A vector space is also called the Hilbert space if it is a complete
normed space with inner product < ·, · >:

∥u∥2 =< u, u > and < x + y, u + v >=< x, u > + < x, v > + < y, u > + < y, v > .

We will be using two Hilbert spaces: Rn with the standard inner product and L2(F) = { f : R →
R|

∫
f 2dF(x) < ∞} with inner product < f , g >=

∫
f gdF.

3.1 Projections
Let S be a closed linear subspace of Rn. For some vector v ∈ Rn, define the projection

πS (v) = argmin
s∈S

∥v − s∥2.

The following theorem is a very useful fact about projections.

Theorem 2
The projection πs(v) exists and uniquely defined by

< v − πs(v), s >= 0, for all s ∈ S .

Example 5. X ∈ S ⊆ L2(F) is the r.v. with E[X2] < ∞, closed under linear combinations. Then, X̂
is the projection of an r.v. T onto S iff

E[(T − X̂)X] = 0, for all X ∈ S

Another very common example of projections is the conditional expectation function.

Example 6. Consider a random variable Y and the space

S = {Linear span of g(Y) : g measurable ,E[g(Y)2] < ∞}.

Then, the conditional expectation of X ∈ L2 given Y is the projection of X on S .

The projection theorem implies the property that E[(X − E[X|Y])g(Y)] = 0 for all integrable g (and
therefore also the tower property).

The following lemma projections presents the argument for why we want to use projections in
computing the variance of U-statistics.
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Lemma 2
Let S k be a sequence of subspaces of L2 and Tk be a sequence of random variables. Let Xk = πS k(Tk).
If V(Tk)/V(Xk)→ 1,

Tk − E[Tk]
√
V(Tk)

−
Xk − E[Xk]
√
V(Xk)

p
→ 0.

This lemma is useful in the sense that if the right projection space S is chosen, there is asymptotically
no information loss in using the projected estimator.

3.2 Hájek Projection
For U-statistics we will use the Hájek projection. This is also sometimes referred to as the
linearization of an estimator.

Definition 2 (Hájek projection). For independent random vectors X1, . . . Xn, the Hájek projection is
the projection onto i.i.d. sums

∑
i gi(Xi) of measurable functions satisfying E[gi(Xi)2] < ∞.

The Hájek projection of the U-statistic (Un − θ), for r = 2, is

Ûn =
∑

i

E[Un − θ|Xi] =
2
n

∑
i

(E[h(X1, X2)|Xi = xi] − θ),

This implies that (for r = 2)

Ûn =
2
n

n∑
i=1

E[h(X1, X2)|Xi] + op(n−1/2)

This projection allows for analyzing U-statistics with any of our tools for sums of i.i.d. variables.

3.3 Hoeffding Decomposition
The Hoeffding decomposition is a recursive Hájek projection of the U-statistic that separates the
higher-order terms in order to help understand the asymptotic behavior. Define

hk(x1, . . . , xk) = E[h(X1, . . . , Xd) | X1 = x1, . . . , Xk = xk]

and the corresponding centered version h̃k = hk − θ. Then, define

g1(X1) ≡ h̃1(X1),

g2(X1, X2) ≡ h̃2(X1, X2) − g1(X1) − g1(X2),

g3(X1, X2, X3) ≡ h̃3(X1, X2, X3) −
3∑

j=1

g1(X j) − g2(X1, X2) − g2(X1, X3) − g2(X2, X3),
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and so on.

Then, the U-statistic using gk, i.e., Un(gk), instead of h is known as the Hoeffding decomposition.
This is a simple translation:

Ûn(h) − θ =
d∑

k=1

(
n
d

)−1

Un(gk)

To understand better exactly what this transformation means, lets look at how it impacts the sample
mean U-statistic: Recall, we had h(x) = x and

Un =
1
n

∑
i

Xi

The Hoeffding decomposition is then given by

Ûn =
1
n

∑
i

(Xi − θ).

The linearity of the Hájek projection gives the general formulation

√
n(Un − θ) =

1
√

n

∑
i

φ(Xi) + op(1),

where φ is called the influence function. This is because it is mean-zero and at the true parameter
it quantifies how the estimator changes with small perturbations around the evaluation point. The
influence function of a U-statistic is simply the first term of the Hájek projection.

3.4 Asymptotic normality
We conclude our study of U-statistics by establishing asymptotic normality.

Theorem 3
Let h be a symmetric kernel of order r with finite variance. Then,

√
n(Un − θ − Ûn)

p
→ 0,

and
√

n(Un − θ)
d
→ N(0, r2E[h2

1]).

Proof. For simplicity, we will prove the result for r = 2. The generalization follows directly. Lets
start by computing the variance of Un;

V(Un) = V

 2
n(n − 1)

∑
i< j

h(Xi, X j)

 = 4
n
Cov(h(X1, X2), h(X2, X1)) =

4
n
V(h̃1(X1)),
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where the last equality follows by symmetry of h. Recall that E[h̃1(X1)] = 0. Then,

V(h̃1(X1)) = E[h̃2
1(X1)].

Now we turn to the U-statistic estimator. By the Hájek projection, we know

Ûn =
∑

i

E[Un − θ|Xi] =
2
n

∑
i

(E[h(X1, X2)|Xi = xi] − θ),

Note that E[Ûn] = 0, and

V(Ûn) =
4
n
E[h̃2

1(X1)]

Then, by CLT and finiteness of V(Ûn),

√
nÛn

d
→ N(0, 4E[h̃2

1(X1)]).

Therefore, we can see that the condition

V(Ûn)
V(Un)

→ 1

is satisfied. Thus,

Un − θ
√
V(U)

−
Ûn√
V(Ûn)

p
→ 0,

which implies
√

n(Un − θ − Ûn)
p
→ 0, and thus

√
n(Un − θ)

d
→ N(0, 4E[h̃2

1(X1)]).

■

4 Two-sample U-statistics
Consider now, the case where we have two different samples, from possibly two different distribu-
tions. That is, {Xi}

n
i=1 and {Y j}

m
j=1 such that Xi

i.i.d.
∼ FX and Y j

i.i.d.
∼ FY with possibly FX , FY . We can

extend our notion of U-statistics to the two samples by considering a new type of kernel function h
that is permutation symmetric in X and Y separately. That is,

h(xi1 , . . . , xir , y j1 , . . . , y js)
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for all permutations of [r] and [s]. The U-statistic is then defined as

U =
(
n
r

)−1(m
s

)−1 ∑
h(Xi1 , . . . , Xir ,Y j1 , . . . ,Y js).

The natural target parameter here is then given by

θ = E[h(Xi1 , . . . , Xir ,Y j1 , . . . ,Y js)].

Turns out we can establish the same type of consistency and asymptotic normality results as for the
one sample U-statistic under bounded differences of h in X and Y separately and finite variance. An
additional constraint is required for the results to go through: m, n→ ∞ with O(m) ≍ O(n). This
condition simply ensures that both X and Y sample sizes grow proportionally. This condition can
also be formulated as for N = n + m,

m
N
→ λ and

n
N
→ λ, 0 < λ < 1.

The Hoeffding decomposition for analysing the U-statistic is now done with projections of the form∑
i ki(xi) +

∑
j l j(y j). That is,

Û =
r
n

∑
i

h1,0(xi) +
s
n

∑
j

h0,1(y j),

where

h1,0(x) = E[h(x, X2, . . . , Xr,Y1, . . . ,Ys)] − θ
h0,1(y) = E[h(X1, . . . , Xr, y,Y2, . . . ,Ys)] − θ.

Note that this is just the Hajek projection determined by the inclusion of both conditional expecations,
E[h|Xi] and E[h|Y j]. From this, U − θ− Û

p
→ 0 holds. Furthermore, if ∫ h2d(y, x) < ∞, Û ∼ N(0,V),

for some bounded variance function V .

Let’s now look at an example where we might wish to use this two-sample U-statistic.

Example 7 (Mann-Whitney test statistics). Consider the problem of θ = P(X ≤ Y). This is the
notion of identifying stochastic dominance between two random variables. If the probablity is large,
then we say that Y stochastically dominates X. The natural kernel for this parameter is

h(x, y) = 1(x ≤ y).

The kernel if of order 1 and is already symmetric with respect to x and y separately so we don’t
need to change anything here. Let’s use this to define the U-statistics:

U =
1

mn

∑
i

∑
j

1(Xi ≤ X j).
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The estimator mnU is known as the Mann-Whitney statistic and is used in hypothesis testing
problems that deal with difference of means (or locations). Here is a concrete example of such a
hypothesis testing problem for which the Mann-Whitney test is the natural test to use. Suppose
Xi ∼ F and Y j ∼ G. Then,

Û = U − θ = −
1
m

∑
i

(G(Xi) − E[G(Xi)]) +
1
n

∑
j

(F(Y j) − E[F(Y j)]).

Under the null hypothesis that F = G, i.e.,,

H0 : {Xi,Y j}
i.i.d.
∼ F = G (P(X ≤ Y) = 0.5 − P(Y ≤ X))

H1 : F , G (P(X ≤ Y) , P(Y ≤ X)),

we can see that U is a statistic that, under null, admits asymptotic normality:√
12mn
m + n

(U −
1
2

)
d
→ N(0, 1)

5 Degenerate U-statistics
We will now look at one last implication of U-statistics. Note that by default, in Theorem 3, we
relied on the fact that E[h2

1] > 0. It is not always the case that the U-statistic will satisfy this
condition. In fact, it is quite easy to construct a U-statistic with E[h2

1] = 0. We will refer to such
statistics as (first-order) degenerate U-statistics.

Example 8 (Squared-mean estimation). Recall that for θ = E[X]2 = µ2, we established the
U-statistic with a second-order kernel,

U =
1

n(n − 1)

∑
i< j

XiX j.

Now, lets observe that h1(x1) = E[x1X2] = x1µ. Furthermore, σ2
1 = V(h1(x1)) = µ2V(X2) = µ2σ2.

Then, by Theorem 3, we have
√

n(Un − µ
2)

d
→ N(0, 4µ2σ2).

Now, if µ = 0, the limiting distribution is degenerate with 0 variance.

If this is the case, then the result of Theorem 3 is no longer valid as it gives us a degenerate
distribution.

Thankfully, there are still ways in which we can make meaningful progress to understand the
behavior of such statistics. Instead of asymptotic normality, we can show convergence to a different
distribution. The key here lies in the fact that E[h2

1] = 0 implies that the first term of the Hoeffding
decomposition is exactly 0. Thus, the natural step would be to look at the second term, which will
be come the dominant term and try to understand its asymptotic behaviour. Through this analysis,
we can establish the following convergence results:
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Theorem 4 (Asymptotic convergence of degenerate U-statistics)
Suppose E[h2] < ∞ and that U is a first-order degenerate U-statistic (i.e., V(X1X2) > 0). Then,

nUn
d
→

∞∑
k=1

γk(Z2
k − 1),

where Zk
i.i.d.
∼ N(0, 1) and γk are the eigenvalues from the decomposition of h.

Note: Using the given assumptions, it is possible to should that
∑
γk < ∞ and so we don’t need to

impose this additional assumption.

Note that the eigen-decomposition of h takes the form

h(x1, x2) =
∞∑

k=1

γkϕk(x1)ϕk(x2),

with γk being real-values and {ϕk}k forming an orthonormal sequence, called the eigenfunctions.
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