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What we saw last week

around their mean, known as concentration inequalities.

o We studied how to derive probabilistic bounds quantifying the deviation rate of averages
assumptions on the moments of the r.v.s

o We focused on bounds that have exponential decay for fixed sample size, under various
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What we will focus on today

o We will extend theoretical tools to extend those results uniformly over a class of
functionals/sets.

o We will focus on ‘weak convergencelfor stochastic processes, that will result in a new set
of characterizations requiring the definition of joufer-measure)

o We will go from separable finite-dimensional metric spaces to non-separable metric
spaces.
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Today’s outline

@ First definitions: tightness and separability
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Borel measurability

[4
Let (2,A,P) a probability space, and (D, D, d) a metric spaces endowed with a metric d and

the o-field/algebra D.

o A map h:Q — D is A/D-measurable if the preimage h~'(U) = {z € Q, h(z) € U} is
measurable in A for all sets U € D.
o The Borel o-field B(D) of D is the smallest o-field containing all the open sets of .

o A function is Borel measurable relative to two metric spaces if it is measurable w.r.t.
their Borel o-field.

e A Borel-measurable map X : Q — D defined on the p.s. (2, A,P) is referred to as a
random element/map valued in D.

Remark

For Euclidean spaces, Borel measurability is the usual measurability.

We lastly recall an important result.

Lemma

A continuous map between two metric_spaces is Borel measurable.
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Tightness

Tightness characterizes when a measure concentrates on a compact set almost surely.
Definition
Let (D, d) be a metric space. A Borel probability measure P is tight if

Ve >0, 3IK CDcompact, P(K)>1—c¢.
)£ 2"

A Borel map X of distribution P is tight if P is tight.

Remark (Key fact)

This property ensures a kind of ‘smoothness’ for the r.v. X. Weak convergence will be
extended for tight limiting r.v.s.
We can say that tightness is equivalent to being a o-compact set (countable union of

compacts) that has P-measure equal to one.
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The following results show the importance of tightness.

Theorem

Let D be a separable and complete metric space. Then, every probability measure on
(D, B(D)) is tight.

Lemma
Let X and Y be two tight Borel-measurable processes in D = £°°(T), then |‘7( = Yliﬁ. their

finite-dimensional (fidi) marginal_distributions are equal, i.e.

Vi1, ...tk €T, (X(t1),..., X(tr)) = (Y(t1),---,Y(tr)) ,

for all integer k > 1.
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Reminder (Bounded functions)

Let T be an arbitrary set. We denote by £°°(T') the class of all bounded real-valued functions
z : T — R. We will endow the space by the uniform norm on T:

llzll7 = sup ()| ,
ter

where we define pointwise the sum (z1 + x2)(t) = z1(¢) + z2(t) and product with a scalar
(az)(t) = ax(t), for all t € T

The space £°°(T') contains all functions of finite sup-norm, i.e., such that ||z||7 < co.

Property: It is separable iff. the set 7" is countable.
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Separability

A weaker requirement to tightness is separability.

Definition

Let (D, d) be a metric space. We say that X : Q@ — D (or its p.m P) are separable, if there
exists a measurable separable set (i.e. it has a countable dense subset) with probability one,
i.e., if 3K C D such that P(K) = 1.

Definition

A o-field is separable if it is generated by a countable collection of subsets.
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Separability

A weaker requirement to tightness is separability.

Definition

Let (D, d) be a metric space. We say that X : Q@ — D (or its p.m P) are separable, if there
exists a measurable separable set (i.e. it has a countable dense subset) with probability one,
i.e., if 3K C D such that P(K) = 1.

Definition

A o-field is separable if it is generated by a countable collection of subsets.

Remark

If a topological space D is separable, then its Borel o-field is separable as well.
If X is tight or separable, then it is Borel measurable. Notice that tightness and separability

are independent on the metric.
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Separability

A weaker requirement to tightness is separability.

Definition

Let (D, d) be a metric space. We say that X : Q@ — D (or its p.m P) are separable, if there
exists a measurable separable set (i.e. it has a countable dense subset) with probability one,
i.e., if 3K C D such that P(K) = 1.

Definition

A o-field is separable if it is generated by a countable collection of subsets.

Remark

If a topological space D is separable, then its Borel o-field is separable as well.
If X is tight or separable, then it is Borel measurable. Notice that tightness and separability
are independent on the metric.

Example

A Euclidean space R? is separable as it is generated by a dense countable subset composed of
vectors with rational coordinates.
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Separable stochastic processes

We now define another type of separability than that related to Borel measurability of the
stochastic process defined as a random map.

Definition

Let {Z(t), t € T} be a real-valued stochastic process, indexed by a separable set 7.

We say that the process Z is separable if there exists a countable set T/ C T, such that a.s.

sup 1nf | X (@) — X(s)| =
teT

Example

Brownian process, sub-Gaussian processes, and in particular Rademacher processes are
. e W
separable in that sense.
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Consequences

e Suppose T' to be endowed with a semimetric p.
For any point ¢, and for a sequence t,, € T’ such that p(t,t,,) — 0, then

| X(t) = X(tm)| — 0 as.

e Many processes in applications will be separable in that sense, while not being Borel
measurable and thus not separable w.r.t. D.

e However, the limiting process will often be in D = ¢°°(T'), where T is usually a class of
functions defined on the sample space.

o Separability allows us to extract a countable sub-family of elements Do C D of elements
converging in Dg.
———————————

Su{\X\

Remark

Tightness and separability are fundamental properties for random maps. Prohorov’s
Theorem is the key result in probability theory (not studied in this class).
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Today’s outline

© Complete separable metric spaces

o Random vectors

o Finite-dimensional metric spaces




Weak convergence of random vectors

Let (22, A, P) a probability space. Suppose the r.v.s to be valued in D C R%, endowed with
the Euclidean norm.
Definition

Suppose the random sequence X1, Xo,... to have a distribution function F;, and p.d. Pp.
X, converges in distribution/weakly/in law to ar.v. X, of d.f. F' and drawn from P if, for all
points € D for which F' is continuous,

We denote it by X, ~» X (or P, ~ P).
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Weak convergence of random vectors

Let (22, A, P) a probability space. Suppose the r.v.s to be valued in D C R%, endowed with
the Euclidean norm.

Definition

Suppose the random sequence X1, Xo,... to have a distribution function F;, and p.d. Pp,.
X, converges in distribution/weakly/in law to a r.v. X, of d.f. F and drawn from P if, for all
points € D for which F' is continuous,

Fy(x) el F(z) .

We denote it by X, ~» X (or P, ~ P).

Remark

o Weak convergence is inherent to the underlying distributions of the random maps.

—_—

o The goal is to study the properties of the limit of distribution functions when n tends to

infinity (notice as well that we should consider a sequence of probability spaces but we
ignore this technicality).

Myrto Limnios (EPFL) Empirical Processes (MATH-522) March 4, 2025 13 /40



Portmanteau Theorem

Weak convergence provides a series of equivalent properties referred to as Portmanteau
Theorem that we state below.

Theorem (Portmanteau Theorem I)

Consider a random sequence of vectors Xi,...,Xn, of p.d. Pn, and X ~ P. The following
assertions are equivalent.

1. Xy~ X or P, ~ P
2. Pyh =2 Ph, for all h € Cp(R%, B(R?)) i.e. continuous and bounded function
n oo

3. liminfpee Pn(U) > P(U), for all open sets U C R?

4. limsup,,., Pn(F) < P(F), for all closed sets F C R?

5. P,(A) el P(A), for all P-continuity sets A, i.e., such that P(0A) = 0 where A
denotes the boundary of A.
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Continuous Mapping Theorem

Now that we have established the main characterizations, we are able to state the
Continuous Mapping Theorem (CMT) that is fundamental to any statistical problem.

Theorem (CMT I)

—_—
Let C CR? be a set such that P(X € C) = 1.
If X, ~ X, then ®(Xy,) ~ ®(X) for any function ® : R? — RY that is continuous on C.
—_— D — ————
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Proof.
Let F C R? be a fixed closed set.

Notice that @, {®(X,) € F} = {X, € 2~} (F)}.

Consider x € ®—1(F), then, by definition of the closure, it contains all limit points of
the elements in the preimge ®~1(F). Thus, there exists a sequence x,, of elements in
®~1(F), such that z, — = and ®(zn) € F. If z € C then, because F is closed,
®(xn) € F. Otherwise z € C¢. Thus

o~ Y(F)co-1(F)c oY (F)ucCe.
By the Portmanteau Theorem,
lim sup P(®(X,,) € F) < limsupP(X,, € ®—1(F)) < P(X € d—1(F))

Recall that P(X € C) = 1, hence P(X € C¢) = 0.

By the last inclusion and inferring that & is continuous on C yields

P(X € - 1(F)) <P(X € &~ 1(F)) = P(®(X) € F).

Hence assertion 4 of the Portmanteau theorem is proved, hence, because it is true for any

arbitrary closed subset F', we proved by equivalence that (1) is fulfilled: ®(Xy) ~ ®(X).
O
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Finite-dimensional metric spaces: Weak convergence

7 2P
4
o Consider the r.v. X as a random map X : (2,.A) — (D, D).

e Define the set Cp(ID, D) to be composed of all bounded and continuous functions
h:D — R, that are D/B(R)-measurable.

Definition

We say that the random sequence {Xp },>1, defined on the p.s. (2,4, P), converges weakly

to ar.v. X, denoted X,, ~ X, if
(B g ]

for all h € C,(D, D). And we say that a sequence of p.m.s {Pn},>1 converges weakly to P,
denoted P, ~~ P, if

\ wh — Ph
n—r oo
for all h € Cp(DD, D).

We will try to extend the Portmanteau Theorem and the CMT in the following paragraphs,
depending on whether the maps are measurable w.r.t. the Borel B(ID), or not.
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Borel o-field.

We suppose for now that the space D is endowed with the metric d, and that ‘D = Bi]D) s

Theorem (Protmanteau Theorem IT)

Consider a random sequence X1,...,Xn, of p.d. Ppn, and X ~ P of the metric space (D, D).
The following assertions are equivalent.

. Xpn~~XorP,~P

. liminfpeo Pn(U) > P(U), for all open sets U C R?

. limsup,,. Pn(F) < P(F), for all closed sets F C R?

. P,(A) - P(A), for all P-continuity sets A, i.e., such that P(OA) = 0.
n o0

[ R R

The Portmanteau Theorem allows us to state the CMT II.
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CMT II

Theorem (CMT II)

Consider two metric spaces (D, B(D)) and (E, B(E)), and let the sequence of r.v.s X1,...,Xn
valued in (D, D). I

If X, ~ X, then ®(Xy) ~ ©(X) in (E,B(E)), for any measurable continuous function
®:DE. —

Proof.
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CMT II

Theorem (CMT II)

Consider two metric spaces (D, B(D)) and (E, B(E)), and let the sequence of r.v.s X1,...,Xn
valued in (D, D).

If X, ~ X, then ®(Xy) ~ ©(X) in (E,B(E)), for any measurable continuous function
®:D—E. T

Proof. ¢ b,

Let h € Cy(D, D), then, by continuity of ® : D — E, the function|h o @ is bounded and
continuous. Suppose that X, ~» X, then by definition of weak convergence,

[Eh o ®(Xn) — Eho®(X) |

in (E, B(E)). As it holds true for any h € Cp(D, B(D)), then the theorem is proved. O

In fact, we can prove the following convenient formulation of the CMT, where, as in CMT I
(12), we only require the function ® to be continuous on the image set of the limiting

r.v.
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CMT IIbis

Theorem (CMT IIbis)

Consider two metric spaces (D, B(D)) and (E, B(E)), and let the sequence of r.v.s X1,...,Xn
valued in (T, T). Let C CR? be a set such that P(X € C) = 1.

If Xy, ~ X, then ®(Xy) ~ ®(X) in (E,B(E)), for any measurable function ® : D — E that
is continuous on C. =

Proof.
Board O
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Sub-field of B(D).

We suppose now the space T to be endowed with the metric d, and that D is a sub-o-field of
B(D). We will see if we can prove a similar CMT IIbis in that context, for any measurable
map @ : (D, D) — (E, £) continuous on the image set of points of X.

We show that CMT Ilbis holds true if we suppose in addition that C' is separable and
D-measurable.

Theorem (CMT III)

Consider two metric spaces (]D) B(D)) and (E,B(E)), and let the sequence of T.v.s X1,...,Xn
valued in (D, D). Let C CRY be a separable and D-measurable set such that P(X € C) = 1.
If X ~ X, then ®(Xn) — ®(X) in (B, B(E)), for any measurable function ®: D — E that
is continuous on C.

Exercise.

Hint: Let h € Cp(D, D), then the function h o ® is continuous, bounded on C. To prove that
<I>(Xn) ~» ®(X), we construct a countable sub-family of

q— {g € Cp(D, D), )< h o ®, uniformly contlnuouﬁ} such that there exists an increasing
Sequence { gk }k>1, for any completely regular point = € C,

supy, g (x) = supgeg g(z) = (h o ®)(z). Inferring Portmanteau II.2 and Theorem of
nonotone convergence concludestiie proof. O
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Corollary

n ~ X

If Eh(Xy) o Eh(X) for any function h that is bounded, uniformly continuous and

D-measurable, and if X concentrates on a separable set of completely reqular points, then
will be fundamental in the next chapters.

We highlight the importance of building a countable subset of a family of the type of G that
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Today’s outline

© Non-separable metric spaces
o Important example of non-measurability
o Quter measure: definition and properties

e Bounded stochastic processes
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Space of cadlag functions on a compact: Skorohod space

h
D

i: C—w,ﬁj
#M
T,R) (or D(T)).

@ Suppose that T' = [a, b] possibly the extended real line. The space of functions
e The space D([a,b]) is NOT separable

, being right-continuous with left limits that exist (cadlag) is defined by

What does it mean and why do we care about it?
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Empirical measures

),
@ Let the i.i.d. sequence of Uniform r.v.s Xi,..., X, defined on the probability space
a.£[0,1],B,\), with B the Borel o-field and X\ the Lebesgue measure both on [0, 1].

o Then, the empirical c.d.f. is defined by

LA

1 n
(Fn(t) = Z Lio<x; <t} 71 L tetqd - G
i=1

and we can define the standard empirical process by welt®
Za(t) = V(Ea(t) = F(8) = Va(Fa(t) — 1) . Dosr

@ Then, both F},, Z, are maps defined on [0, 1] and valued in the space of £>°([0, 1]) (in
facqu 0, 1]& but are not continuous). If we endow this space with the sup-norm on [0, 1],

thern those maps are no longer Wble, insofar as F; ! (D) ¢ B™, where D is
the Borel o-field of D.

)

D2
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Proof.

Let K C [0,1] be not a Borel set. S
——
Conisder X (w,t) = 1{w <t < 1}, for any event w. Then define the union of uniform

open balls of events in K by@: Urer{y, ly(k) = 11 llo,1 < EB}<

Because G is an_uncountable union of open sets, it is open.

9}
Cov
If X was B/B(D([0, 1]))-measurable, then the set {w € [0,1], X (w) € G} would belong
—
to B. But
The map X valued at the event w € [0,1] is in G iff.lw = k.'
—_— —_——
Conclude that {w €[0,1], X(w) € G} = >
This is true for any subset of [0, 1], hence X is Borel measurable iff. any K C [0,1] is a

Borel set. Hence, we can found a non Borel set such that X is not Borel measurable.

O
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Remark

o Notice that the limit process of Z,, is a Brownian Bridge, that is Borel measurable.

o This example illustrates that even for the most classical problem, the empirical prodesses
are not necessarily Borel measurable random maps w.r.t. the sup-norm, i.e., Z;l( )
might be too large to be measurable. The interpretation being that the Borel o-field
generated by the Uniform distribution contains too many sets.

e In addition, the space (D]0, 1], B(D]0, 1])) is not separable.

We can prove that by considering the ball o-field, endowed with the sup-norm, we can extend
a characterization of weak convergence by considering fidi projections of distributions, but we
will not go through this path (cf. lecture notes for more details).
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Outer-measures for non-separable metric spaces

In fact, it has been highlighted (J. Hoffmann-Jgrgensen) that Borel measurability of each X,
is not necessary for weak convergence, as soon as the limiting variable IS Borel-measurable,

and requiring the convergence in expectation in terms of outer ctations.
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Outer measure

L
Let (©,A

map.

Definition

The outer integral w.r.t. P is defined by
E*@ =inf{EU: U2>X, [{_ Q0 — R measurable and E[iiiStS} ,

where EU exists if both its positive and negative parts are finite.

In particular, if B C €, then the outer probability is given by

P*(B) = inf{P(4) : BC A, A€ A}.

Myrto Limnio ( Empirical Processes (MATH-522) March 4, 2025

, P) be an arbitrary probability space and let X : Q — R be an arbitrary random

29 /40



Minimal measurable majorant

The infimum in both outer integral and probability are always achieved, and in particular if

there exists a measurable [em/e?ope functioa

Lemma

For any map X : Q — R, there exists a measurable function X* : Q — R such that
e X*>X
- e X* <U a.s., for every measurable map U such that U > X a.s.

If EX* exists (in particular if E*X < 00), and if both statements are fulfilled, then
e " — ==
E*X = EX*.

In that case, X* is called the mexaﬂmqgﬁmnt/ measurable cover or envelope
function of X. -

Remark

o We can see X* as the smallest measurable function above X.
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Maximal measurable minorant

Similarly, we can define a maximal measurable minorant as follows.

Lemma

For any map X : Q — R, there exists a measurable function X. : Q — R such that
0 X < X

e X, > u.s., for every measurable map L such that L < X a.s.

If EX ists (in particular if ExX < 00), and if both statements are fulfilled, then
X = EX*’

In that case, X* is called the mazimal measurable minorant of X.

Definition

The inner probability is of an arbitrary subset B C €2 is given by

‘P*(B) =1-P*(@- B)|.

j-S Xu—t“ur&.\.&
Remark XX, =X

o We can see X, as the biggest measurable function smaller than X.
o Notice that|E, X = —E* [fX]]

_—
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Weak convergence

Now we can extend weak convergence using outer integrals.

Definition

Let a sequence of random maps Xy, :  — D be defined on the probability space (€2,.4, P).
We say X,, converges weakly to a Borel measurable X : Q — D), denoted by X, ~» X, if

* = X 3
B o BOO]- (e w13,

for every h € Cy (D, R), where the limit can be written in terms of the law of X.

Notice that because the limit r.v. is Borel, then it has a distribution.
e ﬁ
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Convergence in probability and almost surely

Definition

A sequence of random maps X, : Q@ — D converges in probability to X if, for all € > 0,

P*(d(Xn, X) >¢) — 0.
~ - n—oo
We denote it by Xn —o X.

Definition

A sequence of random maps X, : 2 — D converges almost surely to X if, there exists a
sequence of measurable random variables §,,, such that

d(Xn,X) < 6n| and &, 50.

We denote it by | X, LU X '
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Theorem (Portmanteau Theorem IIT)

Let a sequence of random maps Xy, : Q@ = D, and X : Q@ — . Then the following assertions
are equivalent.

. 1. E*h(Xy) ol Eh(X) for any real-valued bounded continuous function h.

« 2. E*h(Xy) — Eh(X) for any real-valued bounded Lipschitz function h.
n oo

3. liminfyeo P (U) > P(U), for all open sets U C D.

4. limsup,,., Py (F) < P(F), for all closed sets F C D.

5. Pr(A) v P(A), for all Borel P-continuity sets A (P(0A) =0).
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Theorem (CMT IV)

—
Let <I> D — E be a continuous mapping for all points in Do C . Suppose the process
X, ~5 X, with X being valued in Do, then ®(X,) ~ <I>(X)

Example

Suppose the process Zy to be indexed by a Donsker class of measurable functions #. Then,
because the sup-norm can be viewed as a UC mapping on £°°(H):

[lelﬂ — Iyl < llz = yll3. Then, we can build confidence intervals for the sup-norm of the
scaled empirical process ||v/n(P, — P)||%, where we apply Theorem 27 with ® = || - ||%.
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Bounded stochastic processes

o A stochastic process X = {X;, t € T'} is a collection of r.v.s X; : © — R, indexed by a
set T' and defined on a p.s.
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Bounded stochastic processes

o A stochastic process X = {X;, t € T'} is a collection of r.v.s X; : © — R, indexed by a
set T' and defined on a p.s.

e For fixed w € €2, the map ¢ — Xt(w) is called a sample path.
— 1
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Bounded stochastic processes

o A stochastic process X = {X;, t € T'} is a collection of r.v.s X; : © — R, indexed by a
set T and defined on a p.s.

e For fixed w € Q, the map t — X (w) is called a sample path. It is useful to think of a

stochastic process as a random function, of realizations being the sample
paths, instead of a collection of r.v.s.
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Bounded stochastic processes

o A stochastic process X = {X;, t € T'} is a collection of r.v.s X; : © — R, indexed by a
set T and defined on a p.s.

e For fixed w € Q, the maplt — Xi(w) }13 called a sample path. It is useful to think of a

stochastic_process as a random function, of realizations being the sample
paths, instead of a collection of r.v.s.

o If every sam ath is bounded, then we can view X as a random map
1 Q= (T X L — D

Because T is_usually not finite, the space £°°(T") is not separable, but we can extend the
—_—
theory of weak convergence if the limit laws are tight Borel p.m. on ¢>°(T).
coy O vear o

Key result

Weak convergence of a sequence of sample bounded processes <> weak convergence of the

fidi distributions + asymptotic equicontinuity !!!
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Theorem

We say that X, : Oy, —>tl°° (T) converges weakly to altjh} process X iff. the following two

assertions hold true: Wk Vi, €T

(i) Convergence of all finite-dimensional distributions: IX; s X ) (X("Q»'x)(("ﬂ) N"’(_”'l)-"xhﬂ)

(i1) Asymptotic equicontinuity: there exists a semimetric p that makes T totally bounded.

and
Ve > 0, hn%]hmsupIP’* { sup | Xn(t) — Xn(s)| > 6} =0.
e =0, n—o0 p(s,t)<8, s,teT
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Theorem

We say that Xp : Qp — £°°(T') converges weakly to a tight process X iff. the following two
assertions hold true:

(i) Convergence of all finite-dimensional distributions: Xy T x

(ii) Asymptotic equicontinuity: there exists a semimetric p that makes T totally bounded,

and
Ve >0, lim limsupP* sup | Xn(t) — Xn(s)| >ep =0.
6—0 n—oo | p(s,t)<8, s,teT

Remark (How should we prove and interpret the second condition?)

For (it) to hold true, we can upperbound it by using Markov Inequality, for all € > 0,
= e ——— —

==

/\M—\
P*{( sup |Xn<t>—Xn<s>|>e}s<1/e>E*[ sup |Xn<t>—xn<s>|}
P §

s,t)<86, s,teT p(s,t)<e, s,teT
We hope that controlling the tail fluctuations of the increments Xy, (t) :Xn(s), would result
in a nice behavior over the whole sample path.
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To sum up

o We rigorously defined weak convergence for separable and non-separable spaces.

o Key ingredients for the proof are related to considering a subclass of functions with
measurable envelope function.

o The outer-measure (E*, P*) yields a novel definition of weak convergence for the classes
of stochastic processes that we will study until the end of the semester.
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Next lecture’s program

120, féT}

o
sae (2, V1) @ s die (oot L

f T
It will be on the 18th of March!!

o We will study how to characterize the size of an index class of stochastic processes

through tw@ﬂemity.

o We will see that it is a key property to bound this size in order to control the uniform
deviations of the process.
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