

# Empirical Processes (MATH-522)

## Lecture 3: Measure theoretic aspects of stochastic processes

Myrto Limnios

MATH, Ecole Polytechnique Fédérale de Lausanne

March 4, 2025

## What we saw last week

- We studied how to derive probabilistic bounds quantifying the deviation rate of averages around their mean, known as *concentration inequalities*.
- We focused on bounds that have exponential decay for **fixed** sample size, under various assumptions on the moments of the r.v.s

## What we will focus on today

- We will extend theoretical tools to extend those results uniformly over a class of functionals/sets.
- We will focus on weak convergence for stochastic processes, that will result in a new set of characterizations requiring the definition of outer-measure.
- We will go from separable finite-dimensional metric spaces to non-separable metric spaces.

$$\sqrt{n} (F_n(t) - F(t)) \rightsquigarrow W$$
$$\sup_{t \in \mathbb{R}} |\sqrt{n} (F_n(t) - F(t))| \rightsquigarrow B \quad \text{on } \mathcal{C}_b(\mathbb{R})$$

↑  
w. convergence.

# Today's outline

1 First definitions: tightness and separability

2 Complete separable metric spaces

3 Non-separable metric spaces

# Borel measurability

Let  $(\Omega, \mathcal{A}, \mathbb{P})$  a probability space, and  $(\mathbb{D}, \mathcal{D}, d)$  a metric spaces endowed with a metric  $d$  and the  $\sigma$ -field/algebra  $\mathcal{D}$ .

- A map  $h : \Omega \rightarrow \mathbb{D}$  is  $\mathcal{A}/\mathcal{D}$ -measurable if the preimage  $h^{-1}(U) = \{x \in \Omega, h(x) \in U\}$  is measurable in  $\mathcal{A}$  for all sets  $U \in \mathcal{D}$ .
- The Borel  $\sigma$ -field  $\mathcal{B}(\mathbb{D})$  of  $\mathbb{D}$  is the smallest  $\sigma$ -field containing all the open sets of  $\mathbb{D}$ .
- A function is Borel measurable relative to two metric spaces if it is measurable w.r.t. their Borel  $\sigma$ -field.
- A Borel-measurable map  $X : \Omega \rightarrow \mathbb{D}$  defined on the p.s.  $(\Omega, \mathcal{A}, \mathbb{P})$  is referred to as a random element/map valued in  $\mathbb{D}$ .

## Remark

For Euclidean spaces, Borel measurability is the usual measurability.

We lastly recall an important result.

## Lemma

A continuous map between two metric spaces is Borel measurable.

# Tightness

Tightness characterizes when a measure **concentrates** on a compact set almost surely.

## Definition

Let  $(\mathbb{D}, d)$  be a metric space. A Borel probability measure  $P$  is *tight* if

$$\forall \varepsilon > 0, \quad \exists K \subset \mathbb{D} \text{ compact}, \quad P(K) \geq 1 - \varepsilon.$$

A Borel map  $X$  of distribution  $P$  is tight if  $P$  is *tight*.

## Remark (Key fact)

This property ensures a kind of ‘smoothness’ for the r.v.  $X$ . Weak convergence will be extended for tight limiting r.v.s.

We can say that tightness is equivalent to being a  $\sigma$ -compact set (countable union of compacts) that has  $P$ -measure equal to one.

The following results show the importance of tightness.

### Theorem

Let  $\mathbb{D}$  be a separable and complete metric space. Then, every probability measure on  $(\mathbb{D}, \mathcal{B}(\mathbb{D}))$  is tight.

### Lemma

Let  $X$  and  $Y$  be two tight Borel-measurable processes in  $\mathbb{D} = \ell^\infty(T)$ , then  $X = Y$  iff. their finite-dimensional (fidi) marginal distributions are equal, i.e.

$$\forall t_1, \dots, t_k \in T, \quad (X(t_1), \dots, X(t_k)) = (Y(t_1), \dots, Y(t_k)) ,$$

for all integer  $k > 1$ .

## Reminder (Bounded functions)

Let  $T$  be an arbitrary set. We denote by  $\ell^\infty(T)$  the class of all bounded real-valued functions  $x : T \rightarrow \mathbb{R}$ . We will endow the space by the uniform norm on  $T$ :

$$\|x\|_T = \sup_{t \in T} |x(t)| ,$$

where we define pointwise the sum  $(x_1 + x_2)(t) = x_1(t) + x_2(t)$  and product with a scalar  $(\alpha x)(t) = \alpha x(t)$ , for all  $t \in T$ .

The space  $\ell^\infty(T)$  contains all functions of finite sup-norm, i.e., such that  $\|x\|_T < \infty$ .

Property: It is separable iff. the set  $T$  is countable.

# Separability

A weaker requirement to tightness is separability.

## Definition

Let  $(\mathbb{D}, d)$  be a metric space. We say that  $X : \Omega \rightarrow \mathbb{D}$  (or its p.m  $P$ ) are separable, if there exists a measurable separable set (i.e. it has a countable dense subset) with probability one, i.e., if  $\exists K \subset \mathbb{D}$  such that  $P(K) = 1$ .

## Definition

A  $\sigma$ -field is separable if it is generated by a countable collection of subsets.

## Remark

If a topological space  $\mathbb{D}$  is separable, then its Borel  $\sigma$ -field is separable as well.

If  $X$  is tight or separable, then it is Borel measurable. Notice that tightness and separability are independent on the metric.

## Example

A Euclidean space  $\mathbb{R}^d$  is separable as it is generated by a dense countable subset composed of vectors with rational coordinates.

# Separability

A weaker requirement to tightness is separability.

## Definition

Let  $(\mathbb{D}, d)$  be a metric space. We say that  $X : \Omega \rightarrow \mathbb{D}$  (or its p.m  $P$ ) are *separable*, if there exists a measurable separable set (i.e. it has a countable dense subset) with probability one, i.e., if  $\exists K \subset \mathbb{D}$  such that  $P(K) = 1$ .

## Definition

A  $\sigma$ -field is *separable* if it is generated by a countable collection of subsets.

## Remark

If a topological space  $\mathbb{D}$  is separable, then its Borel  $\sigma$ -field is separable as well.

If  $X$  is tight or separable, then it is Borel measurable. Notice that tightness and separability are independent on the metric.

## Example

A Euclidean space  $\mathbb{R}^d$  is separable as it is generated by a dense countable subset composed of vectors with rational coordinates.

# Separability

A weaker requirement to tightness is separability.

## Definition

Let  $(\mathbb{D}, d)$  be a metric space. We say that  $X : \Omega \rightarrow \mathbb{D}$  (or its p.m  $P$ ) are *separable*, if there exists a measurable separable set (i.e. it has a countable dense subset) with probability one, i.e., if  $\exists K \subset \mathbb{D}$  such that  $P(K) = 1$ .

## Definition

A  $\sigma$ -field is *separable* if it is generated by a countable collection of subsets.

## Remark

If a topological space  $\mathbb{D}$  is separable, then its Borel  $\sigma$ -field is separable as well.

If  $X$  is tight or separable, then it is Borel measurable. Notice that tightness and separability are independent on the metric.

## Example

A Euclidean space  $\mathbb{R}^d$  is separable as it is generated by a dense countable subset composed of vectors with rational coordinates.

# Separable stochastic processes

We now define another type of separability than that related to Borel measurability of the stochastic process defined as a random map.

## Definition

Let  $\{Z(t), t \in T\}$  be a real-valued stochastic process, indexed by a separable set  $T$ .

We say that the process  $Z$  is separable if there exists a countable set  $T' \subset T$ , such that a.s.

$$\sup_{t \in T} \inf_{s \in T'} |X(t) - X(s)| = 0 .$$

## Example

Brownian process, sub-Gaussian processes, and in particular Rademacher processes are separable in that sense.

# Consequences

- Suppose  $T$  to be endowed with a semimetric  $\rho$ .  
For any point  $t$ , and for a sequence  $t_m \in T'$  such that  $\rho(t, t_m) \rightarrow 0$ , then  $|X(t) - X(t_m)| \rightarrow 0$  a.s.
- Many processes in applications will be separable in that sense, while not being Borel measurable and thus not separable w.r.t.  $\mathbb{D}$ .
- However, the limiting process will often be in  $\mathbb{D} = \ell^\infty(T)$ , where  $T$  is usually a class of functions defined on the sample space.
- Separability allows us to extract a countable sub-family of elements  $\mathbb{D}_0 \subset \mathbb{D}$  of elements converging in  $\mathbb{D}_0$ .  
 $\sup |X|$

## Remark

Tightness and separability are fundamental properties for random maps. Prohorov's Theorem is the key result in probability theory (not studied in this class).

# Today's outline

1 First definitions: tightness and separability

2 Complete separable metric spaces

- Random vectors
- Finite-dimensional metric spaces

3 Non-separable metric spaces

# Weak convergence of random vectors

Let  $(\Omega, \mathcal{A}, \mathbb{P})$  a probability space. Suppose the r.v.s to be valued in  $\mathbb{D} \subset \mathbb{R}^d$ , endowed with the Euclidean norm.

## Definition

Suppose the random sequence  $X_1, X_2, \dots$  to have a distribution function  $F_n$  and p.d.  $P_n$ .  $X_n$  converges in *distribution/weakly/in law* to a r.v.  $X$ , of d.f.  $F$  and drawn from  $P$  if, for all points  $x \in \mathbb{D}$  for which  $F$  is continuous,

$$F_n(x) \xrightarrow[n \rightarrow \infty]{} F(x) .$$

We denote it by  $X_n \rightsquigarrow X$  (or  $P_n \rightsquigarrow P$ ).

## Remark

- Weak convergence is inherent to the underlying distributions of the random maps.
- The goal is to study the properties of the limit of distribution functions when  $n$  tends to infinity (notice as well that we should consider a sequence of probability spaces but we ignore this technicality).

# Weak convergence of random vectors

Let  $(\Omega, \mathcal{A}, \mathbb{P})$  a probability space. Suppose the r.v.s to be valued in  $\mathbb{D} \subset \mathbb{R}^d$ , endowed with the Euclidean norm.

## Definition

Suppose the random sequence  $X_1, X_2, \dots$  to have a distribution function  $F_n$  and p.d.  $P_n$ .  $X_n$  converges in *distribution/weakly/in law* to a r.v.  $X$ , of d.f.  $F$  and drawn from  $P$  if, for all points  $x \in \mathbb{D}$  for which  $F$  is continuous,

$$F_n(x) \xrightarrow{n \rightarrow \infty} F(x) .$$

We denote it by  $X_n \rightsquigarrow X$  (or  $P_n \rightsquigarrow P$ ).

## Remark

- Weak convergence is inherent to the underlying distributions of the random maps.
- The goal is to study the properties of the limit of distribution functions when  $n$  tends to infinity (notice as well that we should consider a sequence of probability spaces but we ignore this technicality).

# Portmanteau Theorem

Weak convergence provides a series of equivalent properties referred to as *Portmanteau Theorem* that we state below.

## Theorem (Portmanteau Theorem I)

Consider a random sequence of vectors  $X_1, \dots, X_n$ , of p.d.  $P_n$ , and  $X \sim P$ . The following assertions are equivalent.

1.  $\underline{X_n \rightsquigarrow X}$  or  $\underline{P_n \rightsquigarrow P}$
2.  $P_n h \xrightarrow[n \rightarrow \infty]{} Ph$ , for all  $h \in \mathcal{C}_b(\mathbb{R}^d, \mathcal{B}(\mathbb{R}^d))$  i.e. continuous and bounded function
3.  $\liminf_{n \infty} P_n(U) \geq P(U)$ , for all open sets  $U \subset \mathbb{R}^d$
4.  $\limsup_{n \infty} P_n(F) \leq P(F)$ , for all closed sets  $F \subset \mathbb{R}^d$
5.  $P_n(A) \xrightarrow[n \rightarrow \infty]{} P(A)$ , for all  $P$ -continuity sets  $A$ , i.e., such that  $P(\partial A) = 0$  where  $\partial A$  denotes the boundary of  $A$ .

# Continuous Mapping Theorem

Now that we have established the main characterizations, we are able to state the *Continuous Mapping Theorem* (CMT) that is fundamental to any statistical problem.

## Theorem (CMT I)

Let  $C \subseteq \mathbb{R}^d$  be a set such that  $\overbrace{\mathbb{P}(X \in C) = 1}$ .

If  $\overbrace{X_n \rightsquigarrow X}$ , then  $\overbrace{\Phi(X_n) \rightsquigarrow \Phi(X)}$  for any function  $\Phi : \mathbb{R}^d \rightarrow \mathbb{R}^q$  that is continuous on  $C$ .

## Proof.

Let  $F \subset \mathbb{R}^d$  be a fixed closed set.

- Notice that  $\Phi, \{\Phi(X_n) \in F\} = \{X_n \in \Phi^{-1}(F)\}$ .
- Consider  $x \in \overline{\Phi^{-1}(F)}$ , then, by definition of the closure, it contains all limit points of the elements in the preimage  $\Phi^{-1}(F)$ . Thus, there exists a sequence  $x_n$  of elements in  $\Phi^{-1}(F)$ , such that  $x_n \rightarrow x$  and  $\Phi(x_n) \in F$ . If  $x \in C$  then, because  $F$  is closed,  $\Phi(x_n) \in F$ . Otherwise  $x \in C^c$ . Thus

$$\Phi^{-1}(F) \subset \overline{\Phi^{-1}(F)} \subset \Phi^{-1}(F) \cup C^c .$$

- By the Portmanteau Theorem,

$$\limsup \mathbb{P}(\Phi(X_n) \in F) \leq \limsup \mathbb{P}(X_n \in \overline{\Phi^{-1}(F)}) \leq \mathbb{P}(X \in \overline{\Phi^{-1}(F)})$$

Recall that  $\mathbb{P}(X \in C) = 1$ , hence  $\mathbb{P}(X \in C^c) = 0$ .

- By the last inclusion and inferring that  $\Phi$  is continuous on  $C$  yields  $\mathbb{P}(X \in \overline{\Phi^{-1}(F)}) \leq \mathbb{P}(X \in \Phi^{-1}(F)) = \mathbb{P}(\Phi(X) \in F)$ .
- Hence assertion 4 of the Portmanteau theorem is proved, hence, because it is true for any arbitrary closed subset  $F$ , we proved by equivalence that (1) is fulfilled:  $\Phi(X_n) \rightsquigarrow \Phi(X)$ .

□

# Finite-dimensional metric spaces: Weak convergence

$\mathcal{B}(\mathbb{D})$

- Consider the r.v.  $X$  as a random map  $X : (\Omega, \mathcal{A}) \rightarrow (\mathbb{D}, \mathcal{D})$ .
- Define the set  $\mathcal{C}_b(\mathbb{D}, \mathcal{D})$  to be composed of all bounded and continuous functions  $h : \mathbb{D} \rightarrow \mathbb{R}$ , that are  $\mathcal{D}/\mathcal{B}(\mathbb{R})$ -measurable.

## Definition

We say that the random sequence  $\{X_n\}_{n \geq 1}$ , defined on the p.s.  $(\Omega, \mathcal{A}, \mathbb{P})$ , converges weakly to a r.v.  $X$ , denoted  $X_n \rightsquigarrow X$ , if

$$\boxed{\mathbb{E}h(X_n) \xrightarrow{n \rightarrow \infty} \mathbb{E}h(X)},$$

for all  $h \in \mathcal{C}_b(\mathbb{D}, \mathcal{D})$ . And we say that a sequence of p.m.s  $\{P_n\}_{n \geq 1}$  converges weakly to  $P$ , denoted  $P_n \rightsquigarrow P$ , if

$$\boxed{P_n h \xrightarrow{n \rightarrow \infty} Ph},$$

for all  $h \in \mathcal{C}_b(\mathbb{D}, \mathcal{D})$ .

We will try to extend the Portmanteau Theorem and the CMT in the following paragraphs, depending on whether the maps are measurable w.r.t. the Borel  $\mathcal{B}(\mathbb{D})$ , or not.

Borel  $\sigma$ -field.

We suppose for now that the space  $\mathbb{D}$  is endowed with the metric  $d$ , and that  $\mathcal{D} = \mathcal{B}(\mathbb{D})$ .

### Theorem (Protmanteau Theorem II)

Consider a random sequence  $X_1, \dots, X_n$ , of p.d.  $P_n$ , and  $X \sim P$  of the metric space  $(\mathbb{D}, \mathcal{D})$ . The following assertions are equivalent.

1.  $X_n \rightsquigarrow X$  or  $P_n \rightsquigarrow P$
2.  $\liminf_{n \infty} P_n(U) \geq P(U)$ , for all open sets  $U \subset \mathbb{R}^d$
3.  $\limsup_{n \infty} P_n(F) \leq P(F)$ , for all closed sets  $F \subset \mathbb{R}^d$
4.  $P_n(A) \xrightarrow{n \rightarrow \infty} P(A)$ , for all  $P$ -continuity sets  $A$ , i.e., such that  $P(\partial A) = 0$ .

The Portmanteau Theorem allows us to state the CMT II.

## Theorem (CMT II)

Consider two metric spaces  $(\mathbb{D}, \mathcal{B}(\mathbb{D}))$  and  $(\mathbb{E}, \mathcal{B}(\mathbb{E}))$ , and let the sequence of r.v.s  $X_1, \dots, X_n$  valued in  $(\mathbb{D}, \mathcal{D})$ .

If  $X_n \rightsquigarrow X$ , then  $\Phi(X_n) \rightsquigarrow \Phi(X)$  in  $(\mathbb{E}, \mathcal{B}(\mathbb{E}))$ , for any measurable continuous function  $\Phi : \mathbb{D} \rightarrow \mathbb{E}$ .

### Proof.

Let  $h \in \mathcal{C}_b(\mathbb{D}, \mathcal{D})$ , then, by continuity of  $\Phi : \mathbb{D} \rightarrow \mathbb{E}$ , the function  $h \circ \Phi$  is bounded and continuous. Suppose that  $X_n \rightsquigarrow X$ , then by definition of weak convergence,

$$\mathbb{E}h \circ \Phi(X_n) \xrightarrow{n \rightarrow \infty} \mathbb{E}h \circ \Phi(X)$$

in  $(\mathbb{E}, \mathcal{B}(\mathbb{E}))$ . As it holds true for any  $h \in \mathcal{C}_b(\mathbb{D}, \mathcal{B}(\mathbb{D}))$ , then the theorem is proved. □

In fact, we can prove the following convenient formulation of the CMT, where, as in CMT I (12), we only require the function  $\Phi$  to be continuous on the image set of the limiting r.v.

## Theorem (CMT II)

Consider two metric spaces  $(\mathbb{D}, \mathcal{B}(\mathbb{D}))$  and  $(\mathbb{E}, \mathcal{B}(\mathbb{E}))$ , and let the sequence of r.v.s  $X_1, \dots, X_n$  valued in  $(\mathbb{D}, \mathcal{D})$ .

If  $X_n \rightsquigarrow X$ , then  $\Phi(X_n) \rightsquigarrow \Phi(X)$  in  $(\mathbb{E}, \mathcal{B}(\mathbb{E}))$ , for any measurable continuous function  $\Phi : \mathbb{D} \rightarrow \mathbb{E}$ .

### Proof.

Let  $h \in \mathcal{C}_b(\mathbb{D}, \mathcal{D})$ , then, by continuity of  $\Phi : \mathbb{D} \rightarrow \mathbb{E}$ , the function  $h \circ \Phi$  is bounded and continuous. Suppose that  $X_n \rightsquigarrow X$ , then by definition of weak convergence,

$$\boxed{\mathbb{E}h \circ \Phi(X_n) \xrightarrow{n \rightarrow \infty} \mathbb{E}h \circ \Phi(X)}$$

in  $(\mathbb{E}, \mathcal{B}(\mathbb{E}))$ . As it holds true for any  $h \in \mathcal{C}_b(\mathbb{D}, \mathcal{B}(\mathbb{D}))$ , then the theorem is proved. □

In fact, we can prove the following convenient formulation of the CMT, where, as in CMT I (12), we only require the function **Φ to be continuous on the image set of the limiting r.v.**

## Theorem (CMT IIbis)

Consider two metric spaces  $(\mathbb{D}, \mathcal{B}(\mathbb{D}))$  and  $(\mathbb{E}, \mathcal{B}(\mathbb{E}))$ , and let the sequence of r.v.s  $X_1, \dots, X_n$  valued in  $(T, \mathcal{T})$ . Let  $C \subseteq \mathbb{R}^d$  be a set such that  $\mathbb{P}(X \in C) = 1$ .

If  $X_n \rightsquigarrow X$ , then  $\Phi(X_n) \rightsquigarrow \Phi(X)$  in  $(\mathbb{E}, \mathcal{B}(\mathbb{E}))$ , for any measurable function  $\Phi : \mathbb{D} \rightarrow \mathbb{E}$  that is continuous on  $C$ .

## Proof.

Board



## Sub-field of $\mathcal{B}(\mathbb{D})$ .

We suppose now the space  $T$  to be endowed with the metric  $d$ , and that  $\mathcal{D}$  is a sub- $\sigma$ -field of  $\mathcal{B}(\mathbb{D})$ . We will see if we can prove a similar CMT IIbis in that context, for any measurable map  $\Phi : (\mathbb{D}, \mathcal{D}) \rightarrow (\mathbb{E}, \mathcal{E})$  continuous on the image set of points of  $X$ .

We show that CMT IIbis holds true if we suppose in addition that  $C$  is separable and  $\mathcal{D}$ -measurable.

### Theorem (CMT III)

Consider two metric spaces  $(\mathbb{D}, \mathcal{B}(\mathbb{D}))$  and  $(\mathbb{E}, \mathcal{B}(\mathbb{E}))$ , and let the sequence of r.v.s  $X_1, \dots, X_n$  valued in  $(\mathbb{D}, \mathcal{D})$ . Let  $C \subseteq \mathbb{R}^d$  be a separable and  $\mathcal{D}$ -measurable set such that  $\mathbb{P}(X \in C) = 1$ . If  $X_n \rightsquigarrow X$ , then  $\Phi(X_n) \rightsquigarrow \Phi(X)$  in  $(\mathbb{E}, \mathcal{B}(\mathbb{E}))$ , for any measurable function  $\Phi : \mathbb{D} \rightarrow \mathbb{E}$  that is continuous on  $C$ .

### Exercise.

Hint: Let  $h \in \mathcal{C}_b(\mathbb{D}, \mathcal{D})$ , then the function  $h \circ \Phi$  is continuous, bounded on  $C$ . To prove that  $\Phi(X_n) \rightsquigarrow \Phi(X)$ , we construct a countable sub-family of

$\mathcal{G} = \{g \in \mathcal{C}_b(\mathbb{D}, \mathcal{D}), g \leq h \circ \Phi, \text{ uniformly continuous}\}$  such that there exists an increasing sequence  $\{g_k\}_{k \geq 1}$ , for any completely regular point  $x \in C$ ,  
 $\sup_k g_k(x) = \sup_{g \in \mathcal{G}} g(x) = (h \circ \Phi)(x)$ . Inferring Portmanteau II.2 and Theorem of monotone convergence concludes the proof. □

## Corollary

If  $\mathbb{E}h(X_n) \xrightarrow{n \rightarrow \infty} \mathbb{E}h(X)$  for any function  $h$  that is bounded, uniformly continuous and  $\mathcal{D}$ -measurable, and if  $X$  concentrates on a separable set of completely regular points, then  $X_n \rightsquigarrow X$

We highlight the importance of building a countable subset of a family of the type of  $\mathcal{G}$  that will be fundamental in the next chapters.

# Today's outline

1 First definitions: tightness and separability

2 Complete separable metric spaces

3 Non-separable metric spaces

- Important example of non-measurability
- Outer measure: definition and properties
- Bounded stochastic processes

# Space of cadlag functions on a compact: Skorohod space

$$\bar{\mathbb{R}} = [-\infty, \infty]$$

- Suppose that  $T = [a, b]$  possibly the extended real line. The space of functions  $h : [a, b] \rightarrow \bar{\mathbb{R}}$ , being right-continuous with left limits that exist ( càdlàg) is defined by  $D(T, \bar{\mathbb{R}})$  (or  $D(T)$ ).
- The space  $D([a, b])$  is NOT separable

What does it mean and why do we care about it?

# Empirical measures

$(\mathbb{C}_0, \mathbb{D})$

- Let the i.i.d. sequence of Uniform r.v.s  $X_1, \dots, X_n$  defined on the probability space  $\Omega = ([0, 1], \mathcal{B}, \lambda)$ , with  $\mathcal{B}$  the Borel  $\sigma$ -field and  $\lambda$  the Lebesgue measure both on  $[0, 1]$ .
- Then, the empirical c.d.f. is defined by

$$F_n(t) = \frac{1}{n} \sum_{i=1}^n 1_{\{0 \leq X_i \leq t\}},$$

$, t \in [0, 1] .$   $"\mathbb{C}_n"$   
 $\mathcal{G}_C$

and we can define the standard empirical process by

$$Z_n(t) = \sqrt{n}(F_n(t) - F(t)) = \sqrt{n}(F_n(t) - t) .$$

$"\mathbb{CLT}"$   
 $\mathcal{D}_{\text{center}}$

- Then, both  $F_n, Z_n$  are maps defined on  $[0, 1]$  and valued in the space of  $\ell^\infty([0, 1])$  (in fact  $D[0, 1]$ , but are not continuous). If we endow this space with the sup-norm on  $[0, 1]$ , then those maps are no longer Borel measurable, insofar as  $F_n^{-1}(\mathcal{D}) \not\subset \mathcal{B}^n$ , where  $\mathcal{D}$  is the Borel  $\sigma$ -field of  $\mathbb{D}$ .

$"\mathbb{D}_{\mathcal{B}, \mathbb{D}}$

$\mathbb{D}_{\mathcal{B}, \mathbb{D}}$

## Proof.

- Let  $K \subset [0, 1]$  be not a Borel set.  $\hat{f}_n, \hat{z}_n$
- Consider  $X(\omega, t) = 1\{\omega \leq t \leq 1\}$ , for any event  $\omega$ . Then define the union of uniform open balls of events in  $K$  by  $G = \bigcup_{k \in K} \{y, \|y(k) - 1_{[k,1]}\|_{[0,1]} < 1/2\}$ .
- Because  $G$  is an uncountable union of open sets, it is open.

- If  $X$  was  $\mathcal{B}/\mathcal{B}(D([0, 1]))$ -measurable, then the set  $\{\omega \in [0, 1], X(\omega) \in G\}$  would belong to  $\mathcal{B}$ . But
- The map  $X$  valued at the event  $\omega \in [0, 1]$  is in  $G$  iff.  $\omega = k$ .
- Conclude that  $\{\omega \in [0, 1], X(\omega) \in G\} = K$ .
- This is true for any subset of  $[0, 1]$ , hence  $X$  is Borel measurable iff. any  $K \subset [0, 1]$  is a Borel set. Hence, we can find a non Borel set such that  $X$  is not Borel measurable.

□

## Remark

- Notice that the limit process of  $Z_n$  is a Brownian Bridge, that is Borel measurable.
- This example illustrates that even for the most classical problem, the empirical processes are not necessarily Borel measurable random maps w.r.t. the sup-norm, i.e.,  $Z_n^{-1}(U)$  might be too large to be measurable. The interpretation being that the Borel  $\sigma$ -field generated by the Uniform distribution contains too many sets.
- In addition, the space  $(D[0, 1], \mathcal{B}(D[0, 1]))$  is not separable.

We can prove that by considering the ball  $\sigma$ -field, endowed with the sup-norm, we can extend a characterization of weak convergence by considering fidi projections of distributions, but we will not go through this path (cf. lecture notes for more details).

# Outer-measures for non-separable metric spaces

In fact, it has been highlighted (J. Hoffmann-Jørgensen) that Borel measurability of each  $X_n$  is not necessary for weak convergence, as soon as the limiting variable **IS** Borel-measurable, and requiring the convergence in expectation in terms of outer expectations.

# Outer measure

Let  $(\Omega, \mathcal{A}, P)$  be an arbitrary probability space and let  $X : \Omega \rightarrow \overline{\mathbb{R}}$  be an arbitrary random map.

## Definition

The outer integral w.r.t.  $P$  is defined by

$$E^*(X) = \inf\{EU : U \geq X, U : \Omega \rightarrow \overline{\mathbb{R}} \text{ measurable and } EU \text{ exists}\},$$

where  $EU$  exists if both its positive and negative parts are finite.

In particular, if  $B \subset \Omega$ , then the outer probability is given by

$$P^*(B) = \inf\{P(A) : B \subset A, A \in \mathcal{A}\}.$$

# Minimal measurable majorant

The infimum in both outer integral and probability are always achieved, and in particular if there exists a measurable envelope function.

## Lemma

For any map  $X : \Omega \rightarrow \bar{\mathbb{R}}$ , there exists a measurable function  $X^* : \Omega \rightarrow \bar{\mathbb{R}}$  such that

- $X^* \geq X$
- $X^* \leq U$  a.s., for every measurable map  $U$  such that  $U \geq X$  a.s.

If  $E X^*$  exists (in particular if  $E^* X < \infty$ ), and if both statements are fulfilled, then  $E^* X = E X^*$ .

In that case,  $X^*$  is called the minimal measurable majorant / measurable cover or envelope function of  $X$ .

## Remark

- We can see  $X^*$  as the smallest measurable function above  $X$ .

# Maximal measurable minorant

Similarly, we can define a maximal measurable minorant as follows.

## Lemma

For any map  $X : \Omega \rightarrow \overline{\mathbb{R}}$ , there exists a measurable function  $X_* : \Omega \rightarrow \overline{\mathbb{R}}$  such that

- $X_* \leq X$
- $X_* \geq L$  a.s., for every measurable map  $L$  such that  $L \leq X$  a.s.

If  $E X_*$  exists (in particular if  $E_* X < \infty$ ), and if both statements are fulfilled, then

$$E_* X = E X_*$$

In that case,  $X^*$  is called the maximal measurable minorant of  $X$ .

## Definition

The inner probability is of an arbitrary subset  $B \subset \Omega$  is given by

$$P_*(B) = 1 - P^*(\Omega - B).$$

If measurable

## Remark

- We can see  $X_*$  as the biggest measurable function smaller than  $X$ .
- Notice that  $E_* X = -E^*[-X]$

$$X^* = X_* = X$$

# Weak convergence

Now we can extend weak convergence using outer integrals.

## Definition

Let a sequence of random maps  $X_n : \Omega \rightarrow \mathbb{D}$  be defined on the probability space  $(\Omega, \mathcal{A}, P)$ . We say  $X_n$  converges weakly to a Borel measurable  $X : \Omega \rightarrow \mathbb{D}$ , denoted by  $X_n \rightsquigarrow X$ , if

$$E^*h(X_n) \xrightarrow{n \rightarrow \infty} Eh(X) = \int h(x) dP(x) \quad \text{because } X \text{ is measurable.}$$

for every  $h \in C_b(\mathbb{D}, \mathbb{R})$ , where the limit can be written in terms of the law of  $X$ .

Notice that because the limit r.v. is Borel, then it has a distribution.

# Convergence in probability and almost surely

## Definition

A sequence of random maps  $X_n : \Omega \rightarrow \mathbb{D}$  converges in probability to  $X$  if, for all  $\varepsilon > 0$ ,

$$P^*(\underbrace{d(X_n, X)}_{> \varepsilon}) \xrightarrow{n \rightarrow \infty} 0.$$

We denote it by  $X_n \xrightarrow{\mathbb{P}^*} X$ .

## Definition

A sequence of random maps  $X_n : \Omega \rightarrow \mathbb{D}$  converges almost surely to  $X$  if, there exists a sequence of measurable random variables  $\delta_n$ , such that

$$\boxed{d(X_n, X) \leq \delta_n}, \quad \text{and} \quad \delta_n \xrightarrow{a.s.} 0.$$

We denote it by  $\boxed{X_n \xrightarrow{a.s.} X}$ .

## Theorem (Portmanteau Theorem III)

Let a sequence of random maps  $X_n : \Omega \rightarrow \mathbb{D}$ , and  $X : \Omega \rightarrow \mathbb{D}$ . Then the following assertions are equivalent.

- 1.  $E^*h(X_n) \xrightarrow{n \rightarrow \infty} Eh(X)$  for any real-valued bounded continuous function  $h$ .
- 2.  $E^*h(X_n) \xrightarrow{n \rightarrow \infty} Eh(X)$  for any real-valued bounded Lipschitz function  $h$ .
- 3.  $\liminf_{n \infty} P_n^*(U) \geq P(U)$ , for all open sets  $U \subset \mathbb{D}$ .
- 4.  $\limsup_{n \infty} P_n^*(F) \leq P(F)$ , for all closed sets  $F \subset \mathbb{D}$ .
- 5.  $P_n^*(A) \xrightarrow{n \rightarrow \infty} P(A)$ , for all Borel  $P$ -continuity sets  $A$  ( $P(\partial A) = 0$ ).

## Theorem (CMT IV)

Let  $\Phi : \mathbb{D} \rightarrow \mathbb{E}$  be a continuous mapping for all points in  $\mathbb{D}_0 \subset \mathbb{D}$ . Suppose the process  $X_n \rightsquigarrow X$ , with  $X$  being valued in  $\mathbb{D}_0$ , then  $\Phi(X_n) \rightsquigarrow \Phi(X)$ .

### Example

Suppose the process  $Z_n$  to be indexed by a Donsker class of measurable functions  $\mathcal{H}$ . Then, because the sup-norm can be viewed as a UC mapping on  $\ell^\infty(\mathcal{H})$ :

$|\|x\|_{\mathcal{H}} - \|y\|_{\mathcal{H}}| \leq \|x - y\|_{\mathcal{H}}$ . Then, we can build confidence intervals for the sup-norm of the scaled empirical process  $\|\sqrt{n}(P_n - P)\|_{\mathcal{H}}$ , where we apply Theorem 27 with  $\Phi = \|\cdot\|_{\mathcal{H}}$ .

# Bounded stochastic processes

- A stochastic process  $X = \{X_t, t \in T\}$  is a collection of r.v.s  $X_t : \Omega \rightarrow \mathbb{R}$ , indexed by a set  $T$  and defined on a p.s.
- For fixed  $\omega \in \Omega$ , the map  $t \mapsto X_t(\omega)$  is called a *sample path*. It is useful to think of a stochastic process as a random function, of realizations being the sample paths, instead of a collection of r.v.s.
- If every sample path is bounded, then we can view  $X$  as a random map  $X : \Omega \rightarrow \ell^\infty(T)$ .

Because  $T$  is usually not finite, the space  $\ell^\infty(T)$  is not separable, but we can extend the theory of weak convergence if the limit laws are **tight Borel p.m. on  $\ell^\infty(T)$** .

## Key result

Weak convergence of a sequence of sample bounded processes  $\iff$  weak convergence of the fidi distributions + asymptotic equicontinuity !!!

# Bounded stochastic processes

- A stochastic process  $X = \{X_t, t \in T\}$  is a collection of r.v.s  $X_t : \Omega \rightarrow \mathbb{R}$ , indexed by a set  $T$  and defined on a p.s.
- For fixed  $\omega \in \Omega$ , the map  $t \mapsto \underline{X_t(\omega)}$  is called a *sample path*. It is useful to think of a stochastic process as a random function, of realizations being the sample paths, instead of a collection of r.v.s.
- If every sample path is bounded, then we can view  $X$  as a random map  $X : \Omega \rightarrow \ell^\infty(T)$ .

Because  $T$  is usually not finite, the space  $\ell^\infty(T)$  is not separable, but we can extend the theory of weak convergence if the limit laws are **tight Borel p.m. on  $\ell^\infty(T)$** .

## Key result

Weak convergence of a sequence of sample bounded processes  $\iff$  weak convergence of the fidi distributions + asymptotic equicontinuity !!!

# Bounded stochastic processes

- A stochastic process  $X = \{X_t, t \in T\}$  is a collection of r.v.s  $X_t : \Omega \rightarrow \mathbb{R}$ , indexed by a set  $T$  and defined on a p.s.
- For fixed  $\omega \in \Omega$ , the map  $t \mapsto X_t(\omega)$  is called a *sample path*. **It is useful to think of a stochastic process as a random function, of realizations being the sample paths, instead of a collection of r.v.s.**
- If every sample path is bounded, then we can view  $X$  as a random map  $X : \Omega \rightarrow \ell^\infty(T)$ .

Because  $T$  is usually not finite, the space  $\ell^\infty(T)$  is not separable, but we can extend the theory of weak convergence if the limit laws are tight Borel p.m. on  $\ell^\infty(T)$ .

## Key result

Weak convergence of a sequence of sample bounded processes  $\iff$  weak convergence of the fidi distributions + asymptotic equicontinuity !!!

# Bounded stochastic processes

- A stochastic process  $X = \{X_t, t \in T\}$  is a collection of r.v.s  $X_t : \Omega \rightarrow \mathbb{R}$ , indexed by a set  $T$  and defined on a p.s.
- For fixed  $\omega \in \Omega$ , the map  $t \mapsto X_t(\omega)$  is called a *sample path*. It is useful to think of a stochastic process as a random function, of realizations being the sample paths, instead of a collection of r.v.s.
- If every sample path is bounded, then we can view  $X$  as a random map  $X : \Omega \rightarrow \ell^\infty(T)$   $\omega \mapsto \mathbb{R}^T$   
Because  $T$  is usually not finite, the space  $\ell^\infty(T)$  is not separable, but we can extend the theory of weak convergence if the limit laws are tight Borel p.m. on  $\ell^\infty(T)$ .

## Key result

Weak convergence of a sequence of sample bounded processes  $\iff$  weak convergence of the fidi distributions + asymptotic equicontinuity !!!

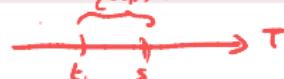
## Theorem

We say that  $X_n : \Omega_n \rightarrow \ell^\infty(T)$  converges weakly to a tight process  $X$  iff. the following two assertions hold true:

$\forall \varepsilon \exists \delta \forall t_1, \dots, t_n \in T$

- (i) Convergence of all finite-dimensional distributions:  $X_n \xrightarrow{fidi} X$   $(X(t_1), \dots, X(t_n)) \rightsquigarrow (X(t_1), \dots, X(t_n))$
- (ii) Asymptotic equicontinuity: there exists a semimetric  $\rho$  that makes  $T$  totally bounded, and

$$\forall \varepsilon > 0, \quad \lim_{\delta \rightarrow 0} \limsup_{n \rightarrow \infty} \mathbb{P}^* \left\{ \sup_{\rho(s, t) < \delta, s, t \in T} |X_n(t) - X_n(s)| > \varepsilon \right\} = 0.$$



Remark (How should we prove and interpret the second condition?)

For (ii) to hold true, we can upperbound it by using Markov Inequality, for all  $\varepsilon > 0$ ,

$$\mathbb{P}^* \left\{ \sup_{\rho(s, t) < \delta, s, t \in T} |X_n(t) - X_n(s)| > \varepsilon \right\} \leq (1/\varepsilon) \mathbb{E}^* \left[ \sup_{\rho(s, t) < \delta, s, t \in T} |X_n(t) - X_n(s)| \right]$$

We hope that controlling the tail fluctuations of the increments  $X_n(t) - X_n(s)$ , would result in a *nice* behavior over the whole sample path.

## Theorem

We say that  $X_n : \Omega_n \rightarrow \ell^\infty(T)$  converges weakly to a tight process  $X$  iff. the following two assertions hold true:

- (i) Convergence of all finite-dimensional distributions:  $X_n \xrightarrow{fidi} X$
- (ii) Asymptotic equicontinuity: there exists a semimetric  $\rho$  that makes  $T$  totally bounded, and

$$\forall \varepsilon > 0, \quad \lim_{\delta \rightarrow 0} \limsup_{n \rightarrow \infty} \mathbb{P}^* \left\{ \sup_{\rho(s,t) < \delta, s,t \in T} |X_n(t) - X_n(s)| > \varepsilon \right\} = 0.$$

## Remark (How should we prove and interpret the second condition?)

For (ii) to hold true, we can upperbound it by using Markov Inequality, for all  $\varepsilon > 0$ ,

$$\mathbb{P}^* \left\{ \sup_{\rho(s,t) < \delta, s,t \in T} |X_n(t) - X_n(s)| > \varepsilon \right\} \stackrel{=: \text{L}}{\leq} (1/\varepsilon) \mathbb{E}^* \left[ \sup_{\rho(s,t) < \varepsilon, s,t \in T} |X_n(t) - X_n(s)| \right] \stackrel{=: \text{R}}{\leq} \varepsilon$$

We hope that controlling the tail fluctuations of the increments  $X_n(t) - X_n(s)$ , would result in a *nice* behavior over the whole sample path.

## To sum up

- We rigorously defined weak convergence for separable and non-separable spaces.
- Key ingredients for the proof are related to considering a subclass of functions with measurable envelope function.
- The outer-measure  $(\mathbb{E}^*, \mathbb{P}^*)$  yields a novel definition of weak convergence for the classes of stochastic processes that we will study until the end of the semester.

## References

- Aad W. Vaart, Jon A. Wellner, *Weak Convergence and Empirical Processes. With Applications to Statistics*. Springer Series in Statistics (SSS), Springer New York, 1996.
- Aad W. Vaart, *Asymptotic Statistics*. Cambridge University Press; 1998.
- Michael R. Kosorok, *Introduction to Empirical Processes and Semiparametric Inference*. Springer Series in Statistics (SSS), Springer New York, 2008.

## Next lecture's program

$\{Z(\omega), t \in T\}$   
 $\text{size}(Z_t, t \in T) \Leftrightarrow \text{structure/complexity of } T.$

**It will be on the 18th of March!!**

- We will study how to characterize the size of an index class of stochastic processes through their complexity.
- We will see that it is a key property to bound this size in order to control the uniform deviations of the process.