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What we saw last week

1. We recalled fundamental definitions and properties for metric spaces, to be able to
understand modes of convergence of random sequences of random maps

. We recalled the continuous mapping Theorem, LLN and CLT
. We defined empirical process indexed by arbitrary sets

. We stated the first important extensions of uniform limit theorems

U W N

. We presented important learning examples in statistics
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Empirical measure

X C R4, with d > 2.

Based on an independent

random sample, X7,

1 n
Py = — Z‘SXz )
"o
where 0x (A) is the Dirac

Suppose the r.v. X to be valued in a multidimensional space, e.g., a generic Euclidean space
., Xn, we defined the empirical measure by
Pn(A) =

1 n
~ > 1a(X)
"

measure of the event {X € A}. In particular

(1)

subsets C of X by

1
= Ii {number of observations i < n: X, é@ l
n

{P(C), C 69

Myrto Limnios (EPFL)

for any Borel subset A C X. We refer to the empirical measure indexed by a collection of
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Empirical measure indexed by a function class

In some applications, it is more convenient to consider the index set to be a class of
functions, e.g., for averages. For any measurable function h : X — R, consider

1 L1
Pph =~ Zh(Xi?,

n i=1
mpirical measure

then the empirical measure indexed by a class of real-valued functions H is

(2)
considered as the empirical estimator of\Ph := [, h(x)]f(dﬁ for a given h € H.
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Empirical measure indexed by a function class

In some applications, it is more convenient to consider the index set to be a class of
functions, e.g., for averages. For any measurable function h : X — R, consider

Poh = %ih(Xi) , (2)
i=1

then the empirical measure indexed by a class of real-valued functions H is
{Pnh, heH}

considered as the empirical estimator of Ph := [, h(z)P(dz) for a given h € H.

Remark

Notice that taking H to be the collection {1, C € C} recovers the first definition.
It also recovers the empirical c.d.f.s in the univariate case, i.e., when X = R, by taking
C = {1{(~co, 2]}, = € R}.

“ b /\(_po,mj ?, 7\&@\,}
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Classical empirical estimators
i
¢

o Empirical mean: (1/n)> 7" 1{X; < a%} = GC/Donsker first uniform theorems for the
empirical measures —

—> But also we would like to establish (non)asymptotic properties of
optimal empirical estimators from the index set ...
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Classical empirical estimators

o Empirical mean: (1/n)> 7" ; 1{X; <z} = GC/Donsker first uniform theorems for the
empirical measures

—> But also we would like to establish (non)asymptotic properties of
optimal empirical estimators from the index set ...

Y
o Empirical median: (1/n) 3" ; |X; —m|, with m being the median
E’_o Empirical binary risk: (1/n)> 1 ; 1{h(X;) # Y;}, with A : X — {0, 1} being a classifier

_ @ Least-squares estimator: (1/n)> 7" (V; — h(X;))?, with h : X — R being a regression
function 4

o Empirical likelihood estimator: (1/n)> 7" ; log pg(X;), with py density function indexed
by a parameter of interest 6 !

‘We will model those estimators by a generic r.v. Z, in this lecture.
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What we will see today

We want to provide upper-bounds of the probability
for all ¢ > 0.

We will focus on a fixed estimator modeled by a generic real-valued r.v.| Z, | and suppose
that its mean E[Z,] = PZ, exists and is finite (i.e. suppose Z, to be integrable).

lPﬂZn —EZn| > t}) is vey Suall
==

-+ \O ‘Jq—n—-nAﬂ
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What we will see today

e We will study how to derive probabilistic bounds to quantify the speed of the deviation
of averages of r.v.s w.r.t their mean, known as basic concentration inequalities.

o We will focus on bounds that have exponential decay, under various assumptions on the
moments of the r.v.s

e Importantly, those results allow to assess how averages concentrate around their mean
for fixed sample size.
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Today’s outline

@ Basic methods for bounding sums of independent variables
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From Markov’s inequality...

Theorem (Markov’s inequality)

For any nonnegative real-valued r.v. Z, for all t > 0, one has
—

P{Z >t} < = 3)
Proof.
by, [EPTS SN Z 4308 > E 132kt

Blsi5) v K220y
> 0 ~ e[y 34 w (T 3244%)
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From Markov’s inequality...

Theorem (Markov’s inequality)

For any nonnegative real-valued r.v. Z, for all t > 0, one has

P(Z 21} < 3)

Proof.
Let ¢ > 0. Notice that Z1{Z > t} > t1{Z > t}, thus

E[Z1{Z > t}] > E[t1{Z > t}] = tP{Z > t}

We also can write EZ = E[Z1{Z > t}] + E[Z1{Z < t}], where both expectations are positive,
the result is obtained. |
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From Markov’s inequality...

Theorem (Markov’s inequality)

For any nonnegative real-valued r.v. Z, for all t > 0, one has

Pzt <2 3)
e | S
Proof.

Let ¢t > 0. Notice that Z1{Z > t} > ¢t1{Z > t}, thus

E[Z1{Z > t}] > E[t1{Z > t}] = tP{Z > t}
We also can write EZ = E[Z1{Z > t}] + E[Z1{Z < t}], where both expectations are positive,
the result is obtained. |

Remark

o We can always apply Markov’s inequality to |Z — EZ| as it is nonnegative a.s.
—

o It is only interesting when|EZ < oo.
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... to Chebyschev’s inequality

We can easily obtain sharper results, following the proof technique of Markov’s inequality,

that comes at a price of higher finite moments.

Let h: I CR — (0,00) be a nondecreasing function. Then we have that

/nl .
Eh(Z)
P(Z > 1} < P(M(Z) > b)) < 50

Why is this interesting?
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. to Chebyschev’s inequality

We can easily obtain sharper results, following the proof technique of Markov’s inequality,
that comes at a price of higher finite moments.

Let h: I CR — (0,00) be a nondecreasing function. Then we have that

Eh(Z
P{Z >t} <P{A(Z) > h(1)} < h((t)) . xeaa® (4)
Why is this interesting?
Lemma (Chebyschev’s inequality)
Let a sample of n independent real-valued square-integrable r.v. X1,...,Xn. Then, for all
t>0 -
—EX;) , (5)
\_/ nt2

where o2 = (1/n) 3" Var(X;).
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Remark

o One can take h(t) = t?, with ¢ € N*, as soon as the ¢g-th moment is finite. More
generally, a large family of nondecreasing maps h can be considered as soon as they are
valued in (0, 00).

————

o We will focus on exponential transforms, yielding the basis of Cramér-Chernoff’s

method to obtain sharp exponential bound of such deviation probabilities.
=

Myrto Limnios (EPFL) Empirical Processes (MATH-522) February 25, 2025 11 /39



Cramér-Chernoff method

Inequality

l\; A 1— CA?

Let a generic real-valued r.v. Z, and let a parameter A > 0. Observe that by Markov’s
Definition

S—————

Pve

P{Z >t} = P{e*? > M} < e ME[eM], =
—

2
e ! 2
The Cramér transform of Z is defined by:

Yy tER

——
B

WMinize WA ~y harp
expo e e =t
where X\ — log E[e*?] =: 17 ()) is the log-moment generating function of Z.

sup (At — vz (V) ,
A>0
The goal is to derive the sharpest upperbound

consider

\P{Zzt} <e¥z® ( e

Myrto Limnios (EPFL)

¥y :t&@@&t—w(x)) -

The function ¥3 known as the Cramér transform of Z. In fact (prove as exercise),

we can
Empirical Processes (MATH-522)




Short reminder about moment generating functions
The moment generating function of a r.v. Z is defined by

A= E[e*?)

(= exp{dz(M)})
._/\.
o It is defined in an open neighborhood of 0 and real-valued
e It does not exist for all r.v.s Z (e.g. Cauchy distribution)
e BUT it fully characterizes the distribution of Z

-
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Short reminder about moment generating functions

The moment generating function of a r.v. Z is defined by

A= E[eM] (= exp{yz(M)})

o It is defined in an open neighborhood of 0 and real-valued
e It does not exist for all r.v.s Z (e.g. Cauchy distribution)
e BUT it fully characterizes the distribution of Z

Remark (Key fact)

Recall that the series expansion of e*? around 0 gives

7)? AL
[6)‘2=1+>\Z+(>\2) +(>‘ ) +...

3!

Hence, if the moments exist, by linearity of the expectation,

2 72 31 73
EZ EZ
JEe*Z:1+,\]EZ+)‘ A

7 2 3

-

where the moments are w.r.t. the distribution of Z (e.g. probability mass function,
continuous probability distribution, Stieljes integrals).
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Explicit bounds for parametric distributions

Example

Prove the following inequalities.

1. Suppose Z to be a centered Gaussian r.v. with finite variance o2, then 1z ()\) = A\202/2

and

\]P’{Z >t} < e*tz/(@‘

2. Suppose‘mwhere Y is a Poisson r.v. with pargmeter b, i.e.,
P{Y =k} = e*Ebk/k!. Show that
_’./_\

[v5® = bh(t/o)|

with h(u) = (1 4 u)log(1 + u) — w for all w > —1, and for all ¢ < b,

P2 7 (1) = bh(=t/b) .

Myrto Limnios (EPFL) Empirical Processes (MATH-522) February 25, 2025

14 /39



Remark (Key fact)

We now derive Chernoff’s inequality when applied to a sum of i.i.d. centered r.v.

Xi,...,Xn, then ?ZKZ’(\' e idi"’;‘"n
n ) J ( ") -
$z(\) = log E[e*?] = log E[e* Zi<n Xi] = log [] E[e**] = nyox (3) . (6)
- ~— _ i<n —J

In particular
t
v =ik (L)
n
——
yielding the general form.

Example

Consider an i.i.d. sample drawn from a Poisson distribution of parameter b (cf. previous
slide) then, for all ¢ > 0,

S L e—nbh(—t/ .
P{Z(Xz b) Zt} < J

i=1
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Chernoft’s inequality

Lemma
Let a sample of n i.i.d. real-valued centered r.v. Xi,...,Xy. Then, for allt >0
1| o
PN X >t g <27 ™) (7
n | [U—
i=1__ |,

where V% is the Cramér transform of the r.v. X.

We will use the log-moment generating function 1 x to characterize the decrease of the tails
of distributions for real-valued r.v. X. For instance, Gaussian r.v. are characterized by exact
squared decrease.
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sub-Gaussian and sub-Gamma r.v.s

Three important classes are defined below.

Definition

A real-valued centered r.v. X is said to be sub-Gaussian with variance parameter v if

’_7,/_ " vacouu Z
Px(N) < — _ At (8)
2 Yiwrto,m (= >
We denote this class by G(v). Aei

Definition

A real-valued centered r.v. X is shid to be sub-Gamma on the right tail with variance factor
v and scale parameter c if

\’tq/,X(A) < ﬁ’ ’ @ Y wlauman oY "
N _EY n sw e
for alllO <A< l/c.’

Aee (ov)

And similarly, X is said to be sub-Gamma on the left tail with variance factor v and scale
parameter c, if —X is sub-Gamma of right tail with same parameters.

X is said to be sub-Gamma with variance factor v and scale parameter c, if it is both on left
and right tails with equal parameters. We denote that class by I'(v, c).
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Remark

Notice that the moment-generating function of a centered sub-Gaussian r.v. is dominated by

that of a centered Gaussian r.v.
Example (Exercise)
e Prove that for any X € G(v), for all ¢t > 0, o h
»2
2
P{X >t} VP{-X >t} < et /(%) 10
00> ) VX > <1 o)

o Prove that for any X € I'(v, ¢), for all ¢t > 0,

P{X > V2wt +ct} VP{—X > V2wi+ct} <et. (11)
t/T—f’r

We will see now how Cramér-Chernoff’s method is a key tool for proving fundamental
concentration inequalities for general formulations of averages based on finite sample of
independent r.v.s. with exponential decay.
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Hoeffding’s inequality

We start with a fundamental bound of the log-moment generating function for bounded r.v.s.
Lemma (Hoeffding inequality, 63)

Consider the r.v. X to be centered, and bounded a.s. by a < X < b, with a < b. Then, for
—_—

all X >0 - T -
Px(A) < %l (12)
vA Q
N = (% Xe QC[b‘:})
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Proof.

By convexity of the exponential function = — e®, we have for all ¢ > 0, 1 f 'X"( b-2)*

z < bfxeta_i_x*aetb/

b—a b—a Lev aelald, 2<%
Because X is centered we can write ,° N A box - -
b-f)( "o b-a
]Ee“ < elo ot — . .
b—a canvu\b? ot &
The first and second derivatives of g(¢) equal to &l’k “:‘“ + .,;.AP? b g_c‘*L
b
'(t) —a—aib_a = o
= be—t(b=a) _ ¢
and
") = ab(b — a)2e~t(b=a)
9 - (be—t(b—a) —a)?
That we can rewrite (exercise)
b— 2
g i uel0,1]— (b—a)u(l —u) < % .

Because g(0) = ¢g/(0) = 0, by Taylor’s Theorem applied to g(u) of order 2 at 0, there exists
t € [0, A] such that

vx(\) = —g”
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Remark

Notice that in that case X is sub-Gaussian of parameter v = (b — a)2/4, i.e.,
X €G((b—a)?/4).

Theorem (Hoeffding tail inequality, 1963)

Let X1,...,Xn, a sequence of n independent r.v., s.t. a; < X; < b; a.s., with (a;,b;) € R2,
for all i <n. Then, for all t > 0,
@ e 2
PUS T (Xi —E[X))| > tp <2072 /ey ® (13)
i=1

with ¢ = Y1 (b; — a;)2.

Theorem 11 is a simple consequence of the Hoeffding’s inequality recalled in Lemma 10,
combined with Cramér-Chernoff’s bound illustrated in the subsequent proof.
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Proof.

Let t > 0, A > 0 and consider the centered r.v. lZ > (X — E[X; ])s with n € N*. Then,
using sequentially Cramér-Chernoff’s method, Hoeffding’s T.emma and the independence of

the X;s, one has

755 P e’ﬂ"
P{Z>t} = P{CAZZe)‘t} "
Ak -EX7) ] B ﬁ:ﬂ Ak J
< e ME[PZ] = Ele E e
' Al .60
vz }< exp{f)\t+ﬁ} c:i('v;-‘cz':ijsrsg’- - J
n 8
<

. A2t2c?
){r;foexp {—)\t + 3 } .
—_—

The bound is obtained with the optimal parameter\ N =4t/c2. Z O
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T

T 2
. . = Lo bi-ei)
D(1zx-Exl 36) €ge =

o To better understand what it encompasses, define § = 2 exp{—2t2/c?}.

o Then with probability at least 1 — §, it is possible to control almost surely the deviation
of the sample mean w.r.t. its expectation by inverting Eq. (13) as follows

S300 - Em\ oG | (va)
——

—> Compare it to Chebychev s inequality

Napy
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o To better understand what it encompasses, define § = 2 exp{—2t2/c?}.

e Then with probability at least 1 — 4, it is possible to control almost surely the deviation
of the sample mean w.r.t. its expectation by inverting Eq. (13) as follows

ﬁ:(xi —E[Xi])| < 710‘%;1/ 2 (14)
=1 _‘\_g'\(l’\\ N)’Z

— Compare it to Chebychev’s inequality

o This bound expresses the importance of the spread effect for obtaining a good estimation
of the expectation.
10 expectal ol

e It also provides an explicit bound,\rmaependent on the distribution of the sampla for
which it is possible to exactly determine the sample size n required for the probabilistic
control of the empirical bias.

Before deriving two important inequalities that refine that of Hoeffding, when
the variance is small, we expose two important applications for Hoeffding’s
inequality.
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(x \/()Lhz’d Ye l&)'} \:’4,.»( e ket dasﬂ.'cr
;«(ﬁ oy 2 7( - \p\\s
w1 W) ¢ heab dogh
% € argpia ifuawoﬂij

Example (Binary Classification) l\ € ocgwmn J— Z_ 46 <

en
Considering the binary loss, and choosing Z; = 1{g(X;) # Yi}, ylelds with probability at
—

least 1 — ¢
Sig ‘;2"2(21 < % ) cove ’Z),( ‘/ﬁ) (15)
45 "= /5|

The tail bound is of order (’)]p(n_l/ 2) that is classic for empirical estimators and processes, as
will be shown throughout the chapters.
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Example (Simple Rademacher averages)
Let an i.i.d. sequence of Rademacher variables €1,

n
E €4

=il

P(e =1) =P(e = —1) = 1/2), and a sequence of real constants a1,

]P) {
notice thathar(Z?,l €ia;) =,

2

)|
i=19% |

.,&n (symmetric and
...,an. Then
> t} < 27/ 2 Cign D) |

(16)
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Example (Simple Rademacher averages)

Let an i.i.d. sequence of Rademacher variables €1, ..., e, (symmetric and
P(e = 1) = P(e = —1) = 1/2), and a sequence of real constants a1, ...,a,. Then

n
]P’{ Zsiai

i=1
notice that Var(} 1 ; g;a;) = SF ; a?

o

>t}<2e‘t2/2‘2i<"“?)2, e D(rbr]x ()

Example (Rademacher averages)

Let an i.i.d. sequence of Rademacher variables €1, ...,&n, independent of the X’s. The
Rademacher average is defined by

n v
\Rn 2215iXi , | & PL,\(%} = ZZ“E‘.%,%-\) (17)
Bl
ot § N oL
oeffding’s inequality yields R
[ B{|Ra| > 1} < 207772, (18)

Notice that Hoeffding’s inequality does not characterize sub-Gaussian class, as the variance
can be smaller than 7 , (b; — a;)?. In the case of Rademacher averages however, it exactly
equals to the sample variance. As we will see later, Rademacher averages are key quantities
that can be used to measure the richness/complexity/size of classes of functions.
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Bennett’s and Bernstein’s inequalities.

o When higher moments of the r.v.s are small, and especially the variance, then sharper
bounds can be obtained.

o We start by deriving a sub-Gaussian inequality, namely Bennett’s inequality, that will
help us prove Bernstein’s under weaker assumptions on the r.v.s.
R
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Bennett’s and Bernstein’s inequalities.

o When higher moments of the r.v.s are small, and especially the variance, then sharper
bounds can be obtained.

o We start by deriving a sub-Gaussian inequality, namely Bennett’s inequality, that will
help us prove Bernstein’s under weaker assumptions on the r.v.s.

o Before stating the theorems, we highlight a simple inequality bounding the
moment-generating function. Let the sequence of independent r.v.s be Xi,..., Xy,
define Z = 3" | (X; — EX;).
Then for any A >0, we have:

Pz(A) =D logEe i — ,\EX,-IS D (B —AEX; — 1), (19)
_P-Q—J

i=1 i=1

using thaq logu < u— f
r- -

‘We will define in the following the function

h:u>0— (14u)log(l+u)—u
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Bennett’s inequality

Theorem

Let X1,...,Xn, a sequence of square-i e and independent r.v.s. Suppose there exists

a constant b > 0 that bounds X; < b a.s. Then, for all
—————— P —
bt V),
{Z(X —E[X])>t}<exp{ é? ( )} R
=1

where v =3, .. EX2 and h(u) = (1 + u)log(1 + u) — w. for u > 0.
—

—

Proof.

Exercise.
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Bernstein’s inequality

The following version of Bernstein’s inequality only requires bounded moments for the

r.v.s.
—_

Theorem

Let X1,...,Xn, a sequence of n independent r.r.v.. Suppose that there exist the nonnegative

consianfﬁl v, §such that

and

for all integers q > 3. Then, for all t >
——

JP’{Z )>\/§+ct}§e“. (21)

n 2
{Z —E[X3]) > t} gm (22)
11

3

=1
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Exercise.
Denote by Z = Y7 ;(X; — E[X;]). Show that for all A € (0,1/c) and ¢ > 0,
A2
A)= ——
Yz(N) BN

and that ;
v C
Pz (t)* > c?hl (*)

v

with A1 :uw >0~ 1+ u—+/1+ 2u. Use that logu < u— 1, u > 0 to conclude.
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Remark (Connexion between Bennett’s and Bernstein’s inequalities)

How to interpret this inequality? Show that

o
h(u) > m & (23)
and conclude — 3
= t zv
P (X; — E[X;]) Zt} <lex —}S ] e (24)
{> (st

il
o Notice that both inequalities provide sub-Gaussian type of inequalities as soon as the
variance v is the dominant term in the denominator.

o Bennett’s inequality can be seen as a version of Bernstein’s inequality with strong
assumptions on the r.v.s. as we shall see in the following version of Bernstein’s inequality.
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Bernstein’s inequality for bounded variables

Lemma

Assume the sequence of independent r.v.s X1,...,Xn, EX; = 0, such that there exists a
constant ¢ > 0 bounding the observations |X;| < ¢ a.s., for all i < n, and of finite variance
v2 =S Var(X;). Then, for any t > 0,

+2
<2expy———5——-¢1|
- p{ 21/2+2ct/3}
Proof.
Exercise, hint: use moment series decomposition of the moment-generating function. O
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Today’s outline

© Bounding the variance general functionals of independent variables
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o We proved a series of fundamental tail bounds applied to sums of independent
. . s e
real-valued r.v. in particular.
sl AR

@ A necessary condition was to be able to bound a specific order of their moment by a

constant, and the variance in particular.

o Of course, one could use Chebychev’s inequality under the later assumption. We will see
now, how to obtain exponential bounds, by using a very simple trick based on functions
with bounded _differences (it is an application of the Efron-Stein inequality).

o We define first functions with bounded differences, that we will apply to functions of the
independent data of the very general form

Z=h(X1,.. . Xn)|  Xs e ndepastont

e
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Functions with Bounded differences

Definition

Let X a measurable set and h : X™ — R be a measurable function of n variables.

The function h satisfies the bounded differences inequality, if for the real constants ci, .
and for all4 < n, we have

oo 5@

sup |RQb1, -, Xn) — h(%1, .- %L, En)| < ¢
131:<-~1T'n,:132€x

«K[ '1" . ’A‘;_”®\2\'¢\ |~1"V\)
{
ow W)

)

(25)
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McDiarmid’s inequality

Lemma (McDiarmid (89,98))

Let X1,...,Xyn a sequence of independent r.v.s valued in X.

Consider a function_h_satisfying the bounded difference inequality, with constants
Cly...,cn €R. Define Z = h(Xy,...,Xn), then for all t > 0:

P{|Z —E[Z]| > t} < 22/
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Proof.
We define a sequence Yi,...,Y, of r.v.s by

(Y =ElZIX1,. ., Xi] = JEi[Z]lb <

such that the Y; is a martingales w.r.t. the filtration induced by o(X1,...,X;).
Notice that by writing"zi =E;[Z] - ]Eifl[Z]’the r.v. is centered| Z —EZ =3, AA
I e =
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Proof.
We define a sequence Yi,...,Y, of r.v.s by

Y; =E[Z[Xy1,..., Xi] = Ei[Z], i<n
such that the Y; is a martingales w.r.t. the filtration induced by o(X1,...,X;).
Notice that by writing A; = E;[Z] — E;_1[Z], the r.v. is centered, Z —EZ =}, A;.

Let us check that the A’s are bounded using the bounded difference assumption as follows.
Fix the index ¢ and write conditionally on the set X1 = x1,...,X;—1 = x;_1, the A; is a
function of the ith r.v. X;. Thus, for x € X

—_— —n —
|A;| = |E[Z| X1 =21,...,X; =2] —E[Z| X1 =z1,..., Xi—1 = zi—1]|
=\E[r(z1,. .., 2, Xit1,. .-, Xn) — A(@1, ..o, Xiy Xig1, ..., Xn)l
Hpacan L1
VS -
<E[h(z1, ..., %, Xit1,-- -, Xn) — b1, X, Xit1, -, Xn)[] ©

LYoy , LEX

<E sup |h(3317---»$7Xi+17---aXn)_h(]"la---,Xiin+1a---aXn)|:|

It remains to apply Hoeffding’s inequality in Theorem 13.
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What we saw today

o We studied how to derive probabilistic bounds to quantify the speed of the deviation of
averages of r.v.s w.r.t their mean, known as basic concentration inequalities.

o We focused on bounds that have exponential decay, under various assumptions on the
moments of the r.v.s

o We saz how those results allow to assess how averages concentrate around their mean for
fixed sample size.
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What we will see next week

Swp AN Y
&&_«_/
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o We have studied so far how averages deviate from their mean when we fix the functional.
The next chapter will provide us with sufficient theoretical tools to extend those results
uniformly over a class of functionals/sets.

e We will focus on extending the notion of weak convergence for stochastic processes, that
will result in a new set of characterizations requiring the definition of outer-measure.

o Next week, we will go from separable finite-dimensional metric spaces to non-separable
metric spaces.
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