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General Information

Lectures on Tuesdays 13:00-15:00, exercises with Nikitas Georgakis 15:00-17:00

Course credits 5ECTS

11/03: Course d’Ecole =⇒ No class

Mid-term exam 15/04 - 1h (before Easter break)

Lecture and exercise room MA110

Final written exam mid-June (unknown date)

Organization of the lectures

Slides + Blackboard lectures

All material available on Moodle - weekly updated

Exercise sheets available on Tuesday, and corrections the week after
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Recommended literature

Stéphane Boucheron, Gábor Lugosi, and Pascal Massart, Concentration Inequalities: A
Nonasymptotic Theory of Independence. Oxford University Press, Oxford Academic,
2013.

Sara van de Geer, Empirical Processes in M-Estimation. Cambridge Series in Statistical
and Probabilistic Mathematics, Cambridge University Press, 2009.

Aad W. Vaart , Jon A. Wellner, Weak Convergence and Empirical Processes. With
Applications to Statistics. Springer Series in Statistics (SSS), Springer New York, 1996.

Additional important book on the topic

Michel Talagrand, Upper and Lower Bounds for Stochastic Processes. Decomposition
Theorems A Series of Modern Surveys in Mathematics, Springer Nature, 2021.
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What you can expect to learn by the end of the semester

Formulate the fundamental framework related to empirical processes

Manipulate probabilistic inequalities for empirical estimators

Describe the concept of concentration-of-measure phenomenon for empirical processes

Apply concentration inequalities to derive the performance of statistical learning
procedures
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Outline of the semester - up to changes depending on you

1. Introduction: main concepts and important examples

2. Basic concentration inequalities

3. General theory for stochastic processes: measurability, continuity, weak convergence

4. Complexity of classes: measures and relations (bracketing numbers, covering numbers,
combinatorial measures)

5. Maximal inequalities and chaining

6. Symmetrization and applications

7. Recent advances in concentration inequalities for processes (fast rates / model selection)

Applications:

8. M -estimators: rates of convergence and argmax theorem

9. Least-squares estimators

10. U -statistics: definitions and concentration results
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Today’s outline

1 What this course is about

2 Topological concepts and basic limit theorems

3 Univariate empirical processes

4 General formulations for empirical processes

5 Important examples in statistics and machine learning

Myrto Limnios (EPFL) Empirical Processes (MATH-522) February 18, 2025 6 / 53



Concentration

Suppose we observe a sequence of independent random variables (r.v.s)

X1, . . . , Xn

with n ∈ N∗. Then, under some conditions, we have by the Law of Large Numbers

1

n

n∑
i=1

Xi − E

[
1

n

n∑
i=1

Xi

]
−→
n→∞

0

We can see this as a very simple function of the data. Define the function

h(x1, . . . , xn) =
1

n

n∑
i=1

xi

then the LLN proves that the function h valued on the data gets closer to its mean for large
sample size n.
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We will see that it is not restricted to linear functions of the data, and we will try to
quantify the fluctuations of the random function h based on the random sequence
X1, . . . , Xn around its mean, i.e., of

h(X1, . . . , Xn)− E[h(X1, . . . , Xn)]

as soon as n is large enough.

We will focus on how small the fluctuations can be depending on how sensitive the function
h is w.r.t. the coordinates.

The results can be in terms of the sample size, and inherent properties to the underlying
distribution of the X’s.
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Remark

Concentration results apply for general function h and we will understand why it holds
for those cases.

The results will mainly be formulated in the form of tail inequalities: we want to state
that for any probability level parametrized by δ > 0, then we can explicitly derive the
threshold tδ,n such that

P(|h(X1, . . . , Xn)− E[h(X1, . . . , Xn)]| ≥ tδ,n) ≤ δ .

We want the fluctuations on the left-hand side (LHS) to be small with high probability
(w.h.p.)

However, those results do not necessarily say anything about the expected value
E[h(X1, . . . , Xn)]...
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Suprema

Suppose now that we index the r.v. Z by a set T - usually high or infinite dimensional.
Then, we call the resulting collection a stochastic process {Zt}t∈T .

Suppose that the r.v. Z is centered for all t ∈ T : EZt = 0.

A central quantity that is important in many statistical problems is that of

sup
t∈T

Zt

where Zt is the stochastic process indexed by a class T .

For example, T can be a class of real-valued measurable functions, or a class of sets.
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Our main goals are:

1. To understand how to extend convergence properties of r.v.s to uniform convergence of
r.v.s when indexed by sets T

2. To understand why and how we can measure the size of the stochastic process Zt by
quantifying

E
[
sup
t∈T

|Zt|
]

Remark

Notice that the stochastic process {Zt}t∈T can be defined as a function of the data
X1, . . . , Xn.
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Today’s outline

1 What this course is about

2 Topological concepts and basic limit theorems

3 Univariate empirical processes

4 General formulations for empirical processes

5 Important examples in statistics and machine learning
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Metric spaces

Definition

Let D be a nonempty set. The map d : D× D → R+ is said to be a metric or distance
function if it satisfies the following properties, for all x, x′, y ∈ D:
1. d(x, y) = 0 iff. x = y

2. symmetry: d(x, y) = d(x, y)

3. triangle inequality: d(x, y) ≤ d(y, x′) + d(x′, x)

It is a semimetric does not necessarily satisfy 1. We say that the couple (D, d) is a
(semi)metric space.

An open ball center on x and of radius r > 0 is the set {y, d(x, y) < r}. An open subset of a
metric space is generated by the union of open balls, and it is closed iff. it is the complement
of an open set.
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Continuity

Let (D, d) and (E, d′) two metric spaces. We recall the following definitions and properties.

We say that a sequence xn converges to x iff. d(xn, x) → 0.

The closure Ā of an open subset A ⊂ D is composed of all the limit points of the
elements in A. It is the smallest closed set containing the elements of A.

The interior Å is the set of all points in A such that they are contained in an open set
U ⊂ A. It is the largest open subset of A.

A function f : D → E is continuous at a point x iff. for every sequence xn → x,
f(xn) → f(x).

It is continuous at every point x iff. the inverse image f−1(U), for every open U ⊂ E is
open in D.

Myrto Limnios (EPFL) Empirical Processes (MATH-522) February 18, 2025 14 / 53



Dense, compact, separable and bounded spaces

Let (D, d) a metric space. A subset A ⊂ D is said to be:

dense iff. its closure is the whole space D.
separable iff. it has a dense countable subset.

compact iff. it is closed and every sequence in A has a subsequence that convergence.

is totally bounded iff. it can be covered by any finite union of ε-balls for all ε > 0.

A semimetric space is complete is every Cauchy sequence has a limit (i.e. d(xn, xm) → 0, as
n,m → ∞).
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Normed space

Definition

A norm ∥∥ : D → R+ is a map such that, for all x, y ∈ D, α ∈ R:
1. ∥x∥ = 0 iff. x = 0.

2. ∥αx∥ = |α|∥x∥
3. triangular inequality: ∥x+ y∥ ≤ ∥x∥+ ∥y∥

A seminorm does not necessarily satisfy 1. We say that the couple (D, ∥∥) is a normed space.

We can define a metric d(x, y) = ∥x− y∥.
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Important examples

We recall important normed spaces that we will use throughout the course.

1. Euclidean spaces. The Euclidean space Rd, with d ∈ N∗, equipped with the Euclidean
norm

∥x∥22 =
d∑

i=1

x2
i ,

is a normed space. We can, in fact, consider any other equivalent norm, such as
maxi≤d |xi|. The Borel σ-field B(Rd) is generated by the intervals (−∞, x].

2. Bounded functions. Let T be an arbitrary set. We denote by ℓ∞(T ) the class of all
bounded real-valued functions x : T → R. We will endow the space by the uniform norm
on T :

∥x∥T = sup
t∈T

|x(t)| ,

where we define pointwise the sum (x1 + x2)(t) = x1(t) + x2(t) and product with a
scalar (αx)(t) = αx(t), for all t ∈ T .

The space ℓ∞(T ) contains all functions of finite sup-norm, i.e., such that ∥x∥T < ∞.

Property: It is separable iff. the set T is countable.
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3. Skorohod space. Suppose that T = [a, b] possibly the extended real line. The space
of real-valued functions that are right-continuous with left limits that exist (càdlàg) is
the Skorohod space and defined by D(T,R) (or D(T )).

The space D([a, b]) is NOT separable (w.r.t the sup-norm).

4. Space of continuous functions on a compact. Suppose that T as before. We
define C(T,R) to be the set of all continuous functions x : [a, b] → R.

We have that C([a, b]) ⊂ D([a, b]) ⊂ ℓ∞([a, b]). We will always endow these space with
the sup-norm ‘inherited’ from ℓ∞([a, b]).

The space C([a, b]) is separable (w.r.t the sup-norm).

Myrto Limnios (EPFL) Empirical Processes (MATH-522) February 18, 2025 18 / 53



σ-field

We recall in this section key concepts that will be used in all lectures.

Definition

A collection A of subsets of a set Ω is a σ-field/algebra in Ω if:

Ω ∈ A
If A ∈ A, then Ω \A ∈ A
A is stable by countable union: ∪j≥1Aj ∈ A for all j ≥ 1 such that Aj ∈ A.

And, in that case, we say that A is a measurable space (or the pair (Ω,A)).

Let (B,B) a measurable space.

Then, we say that a map f : Ω → B is measurable if the preimage
f−1(U) = {x ∈ Ω, f(x) ∈ U} is measurable in Ω for all sets U ∈ B.

Definition

If A is a collection of subsets of Ω, not necessarily open, then there exists a smallest σ-field
σ(A) in Ω such that A ∈ σ(A). We define σ(A) the σ-field generated by A.
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Measure

Definition

Let A be a σ-field in a set Ω. The map µ : A → R̄ is a measure if:

µ(∅) = 0

µ(A) ∈ [0,∞] for all A ∈ A
For any disjoint countable sequence {Aj}j≥1 of sets of A, then
µ
(
∪j≥1Aj

)
=

∑
j≥1 µ(Aj).

We say that (Ω,A, µ) forms a measure space.

If, in addition, µ(Ω) = 1, then µ is a probability measure.

We will use the notation of P for a probability measure defined on the set Ω with σ-field A
and (Ω,A, P ) forms a probability space.
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Borel measurability

Let (D, d) be a metric space.

The Borel σ-field of D is the smallest σ-field containing all the open sets of D.
A function is Borel measurable relative to two metric spaces if it is measurable w.r.t.
their Borel σ-field.

A Borel-measurable map X : Ω → D defined on a probability space (Ω,A, P ) is referred
to as a random element/map valued in D.

We will use the notation B(D) to denote the Borel σ-field of D.

Remark

For Euclidean spaces, Borel measurability is the usual measurability.

We lastly recall an important result.

Lemma

A continuous map between two metric spaces is Borel-measurable.

Proof.

Exercise.
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Modes of convergence of random vectors

Consider a random vector X = (X1, . . . , Xd) valued in Rd, with d ∈ N∗, of distribution
function P . Let d be a Euclidean distance on Rd.

Definition

A sequence Xn converges to X almost surely if

P
(

lim
n→∞

d(Xn, X) = 0
)
= 1 . (1)

It implies that Xn converges to X in probability, i.e., for all ε > 0,

lim
n→∞

P (d(Xn, X) > ε) = 0 . (2)

Convergence almost surely is denoted by Xn
a.s.−→

n→∞
X. Convergence in probability by

Xn
P−→

n→∞
X and we will use the notation Xn = X + oP(1).
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Weak convergence of random vectors

We will focus in this course specifically on weak convergence, also known as convergence in
law or in distribution.

Definition

Suppose the random sequence X1, X2, . . . to have a distribution function Fn and p.d. Pn.
Xn converges in distribution/weakly/in law to a r.v. X, of d.f. F and drawn from P if, for all
points x ∈ T for which F is continuous,

Fn(x) −→
n→∞

F (x) .

We denote it by Xn ⇝ X (or Pn ⇝ P ).

Weak convergence is inherent to the underlying distributions of the random maps, where the
goal is to study the properties of the limit of distribution functions when n tends to infinity
(notice as well that we should consider a sequence of probability spaces but we ignore this
technicality).
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Portmanteau Theorem

Weak convergence provides a series of equivalent properties referred to as Portmanteau
Theorem that we state below.

Theorem (Portmanteau Theorem I)

Consider a random sequence of vectors X1, . . . , Xn, of p.d. Pn, and X ∼ P . The following
assertions are equivalent.

1. Xn ⇝ X or Pn ⇝ P

2. Pnh −→
n→∞

Ph, for all h ∈ Cb(Rd,B(Rd))

3. lim infn∞ Pn(U) ≥ P (U), for all open sets U ⊂ Rd

4. lim supn∞ Pn(F ) ≥ P (F ), for all closed sets F ⊂ Rd

5. Pn(A) −→
n→∞

P (A), for all P -continuity sets A, i.e., such that P (∂A) = 0 where ∂A

denotes the boundary of A.
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Continuous Mapping Theorem

Now that we have established the main characterizations, we are able to state the
Continuous Mapping Theorem (CMT) that is fundamental to any statistical problem.

Theorem (CMT I)

Let C ⊆ Rd be a set such that P(X ∈ C) = 1.
If Xn ⇝ X, then Φ(Xn)⇝ Φ(X) for any function Φ : Rd → Rq that is continuous on C.
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Classical limit theorems for random vectors

We recall two fundamental theorems when considering finite-dimensional metric spaces.

Theorem (Law of Large Numbers)

Let a sequence X1, X2, . . . , Xn, with n ∈ N∗ be an i.i.d. sequence of r.v.s. If E∥X1∥ < ∞,
then the strong LLN states that

1

n

n∑
i=1

Xi
a.s.−→

n→∞
EX .

The weak LLN is satisfied for the convergence in probability.

Theorem (Central Limit Theorem)

Suppose that the r.v.s have finite second moment, i.e., E∥X1∥2 < ∞, then

1
√
n

n∑
i=1

(Xi − EX)⇝ Z ,

where Z is a centered Gaussian r.v. of variance that of the X’s.
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Stochastic symbols

We will often use convenient short expressions defined below for any sequence of r.v.s Xn.

Convergence to zero in probability:

Xn = oP (rn) iff. Xn = Ynrn, Yn
P−→

n→∞
0 .

Bounded in probability:

Xn = OP (rn) iff. Xn = Ynrn, Yn = OP (1) .

The sequence rn represents the rate of convergence or of the bound. Notice that if the
sequences are deterministic, then this notation recovers the classical o and O for sequences.

Some basic rules are:

oP (1) + oP (1) = oP (1)

oP (1) +OP (1) = OP (1)

oP (1)OP (1) = oP (1)

oP (rn) = rnoP (1)

OP (rn) = rnOP (1)
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Today’s outline

1 What this course is about

2 Topological concepts and basic limit theorems

3 Univariate empirical processes

4 General formulations for empirical processes

5 Important examples in statistics and machine learning

Myrto Limnios (EPFL) Empirical Processes (MATH-522) February 18, 2025 28 / 53



Fundamental characterization of univariate r.v.s

The law of a real-valued random variable (r.v.) X can be characterized by its cumulative
distribution function (c.d.f.) defined, for all t ∈ R, by

F (t) = P{X ≤ t} .

However, F is unknown in statistical applications, and we only have access to a dataset of n
r.v. X1, . . . , Xn of independent and identically distributed (i.i.d.) copies of X. A natural
empirical counterpart of F is given by:

F̂n(x) :=
1

n

n∑
i=1

1(−∞,x](Xi) , x ∈ R , (3)

where 1(−∞,x](t) = δt((−∞, x]) is the indicator function for the event {t ≤ x}.

Remark

The estimator F̂n is an unbiased estimator of F , has bounded moments, thus converges to F

for fixed x ∈ R by the Law of Large Numbers (LLN) F̂n(x)
a.s.−→

n→∞
F (x), for all x ∈ R.
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Plug-in estimators

In various applications, one might consider functionals of the c.d.f. F , say Φ(F ) ∈ R, of
natural estimator given by Φ(F̂n) known as plug-in estimator.

Suppose that Φ is continuous on [0, 1], then, by the continuous mapping theorem, the
plug-in estimator is consistent: for any fixed point x ∈ R, then

Φ(F̂n(x))
a.s.−→

n→∞
Φ(F (x)), for any fixed point x ∈ R .

In many problems, however, we need to establish the limiting distribution in a stronger
sense: uniformly over the sample space. It is thus natural to require some similar
kind of smoothness for the functional Φ.

We wish for a Continuous Mapping Theorem (CMT). If Φ is ‘continuous at F ’
w.r.t. the sup-norm, i.e., for any other c.d.f. G, for any ε > 0, there exists δ > 0, such
that ∥F −G∥∞ := supx∈R |F (x)−G(x)| ≤ δ implies ∥Φ(F )− Φ(G)∥∞ ≤ ε.

The following example illustrates that a functional of the data might not be as simple as
expected.
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Example 1: quantile functionals

Recall that the quantile at level α > 0 for any c.d.f. F can be defined by

qα(F ) = inf{x ∈ [0, 1], F (x) ≥ α} =: F−1(α) ,

for α ∈ [a, b], with 0 < a < b < 1, and of of plug-in estimator given by

qα(F̂n) = inf{x ∈ [0, 1], F̂n(x) ≥ α} .

Unfortunately the quantile functional does not take the form of an empirical process, being
nonlinear in the Xi’s, but of a plug-in estimator. Nevertheless, it is important to specify how
the estimator converges to its mean when n → ∞. Notice that taking α = 1/2 yields the
median.

In fact, one can prove that, if F is continuous on the interval
[F−1(a)− ε, F−1(b)− ε] ⊂ [0, 1], for ε > 0, with continuous probability density function f(x)

valued in R∗, then, the scaled empirical quantile function
√
n(qα(F̂n)− qα(F )) is

asymptotically equivalent to −Gn(F−1(α))/f(F−1(α)) and hence converges weakly to
−G(F−1(α))/f(F−1(α)). This results from the functional delta method.
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Glivenko-Cantelli’s Theorem 1.0

Empirical processes theory aims at proving stronger results than pointwise convergence, in
particular uniform convergence. A first important result quantifying the distance between F̂n

and F dates back to the 1930’s and is stated in the following fundamental theorem. It is also
known as Uniform Law of Large Numbers (ULLN).

Theorem (Glivenko-Cantelli, 1933)

∥F̂n − F∥∞ := sup
x∈R

|F̂n(x)− F (x)| a.s.−→
n→∞

0 . (4)

This means that the sample paths of F̂n tend uniformly (in R) to F as the sample size n
tends to infinity.

Glivenko-Cantelli’s Theorem ensures that any continuous mapping of the empirical c.d.f. is
consistent plug-in estimator of its mean.

Myrto Limnios (EPFL) Empirical Processes (MATH-522) February 18, 2025 32 / 53



Proof

1. Notice that for any fixed x ∈ R, the r.v. nF̂n(x) is Binomial with mean nF (x), hence it is
an unbiased estimator.
2. For any fixed x ∈ R, the strong LLN ensures that F̂n(x) → F (x), and F̂n(x−) → F (x−)
a.s. Let ε > 0 be fixed. Consider a finite partition of the extended real line ([−∞,∞]):

−∞ = x0 < x1 < . . . < xN = ∞ ,

such that F (xi−)− F (xi−1) < ε, and if the jump exceeds ε, it is considered as a point of the
partition. For all x ∈ [xi−1, xi), we have that

F̂n(x)− F (x) ≤ F̂n(xi−)− F (xi−) + ε

F̂n(x)− F (x) ≥ F̂n(xi−1)− F (xi−1)− ε .

Because both lower and upper bounds CV a.s. to ε, and that the partition is finite, we can
deduce that uniformly over the partition they both CV a.s. to ε. Thus ∥F̂n − F∥∞ ≤ ε.

It is true for all ε thus lim supn∞ ∥F̂n − F∥∞ = 0.

We illustrate a natural application of this theorem.
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Example 2: Goodness-of-fit testing

Suppose we consider a known distribution F0, say Gaussian, and we want to test the
hypothesis of whether the random sample X1, . . . , Xn has been drawn from it. Precisely, at
level α ∈ (0, 1), we want to test the null hypothesis:

H0 : F = F0, against the alternative H1 : F ̸= F0 . (5)

By Glivenko-Cantelli’s Theorem, one can easily construct a test statistic by directly
measuring the departure from the null in terms of the sup-norm ∥F̂n − F0∥∞, defining the
Kolmogorov-Smirnov test (×

√
n), or by considering a continuous functional

Φ(F̂n) =
∫
R(F̂n − F0)2(x)dF0(x), known as the Cramér-von Mises test statistic (×n).

In order to reject the null hypothesis H0, it is required to know the distribution of the test
statistic under the null, and this will be provided by the following result.
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Empirical processes

Consider the centered and scaled empirical c.d.f., traditionally termed as empirical process
indexed on R, (but we will not use this terminology):

√
n(F̂n − F ) .

By the Central Limit Theorem (CLT), for any fixed point x ∈ R, we have

√
n(F̂n − F )(x)⇝ G(x) , (6)

where G(x) is a centered Gaussian r.v., with variance equal to F (x)(1− F (x)).

A series of improvements is due to Kolmogorov, Donsker and Skorhokod in particular, that
extended the CLT uniformly over the state space to empirical c.d.f.s. We present an
important version below.

Reminder

A Gaussian process {G(x), x ∈ X} is a stochastic process, such that for any finite subset
Xk ⊂ X , the process {G(x), x ∈ Xk} is multivariate normal with continuous sample paths
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Donsker’s theorem 1.0

Theorem (Donsker, 1952)

Let a sequence of i.i.d. r.v.s X1, X2, . . . drawn from the Uniform distribution on [0, 1]. Then,

∥
√
n(F̂n − F )∥∞ ⇝ B(F ) , in (D(R), ∥ · ∥∞) (7)

where B is a standard Brownian bridge process on [0, 1], i.e., it is a centered Gaussian
process, with covariance function Cov(B(s), B(t)) = s ∧ t− st, for all s, t ∈ [0, 1]. The space
(D(R), ∥ · ∥∞) is composed of all càdlàg functions on R endowed with the sup-norm ∥ · ∥∞,
also known as the Skorokhod space.

Consequences:

For any bounded continuous function h : D(R) → R:

Eh(
√
n(F̂n − F )) → Eh(B(F )) .

For any continuous function h : D(R) → R:

h(
√
n(F̂n − F ))⇝ h(B(F )) .
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Empirical averages and consistency

Suppose we want to estimate the true mean µ := EX , then one can simply compute the
sample average defined by

X1 + . . .+Xn

n
.

Also, for any function h : R → R, one can also approximate Eh(X) by

h(X1) + . . .+ h(Xn)

n
.

In fact, we can prove consistency of both estimators (LLN), for any fixed function h.
Suppose one has access to a data generating process providing an infinite amount of data
points X1, X2, . . . , Xn, . . .. Then, we say that any statistic Tn : (X1, . . . , Xn) ∈ Rn 7→ R
estimating the parameter θ := Eh(X) for instance, is consistent, if

Tn(X1, . . . , Xn) −→
n→∞

θ .

This is a very important property for statisticians, and is far from being straightforward for
more complex summaries than averages.
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3 Univariate empirical processes

4 General formulations for empirical processes

5 Important examples in statistics and machine learning
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Empirical measure

Suppose now the r.v. X to be valued in a more complicated space than R, e.g., a generic
Euclidean space X ⊆ Rd, with d ≥ 2. A natural question lies in the generalization of the
empirical distribution given above.

An empirical summary that has been studied in the literature is that of the probability
measure P . Define the empirical measure by

Pn :=
1

n

n∑
i=1

δXi
, (8)

where δx(A) is the Dirac measure of the event {X ∈ A}. In particular

Pn(A) :=
1

n

n∑
i=1

1A(Xi)

=
1

n
{number of observations i ≤ n: Xi ∈ A} ,

for any Borel subset A ⊂ X . We refer to the empirical measure indexed by a collection of
subsets C of X by

{Pn(C), C ∈ C} .
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Empirical measure

In some applications, it will be more convenient to consider empirical measures indexed by
classes of functions, e.g., for averages. For any function h : X → R, consider

Pnh :=
1

n

n∑
i=1

h(Xi) , (9)

then the empirical measure indexed by a class of real-valued functions H is

{Pnh, h ∈ H}

considered as the empirical estimator of Ph :=
∫
X h(x)P (dx) for a given h ∈ H.

Remark

Notice that taking H to be the collection {1C , C ∈ C} recovers the first definition. It also
recovers the univariate case, i.e., when X = R, by taking C = {1{(−∞, x]}, x ∈ R}, then the
collection of empirical measures indexed by the class of sets C is the collection of empirical
c.d.f.s.

Remark

Notice that we will often use this notation (Ph) instead of the E as is helpful to understand
the measure we use to integrate, and it can also be used to signify that the function h is
random.
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What we care about in empirical process theory

Empirical process theory aims at establishing theoretical guarantees for sequences of
estimators uniformly over their index class (of sets or functions).

The first question is how to rigorously define such a supnorm, for which we can ensure some
kind of measurability to be able to extend fundamental concepts such as weak convergence
and permanence properties.

What are the necessary conditions on the classes of sets C and functions H such that
uniform versions of Glivenko-Cantelli and Donsker theorems hold true?
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Glivenko-Cantelli’s Theorem 2.0

We define such classes as being Glivenko-Cantelli below.

Definition

The collection C of subsets of X is a P -Glivenko-Cantelli (GC) class of sets, if

∥Pn − P∥C := sup
C∈C

|Pn(C)− P (C)| P−→
n→∞

0 . (10)

Example

The class of half-closed intervals of X = R is GC.

Definition

The class H of functions valued in X is a P -GC class if

∥Pn − P∥H := sup
h∈H

|Pnh− Ph| P−→
n→∞

0 , (11)

where Ph =
∫
hdP is used as an abbreviation for E[h(X)], with X being drawn from P .

We will say that a class is GC when the distribution is implicit. Similarly, we can extend
UCL theorem to classes of functions under some conditions.
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Donsker’s Theorem 2.0

Definition

Suppose that
sup
h∈H

|h(x)− Ph| < ∞, ∀x ∈ R ,

and that the functions h are square-integrable Ph2 < ∞. Then, the class H of functions
valued in X is said to be Donsker if:

∥
√
n(Pn − P )∥H ⇝ B , (12)

where B is a Brownian bridge process on H, i.e., a centered Gaussian process of covariance
function Cov(B(h)B(g)) = Phg − (Ph)(Pg), for all h, g ∈ H.

The convergence is understood in the space ℓ∞(H) is the set of all bounded real-valued
functions endowed with the sup-norm over H.
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What we wish for in statistical learning theory and in applications

In recent applications related to real data analysis, statisticians might care about other
questions than those related to the asymptotic regime of the estimators.

Suppose one has a fixed sample size from a clinical experience for instance, where the size
of the dataset n corresponds to the number of patients. The goal of this experiment can
be the effect of a treatment through d indicators (fever, blood pressure, etc.) measured
after one week of treatment. The statistician might be interested in lower-bounding the
maximum value of the treatment effect based on the n patients, with high probability.

It takes the form of concentration inequalities.

Briefly, for any probability δ > 0 we want to find a threshold tδ,n depending on the class H
such that

P
(
sup
h∈H

|Zn(h)− Z(h)| ≥ tδ,n(H)

)
≤ δ . (13)

We will see that the ability to prove such guarantees highly depends on the properties of the
class H (similarly of C).

Once those conditions are met, what can we say about the rate of the threshold tδ,n(H) such
that Eq. (13) holds true?
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Empirical risk minimization (ERM)

Let X be a r.v., of p.d. P , and defined on a probability space (Ω,A,P) and valued in X ,
think of it as a subset of Rd, with d ∈ N∗, also called a feature space.

Consider a set of parameters Θ, usually subset of Rd as well.

Based on X, we can define a loss function as

ℓ : Θ×X −→ R+ .

The goal of ERM is to estimate the best parameter θ∗ ∈ Θ that minimizes the expected loss
function, known as the risk

θ∗ ∈ argmin
θ∈Θ

E[ℓ(θ,X)]︸ ︷︷ ︸
=:R(θ)

.
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In practice, P is unknown, and we only have access to an i.i.d. set of r.v.s drawn from P :

X1, . . . , Xn, n ∈ N∗

A simple unbiased empirical estimator based on the data is given by:

Rn(θ) :=
1

n

n∑
i=1

ℓ(θ,Xi)

Thus, we can estimate, based on the data, the empirical minimizer

θ̂ ∈ argmin
θ∈Θ

Rn(θ) .

We hope that the empirical minimizer is close to the true (oracle) optimal solution θ∗,
depending on the sample size n, both dimensions of the feature space X and of the
parameter space Θ, etc.

In fact, we will need to control the uniform fluctuations of this statistical error

sup
θ∈Θ

1

n

n∑
i=1

{ℓ(θ,Xi)− E[ℓ(θ,X)]} . (14)
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Example 1: binary classification (simple)

Suppose the X to be the input r.v. valued in X (e.g. images), and Y to be the output
label that is valued in {0, 1} (e.g. cats or dogs).

Consider a collection of classifiers H = {h : X → {0, 1}, h measurable}.

The associate binary loss is defined by

ℓh : (x, y) ∈ X × {0, 1} 7→ 1{h(x) ̸= y} .

It equals to 1 if the predictor h gives the wrong label to the input x.

The goal is to find the optimal classifier that minimizes the associated binary risk

h∗ ∈ argmin
h∈H

P(h(X) ̸= Y )︸ ︷︷ ︸
=:R(h)

.
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The true classifier function known as the Bayes classifier, h∗ : X → {0, 1} can be proved to
be a function of the posterior distribution given by

η(x) = P(y = 1|X = x) .

Based on an i.i.d. random sample {(X1, Y1), . . . , (Xn, Yn)} the goal is to learn a classifier ĥ,
that predicts the labels of any new set of observations X,Y ’s with a smallest empirical risk,
defined by

ĥ ∈ argmin
h∈H

1

n

n∑
i=1

1{h(Xi) ̸= Yi} .

We will analyze the binary risk in the Exercise session for various probabilistic
settings.
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Example 2: Least-squares estimation (LSE)
Suppose now that the response variable Y is a real-valued r.v., that we want to model
by a covariate X, possibly valued in X as before.

We can think of the classical regression model

Y = h(X) + ε ,

where the r.v. ε typically models noise of standard Gaussian distribution, and is
independent of X.

The goal of (non)parametric regression is to estimate the best function h minimizing a risk
functional, typically defined as the least-squares loss

R(h) = E[(Y − h(X))2] .

When based on a dataset of i.i.d. r.v.s (X1, , Y1), . . . , (Xn, Yn), the empirical minimizer is
given by

ĥ ∈ argmin
h∈H

1

n

n∑
i=1

(Yi − h(Xi))
2 .

Example (Linear regression)

The simplest class of regressors is that of linear functions h : (θ, x) 7→ θT x, for all θ, x ∈ Rd,
and T denotes the transpose operator.
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Maximum likelihood estimation (MLE)
Consider a collection of distributions indexed by a parameter space Θ ⊆ Rp, with p ∈ N∗, of
strictly positive densities {pθ}θ∈Θ w.r.t. a common measure µ (pθ = dPθ/dµ). Suppose the
r.v. X is drawn from an unknown distribution of true parameter θ∗, we would like to
estimate it using the likelihood ratio as cost function, i.e., define

Lθ(x) := log

(
pθ∗ (x)

pθ(x)

)
.

The true parameter minimizes the associated risk, also known as the Kullback-Leibler
divergence between the two distributions pθ∗ and pθ

R(θ) = E
[
log

(
pθ∗ (x)

pθ(x)

)]
,

where we integrate w.r.t. Pθ. Given a random n-i.i.d. sample X1, . . . , Xn being copies of X,
we aim to find instead the optimal empirical parameter θ̂ that minimizes the empirical risk

θ̂ ∈ argmin
θ∈Θ

1

n

n∑
i=1

log

(
pθ∗ (Xi)

pθ(Xi)

)
.

Notice that θ̂ is invariant w.r.t. θ∗, and consider instead

θ̂ ∈ argmin
θ∈Θ

1

n

n∑
i=1

log

(
1

pθ(Xi)

)
= argmax

θ∈Θ

1

n

n∑
i=1

log pθ(Xi) .

In fact, all the solution of these problems can be redefined as M-estimators.
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What we saw in this lecture

1. We recalled fundamental definitions and properties for metric spaces, to be able to
understand modes of convergence of random sequences of random maps

2. We recalled the continuous mapping Theorem, LLN and CLT

3. We defined empirical process indexed by arbitrary sets

4. We stated the first important extensions of uniform limit theorems

5. We exposed important learning examples in statistics
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What we will see next week

We will study how to derive probabilistic bounds to quantify the speed of the deviation
of averages of r.v.s w.r.t their mean, known as basic concentration inequalities.

We will focus on bounds that have exponential decay, under various assumptions on the
moments of the r.v.s

Importantly, those results allow to assess how averages concentrate around their mean
for fixed sample size as follows

Let a sequence of centered, independent and integrable r.v.s X1, X2, . . . , Xn of average Zn.
We want to provide upper-bounds depending on n of the probability

P{|Zn − PZn| ≥ t}

for all t > 0.
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