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Concentration

Suppose we observe a sequence of independent random variables (r.v.s)
X IEEREE Xn

with n € N*. Then, under some conditions, we have by the Law of Large Numbers
1 1 &
=3 Xi—E [ZX] — 0
n n n—00
i=1 i=1
We can see this as a very simple function of the data. Define the function

1 n
h(z1,...,2n) = EX}ZE
i

then the LLN proves that the function h valued on the data gets closer to its mean for large
sample size n.
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Today’s outline

© What this course is about
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We will see that it is not restricted to linear functions of the data, and we will try to
quantify the fluctuations of the random function h based on the random sequence
X1,...,X5, around its mean, i.e., of

h(X1,...,Xn) —E[h(X1,..., Xn)]

as soon as n is large enough.

We will focus on how small the fluctuations can be depending on how sensitive the function
h is w.r.t. the coordinates.

The results can be in terms of the sample size, and inherent properties to the underlying
distribution of the X’s.
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Suprema

Remark

o Concentration results apply for general function h and we will understand why it holds

for those cases. e Suppose now that we index the r.v. Z by a set T - usually high or infinite dimensional.

Then, we call the resulting collection a stochastic process {Z;}icr.

o The results will mainly be formulated in the form of tail inequalities: we want to state
e Suppose that the r.v. Z is centered for all t € T: EZ; = 0.

that for any probability level parametrized by § > 0, then we can explicitly derive the
threshold s ,, such that

P X1,...,Xpn) —E[R(Xq1,..., X > <é.
(eS0000026) [A(X1,-- - Xl 2 t5,n) < 6 A central quantity that is important in many statistical problems is that of
We want the fluctuations on the left-hand side (LHS) to be small with high probability sup Zs
(w.h.p.) teT

where Z; is the stochastic process indexed by a class T'.

gﬁ:‘(’?er’ tho)s(e )r}esults do not necessarily say anything about the expected value For example, T' can be a class of real-valued measurable functions, or a class of sets.
N, €% | IO
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Today’s outline

Our main goals are:

1. To understand how to extend convergence properties of r.v.s to uniform convergence of
r.v.s when indexed by sets T'

2. To understand why and how we can measure the size of the stochastic process Z; by

quantifying
E [sup |Zt|}
teT

© Topological concepts and basic limit theorems

Remark

Notice that the stochastic process {Z:}icr can be defined as a function of the data
X1,..., Xn.
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Metric spaces Continuity

Definition Let (D,d) and (E, d’) two metric spaces. We recall the following definitions and properties.
Let D be a nonempty set. The map d: D X D — R is said to be a metric or distance
function if it satisfies the following properties, for all z,z’,y € D:
L d(z,y) =0iff. z =1y o The closure A of an open subset A C I is composed of all the limit points of the
elements in A. It is the smallest closed set containing the elements of A.

e We say that a sequence x, converges to z iff. d(zn,z) — 0.

2. symmetry: d(z,y) = d(z,y) .
. . . p p e The interior A is the set of all points in A such that they are contained in an open set
8- irtangle mequality: d(z, y) < d(y, 2R d(z' ) U C A. Tt is the largest open subset of A.
It is a semzmetmc does not necessarily satisfy 1. We say that the couple (D, d) is a o A function f: D — E is continuous at a point z iff. for every sequence zn —
(semi)metric space. Flzn) — £(2)
n .

. . . . . . 1 .
An open ball center on x and of radius r > 0 is the set {y,d(z,y) < r}. An open subset of a o It is continuous at every point z iff. the inverse image f~(U), for every open U C E is

: . . P A open in D.
metric space is generated by the union of open balls, and it is closed iff. it is the complement P
of an open set.
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Dense, compact, separable and bounded spaces Normed space
Let (D, d) a metric space. A subset A C D is said to be: Definition
o dense iff. its closure is the whole space D. A norm ||| : D — Ry is a map such that, for all z,y €D, a € R:
o separable iff. it has a dense countable subset. L |=|| =0 iff. z=0.
2. Jlaz| = |a =]

o compact iff. it is closed and every sequence in A has a subsequence that convergence.

e is totally bounded iff. it can be covered by any finite union of e-balls for all € > 0. 3. triangular inequality: ||z + y|| < [lz]| + ||yl

A seminorm does not necessarily satisfy 1. We say that the couple (D, ||||) is a normed space.

A semimetric space is complete is every Cauchy sequence has a limit (i.e. d(xn,zm) — 0, as

m,m = 00). We can define a metric d(z,y) = ||z — y||.

Myrto Limnios (EPFL) Empirical Processes (MATH-522) February 18, 2025 11/47 Myrto Limnios (EPFL) Empirical Processes (MATH-522) February 18, 2025 12 /47




Important examples

‘We recall important normed spaces that we will use throughout the course.

1. Euclidean spaces. The Euclidean space R?, with d € N*, equipped with the Euclidean

norm 3. Skorohod space. Suppose that T = [a, b] possibly the extended real line. The space

d of real-valued functions that are right-continuous with left limits that exist (cadlag) is
lz]|3 = sz , the Skorohod space and defined by D(T,R) (or D(T)).
i=1

The space D([a, b]) is NOT separable (w.r.t the sup-norm).
is a normed space. We can, in fact, consider any other equivalent norm, such as
max; < |z;|. The Borel o-field B(R?) is generated by the intervals (—oo, z].

2. Bounded functions. Let T be an arbitrary set. We denote by £°°(T') the class of all

4. Space of continuous functions on a compact. Suppose that T as before. We
define C(T,R) to be the set of all continuous functions z : [a,b] — R.

bounded real-valued functions z : T — R. We will endow the space by the uniform norm We have that C([a,b]) C D([a,b]) C £°°([a, b]). We will always endow these space with
on T the sup-norm ‘inherited’ from £°°([a, b]).
lzllr = fg? =1 The space C([a, b]) is separable (w.r.t the sup-norm).

where we define pointwise the sum (z1 + z2)(t) = z1(t) + z2(t) and product with a
scalar (ax)(t) = ax(t), for all t € T.

The space £°°(T') contains all functions of finite sup-norm, i.e., such that ||z|r < co.

Property: It is separable iff. the set T is countable.
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o-field Measure

We recall in this section key concepts that will be used in all lectures.

Definition Delmitfom
A collection A of subsets of a set Q is a o-field/algebra in Q if: Let A be a o-field in a set . The map p : A — R is a measure if:
e QeA e n(@) =0
e If Ac A then Q\ A€ A o u(A) €[0,00] for all A € A
e A is stable by countable union: U;>;A; € A for all j > 1 such that A; € A. o For any disjoint countable sequence {A;};1 of sets of A, then
And, in that case, we say that A is a measurable space (or the pair (£2,.4)). p(Uj>14;) = > #(Ay). -
Let (B, B) a measurable space. We say that (92, A, p) forms a measure space.
Then, we say that a map f: Q — B is measurable if the preimage If, in addition, u(2) = 1, then p is a probability measure.

F7YU) = {z € Q, f(x) € U} is measurable in Q for all sets U € B.

We will use the notation of P for a probability measure defined on the set 2 with o-field A
and (Q, A, P) forms a probability space.

Definition

If A is a collection of subsets of €2, not necessarily open, then there exists a smallest o-field
o(A) in Q such that A € o(A). We define o(A) the o-field generated by A.
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Borel measurability

Let (D, d) be a metric space.

o The Borel o-field of D is the smallest o-field containing all the open sets of D.

o A function is Borel measurable relative to two metric spaces if it is measurable w.r.t.
their Borel o-field.

o A Borel-measurable map X : Q — D defined on a probability space (Q2,.A, P) is referred
to as a random element/map valued in D.

We will use the notation B(D) to denote the Borel o-field of D.

Remark

For Euclidean spaces, Borel measurability is the usual measurability.

We lastly recall an important result.
Lemma

A continuous map between two metric spaces is Borel-measurable.

Proof.

Exercise. O
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Weak convergence of random vectors

We will focus in this course specifically on weak convergence, also known as convergence in
law or in distribution.

Definition

Suppose the random sequence X1, Xa, ... to have a distribution function F;, and p.d. Py,.
X converges in distribution/weakly/in law to a r.v. X, of d.f. F and drawn from P if, for all
points « € T for which F' is continuous,

We denote it by X, ~» X (or P, ~ P).

Weak convergence is inherent to the underlying distributions of the random maps, where the
goal is to study the properties of the limit of distribution functions when n tends to infinity
(notice as well that we should consider a sequence of probability spaces but we ignore this
technicality).
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Modes of convergence of random vectors

Consider a random vector X = (X!,..., X%) valued in R%, with d € N*, of distribution
function P. Let d be a Euclidean distance on R?.

Definition
A sequence X, converges to X almost surely if
IP( lim d(Xn, X) = o) =1. 1)
n—r oo

It implies that X,, converges to X in probability, i.e., for all € > 0,

lim P (d(Xn, X) > ) =0. )

Convergence almost surely is denoted by X, =% X. Convergence in probability by
n— o0

Xn L X and we will use the notation X,, = X + op(1).
n— o0
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Portmanteau Theorem

Weak convergence provides a series of equivalent properties referred to as Portmanteau
Theorem that we state below.

Theorem (Portmanteau Theorem I)

Consider a random sequence of vectors X1, ..., Xn, of p.d. Py, and X ~ P. The following
assertions are equivalent.
1. Xp ~» X or P, ~ P

2. Poh — Ph, for all h € Cp(RY, B(R?))
n—oo

3. liminfpeo Po(U) > P(U), for all open sets U C R?

4. limsup,, o, Pn(F) > P(F), for all closed sets F C R¢

5. Pn(A) vl P(A), for all P-continuity sets A, i.e., such that P(0A) = 0 where 0A
denotes the boundary of A.
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Continuous Mapping Theorem

Now that we have established the main characterizations, we are able to state the
Continuous Mapping Theorem (CMT) that is fundamental to any statistical problem.

Theorem (CMT I)

Let C C R? be a set such that P(X € C) = 1.
If Xpn ~ X, then ®(Xp) ~ ®(X) for any function ® : R — RY that is continuous on C.
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Stochastic symbols

We will often use convenient short expressions defined below for any sequence of r.v.s X,.

e Convergence to zero in probability:

Xp =op(rn) iff. Xn=Ynrn, Yn — 0.

n— o0

e Bounded in probability:
Xn=0p(rn) iff. Xpn=Ynrn, Y,=0p(1).

The sequence 1, represents the rate of convergence or of the bound. Notice that if the
sequences are deterministic, then this notation recovers the classical o and O for sequences.

Some basic rules are:

op(l)+op(l) = op(1)
op(1)+0p(1) = Op(1)
op(1)0p(1) = op(l)
op(rn) = mnop(1)
Op(rn) = mmOp(1)
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Classical limit theorems for random vectors

We recall two fundamental theorems when considering finite-dimensional metric spaces.

Theorem (Law of Large Numbers)

Let a sequence X1, Xo, ..., Xn, with n € N* be an i.i.d. sequence of r.v.s. If E[| X1 < oo,
then the strong LLN states that

1L a.s,
=y X 5 EX .
n— oo
=1
The weak LLN is satisfied for the convergence in probability.

Theorem (Central Limit Theorem)

Suppose that the r.v.s have finite second moment, i.e., E||X1||? < oo, then

i X; —EX)~ Z ,

where Z is a centered Gaussian r.v. of variance that of the X'’s.

Myrto Limnios (EPFL) Empirical Processes (MATH-522) February 18, 2025 22 /47

Today’s outline

© Univariate empirical processes
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Fundamental characterization of univariate r.v.s

The law of a real-valued random variable (r.v.) X can be characterized by its cumulative
distribution function (c.d.f.) defined, for all ¢t € R, by

F(t) =P{X <t} .

However, F' is unknown in statistical applications, and we only have access to a dataset of n
r.v. Xi1,...,Xn of independent and identically distributed (i.i.d.) copies of X. A natural
empirical counterpart of F' is given by:

~ 1<
Fn(a:) = E Zl(_oow](Xl) , xR, (3)
=1

where 1(_ 4(t) = 6¢((—00, z]) is the indicator function for the event {t < x}.

Remark

The estimator ﬁn is an unbiased estimator of F', has bounded moments, thus converges to F'
for fixed z € R by the Law of Large Numbers (LLN) Fj,(x) :—S> F(z), for all z € R.
n oo
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Example 1: quantile functionals

Recall that the quantile at level a > 0 for any c.d.f. F' can be defined by
¢a(F) = inf{z € 0,1], F(z) > a} = F~'(a)
for a € [a,b], with 0 < a < b < 1, and of of plug-in estimator given by
qa(Fy) = inf{z € [0,1], Fn(z) > a} .

Unfortunately the quantile functional does not take the form of an empirical process, being
nonlinear in the X;’s, but of a plug-in estimator. Nevertheless, it is important to specify how
the estimator converges to its mean when n — oco. Notice that taking a = 1/2 yields the
median.

In fact, one can prove that, if F' is continuous on the interval

[F~Y(a) — &, F~1(b) — €] C [0,1], for € > 0, with continuous probability density function f(z)
valued in R*, then, the scaled empirical quantile function \/ﬁ(qa(ﬁn) —qa(F)) is
asymptotically equivalent to —Gy(F~(a))/f(F~1(a)) and hence converges weakly to
—G(F~Y())/f(F~1(a)). This results from the functional delta method.
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Plug-in estimators

e In various applications, one might consider functionals of the c.d.f. F, say ®(F) € R, of
natural estimator given by ®(F,) known as plug-in estimator.

Suppose that ® is continuous on [0, 1], then, by the continuous mapping theorem, the
plug-in estimator is consistent: for any fixed point € R, then

(B, (x)) n%}o ®(F(z)), for any fixed point z €R.

o In many problems, however, we need to establish the limiting distribution in a stronger
sense: uniformly over the sample space. It is thus natural to require some similar
kind of smoothness for the functional ®.

e We wish for a Continuous Mapping Theorem (CMT). If ® is ‘continuous at F’
w.r.t. the sup-norm, i.e., for any other c.d.f. G, for any € > 0, there exists § > 0, such
that [|F — Gllco := sup,ep |F(z) — G(x)| < § implies ||®(F) — &(G)|loo < €.

The following example illustrates that a functional of the data might not be as simple as
expected.
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Glivenko-Cantelli’s Theorem 1.0

Empirical processes theory aims at proving stronger results than pointwise convergence, in__
particular uniform convergence. A first important result quantifying the distance between F,
and F' dates back to the 1930’s and is stated in the following fundamental theorem. It is also
known as Uniform Law of Large Numbers (ULLN).

Theorem (Glivenko-Cantelli, 1933)

Tn— 00

1By = Flloo := sup |Fn(z) — F(z)] <5 0. (4)
z€R

This means that the sample paths of F, tend uniformly (in R) to F' as the sample size n
tends to infinity.

Glivenko-Cantelli’s Theorem ensures that any continuous mapping of the empirical c.d.f. is
consistent plug-in estimator of its mean.
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Proof

1. Notice that for any fixed = € R, the r.v. nk, () is Binomial with mean nF'(x), hence it is
an unbiased estimator. R N

2. For any fixed € R, the strong LLN ensures that Fy,(z) — F(z), and Fy,(z—) — F(z—)
a.s. Let € > 0 be fixed. Consider a finite partition of the extended real line ([—o0, c0]):

—o=r<r <...<INy =00,

such that F(x;—) — F(xz;—1) < €, and if the jump exceeds ¢, it is considered as a point of the
partition. For all € [z;_1,;), we have that

Fp(x) — F(z) < Fp(z—) — F(z;—) + ¢

Fo(z) — F(z) > Fa(zi_1) — Flzi_1) —¢ .

Because both lower and upper bounds CV a.s. to €, and that the partition is finite, we can
deduce that uniformly over the partition they both CV a.s. to e. Thus ||[F, — F|lec < e.

It is true for all € thus limsup,,, | By — Flloo = 0.

We illustrate a natural application of this theorem.
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Empirical processes

Consider the centered and scaled empirical c.d.f., traditionally termed as empirical process
indexed on R, (but we will not use this terminology):

vn(F, — F) .

By the Central Limit Theorem (CLT), for any fixed point z € R, we have

Vi(F, = F)(z) ~ G(a) , (6)
where G(z) is a centered Gaussian r.v., with variance equal to F(z)(1 — F(z)).

A series of improvements is due to Kolmogorov, Donsker and Skorhokod in particular, that
extended the CLT uniformly over the state space to empirical c.d.f.s. We present an
important version below.

Reminder

A Gaussian process {G(z), € X'} is a stochastic process, such that for any finite subset
X), C X, the process {G(z), = € X} } is multivariate normal with continuous sample paths
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Example 2: Goodness-of-fit testing

Suppose we consider a known distribution Fp, say Gaussian, and we want to test the
hypothesis of whether the random sample X1, ..., X, has been drawn from it. Precisely, at
level o € (0, 1), we want to test the null hypothesis:

Ho: F = Fy, against the alternative Hi: F # Fp . (5)

By Glivenko-Cantelli’s Theorem, one can easily construct a test statistic by directly
measuring the departure from the null in terms of the sup-norm ||F, — Fo||oo, defining the
Kolmogorov-Smirnov test (X4/n), or by considering a continuous functional

®(F,) = fR(ﬁ" — Fp)?(x)dFy(x), known as the Cramér-von Mises test statistic (xn).

In order to reject the null hypothesis Ho, it is required to know the distribution of the test
statistic under the null, and this will be provided by the following result.
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Donsker’s theorem 1.0

Theorem (Donsker, 1952)
Let a sequence of i.i.d. r.v.s X1,Xa, ... drawn from the Uniform distribution on [0,1]. Then,
[VA(Fn = F)lloc ~ B(F) , in (D), | [lo) (7)

where B is a standard Brownian bridge process on [0,1], i.e., it is a centered Gaussian
process, with covariance function Cov(B(s), B(t)) = s At — st, for all s,t € [0,1]. The space
(D(R), || - |loo) %s composed of all cadlag functions on R endowed with the sup-norm || - ||co,
also known as the Skorokhod space.

Consequences:
e For any bounded continuous function h : D(R) — R:
Eh(vn(E, — F)) — Eh(B(F)) .

e For any continuous function h : D(R) — R:

h(V/A(Fa — F)) ~ h(B(F)) .
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Empirical averages and consistency

Suppose we want to estimate the true mean p := EX , then one can simply compute the

sample average defined by
Xi1+...+Xn

n
Also, for any function h : R — R, one can also approximate Eh(X) by

B(X1) + o+ h(Xn)

In fact, we can prove consistency of both estimators (LLN), for any fixed function h.
Suppose one has access to a data generating process providing an infinite amount of data
points X1, X2,...,Xn,.... Then, we say that any statistic T, : (X1,...,Xn) ER* —» R
estimating the parameter 6 := Eh(X) for instance, is consistent, if
Tn(Xi1,...,Xn) — 0.
n— oo

This is a very important property for statisticians, and is far from being straightforward for
more complex summaries than averages.
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FEmpirical measure

Suppose now the r.v. X to be valued in a more complicated space than R, e.g., a generic
Euclidean space X C R?, with d > 2. A natural question lies in the generalization of the
empirical distribution given above.

An empirical summary that has been studied in the literature is that of the probability
measure P. Define the empirical measure by

1 n
Py = — Ox, 8
" n Z Xio ®)
i=1
where 6, (A) is the Dirac measure of the event {X € A}. In particular
1 n
Pn(A) = n Z 1a(X;)
i=1

1
= — {number of observations i <n: X; € A} ,
n

for any Borel subset A C X. We refer to the empirical measure indexed by a collection of
subsets C of X' by

{Pn(C), CecC}.
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Today’s outline

@ General formulations for empirical processes
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Empirical measure

In some applications, it will be more convenient to consider empirical measures indexed by
classes of functions, e.g., for averages. For any function h : X — R, consider

Pyh = % zn: h(X;) , 9)
i=1

then the empirical measure indexed by a class of real-valued functions H is
{P,h, heH}

considered as the empirical estimator of Ph := [, h(z)P(dz) for a given h € H.

Remark

Notice that taking H to be the collection {1¢, C € C} recovers the first definition. It also
recovers the univariate case, i.e., when X = R, by taking C = {1{(—o0,z]}, = € R}, then the
collection of empirical measures indexed by the class of sets C is the collection of empirical
c.d.fs.

Remark

Notice that we will often use this notation (Ph) instead of the E as is helpful to understand
the measure we use to integrate, and it can also be used to signify that the function h is
random.
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What we care about in empirical process theory

Empirical process theory aims at establishing theoretical guarantees for sequences of
estimators uniformly over their index class (of sets or functions).

The first question is how to rigorously define such a supnorm, for which we can ensure some
kind of measurability to be able to extend fundamental concepts such as weak convergence
and permanence properties.

What are the necessary conditions on the classes of sets C and functions H such that
uniform versions of Glivenko-Cantelli and Donsker theorems hold true?
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Donsker’s Theorem 2.0

Definition

Suppose that
sup |h(z) — Ph| < o0, Vz €R,
heH

and that the functions h are square-integrable Ph? < co. Then, the class # of functions
valued in X is said to be Donsker if:

[vVn(Pn — P)ll3 ~ B, (12)

where B is a Brownian bridge process on H, i.e., a centered Gaussian process of covariance
function Cov(B(h)B(g)) = Phg — (Ph)(Pg), for all h,g € H.

The convergence is understood in the space £°°(#) is the set of all bounded real-valued
functions endowed with the sup-norm over H.
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Glivenko-Cantelli’s Theorem 2.0
We define such classes as being Glivenko-Cantelli below.

Definition

The collection C of subsets of X is a P-Glivenko-Cantelli (GC) class of sets, if
P
1Pn = Pllc := sup |Pa(©) = PO)] =2 0. (10)

Example
The class of half-closed intervals of X = R is GC.

Definition
The class H of functions valued in X is a P-GC class if

| P — Pllg := sup |Puh — Ph| — 0, (11)

where Ph = [ hdP is used as an abbreviation for E[h(X)], with X being drawn from P.

We will say that a class is GC when the distribution is implicit. Similarly, we can extend
UCL theorem to classes of functions under some conditions.
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What we wish for in statistical learning theory and in applications

o In recent applications related to real data analysis, statisticians might care about other
questions than those related to the asymptotic regime of the estimators.

@ Suppose one has a fixed sample size from a clinical experience for instance, where the size
of the dataset n corresponds to the number of patients. The goal of this experiment can
be the effect of a treatment through d indicators (fever, blood pressure, etc.) measured
after one week of treatment. The statistician might be interested in lower-bounding the
maximum value of the treatment effect based on the n patients, with high probability.

o It takes the form of concentration inequalities.

Briefly, for any probability § > 0 we want to find a threshold ts,, depending on the class H
such that

P(wpwamfzmnzmmﬂog6. (13)
heH

We will see that the ability to prove such guarantees highly depends on the properties of the
class H (similarly of C).

Once those conditions are met, what can we say about the rate of the threshold ts ,, () such
that Eq. (13) holds true?
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Today’s outline Empirical risk minimization (ERM)

e Let X be ar.v., of p.d. P, and defined on a probability space (2,4, P) and valued in X,
think of it as a subset of R%, with d € N*, also called a feature space.

o Consider a set of parameters ©, usually subset of R% as well.

Based on X, we can define a loss function as

£:OxX — Ry .
The goal of ERM is to estimate the best parameter * € © that minimizes the expected loss
function, known as the risk

0* € argminE[¢(0, X)] .
0EQ N——

@ Important examples in statistics and machine learning =R (0)
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Example 1: binary classification (simple)

o In practice, P is unknown, and we only have access to an i.i.d. set of r.v.s drawn from P:

X1,...,Xn, neN*

e Suppose the X to be the input r.v. valued in X (e.g. images), and Y to be the output

o A simple unbiased empirical estimator based on the data is given by: label that i lued in {0,1} ( ¢ dogs)
abel that is valued in {0, e.g. cats or dogs).

n

1 e Consider a collection of classifiers H = {h: X — {0,1}, h measurable}.
Rn(0) := = > £(0,X;) { {0,1} 1
n
1=1
Thus, we can estimate, based on the data, the empirical minimizer The associate binary loss is defined by
0 € argmin R, (6) . by (2, y) € X x{0,1} = H{h(z) #y} .

6co
It equals to 1 if the predictor h gives the wrong label to the input .
We hope that the empirical minimizer is close to the true (oracle) optimal solution 6*,
depending on the sample size n, both dimensions of the feature space X and of the

parameter space O, etc. The goal is to find the optimal classifier that minimizes the associated binary risk
In fact, we will need to control the uniform fluctuations of this statistical error h* € arhger';r-l[in P(h(X) #Y) .
—_——
1 n =:R(h)
sup — 3 {£(6, X:) ~ B[(6, X))} - (14)
oco m =
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The true classifier function known as the Bayes classifier, h* : X — {0, 1} can be proved to
be a function of the posterior distribution given by

n(@) =Py =1X==z).
Based on an i.i.d. random sample {(X1,Y1),...,(Xn,Yn)} the goal is to learn a classifier h,

that predicts the labels of any new set of observations X, Y’s with a smallest empirical risk,
defined by

. 1 <
h € arg min — Z H{h(X;) #Yi} .
held Mz

‘We will analyze the binary risk in the Exercise session for various probabilistic
settings.
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Maximum likelihood estimation (MLE)

Consider a collection of distributions indexed by a parameter space © C RP, with p € N*, of
strictly positive densities {pg}oco w.r.t. a common measure u (pg = dPp/dp). Suppose the
r.v. X is drawn from an unknown distribution of true parameter 6*, we would like to
estimate it using the likelihood ratio as cost function, i.e., define

Lo(z) = log (%) .

The true parameter minimizes the associated risk, also known as the Kullback-Leibler
divergence between the two distributions pg+ and pg

R(0) = E [log @;((zx)) )} 7

where we integrate w.r.t. Pp. Given a random n-i.i.d. sample Xi,..., X, being copies of X,
we aim to find instead the optimal empirical parameter 6 that minimizes the empirical risk

- 1« « (X
0 € argmin — » log (M) )
geo n ‘= po(Xs)

i=

Notice that 8 is invariant w.r.t. 6*, and consider instead

n

. 1 1 1<
0 € argmin — log <7) = arg max — log po(X;) -
gee n ; po(Xi) gco 12:31 ‘

In fact, all the solution of these problems can be redefined as M-estimators.
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Example 2: Least-squares estimation (LSE)

@ Suppose now that the response variable Y is a real-valued r.v., that we want to model
by a covariate X, possibly valued in X as before.

@ We can think of the classical regression model
Y=hX)+e,
where the r.v. € typically models noise of standard Gaussian distribution, and is
independent of X.
The goal of (non)parametric regression is to estimate the best function h minimizing a risk
functional, typically defined as the least-squares loss
R(h) =E[(Y — h(X))"] .
When based on a dataset of i.i.d. r.v.s (X1,,Y1),...,(Xn,Yn), the empirical minimizer is
given by
~ 1 &
h € arg min — Z(YZ — h(X;))? .

heH T

Example (Linear regression)

The simplest class of regressors is that of linear functions h : (0,z) — 6Tz, for all 0,z € R4,
and 7' denotes the transpose operator.
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