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1 Symmetric Measure and Properties

1.1 Definitions

Consider two independent i.i.d. samples X1, . . . Xn and X ′
1, . . . , X

′
n defined on the same p.s.

(Ω,A,P) and valued in a measurable space X ⊆ Rd, d ∈ N∗, of same probability distribution
P . We define the empirical measure by

Pn :=
1

n

n∑
i=1

δXi
,

where δX(A) is the Dirac measure of the event {X ∈ A}. This chapter focuses on providing a
control of the supnorm of averages

Zh =
1

n

n∑
i=1

h(Xi) =: Pnh ,

indexed by a class of measurable functionsH, that is an empirical estimator of Ph :=
∫
X h(x)P (dx) =

Eh(X). Until now, we have supposed the process Zh to be centered to avoid some technicalities.
However, one would like to quantify the deviation of an estimator to its mean value Eh(X) that is
unknown in practice. We thus want to control in probability and expectation

∥Pn − P∥H = sup
h∈H

∣∣∣∣∣ 1n
n∑

i=1

h(Xi)− Eh(X)

∣∣∣∣∣ ,

using the symmetrization method that will allow to replace the true mean by an estimated value
based on an independent i.i.d. sample X ′

1, . . . , X
′
n and given by

Z ′
h = (1/n)

∑
i

h(X ′
i) =: P ′

nh ,

where

P ′
n :=

1

n

n∑
i=1

δX′
i
.

Thus, we would like to approximate ∥Pn − P∥H by ∥Pn − P ′
n∥H.

Lemma 1.1. Let a class H of measurable functions h : X → R, and consider two independent
and i.i.d. samples X1, . . . Xn and X ′

1, . . . , X
′
n defined on the same p.s. (Ω,A,P) and valued in a

measurable space X ⊆ Rd, d ∈ N∗, and of probability distribution P . Then,

E∥Pn − P∥H ≤ E∥Pn − P ′
n∥H .
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Proof. Notice that Ph = E[P ′
nh] == E[P ′

nh|X1, . . . Xn] for all h ∈ H, by independence of the X’s
and X ′’s. Thus

E∥Pn − P∥H = E
[
sup
h∈H

|Pn − P |
]
= E

[
sup
h∈H

|Pn − E[P ′
n]|
]
= E

[
sup
h∈H

|E[Pn − P ′
n|X1, . . . Xn]|

]
.

Then, by Jensen’s inequality

E∥Pn − P∥H ≤ EE
[
sup
h∈H

|Pn − P ′
n||X1, . . . Xn

]
= E

[
sup
h∈H

|Pn − P ′
n|
]

by the law of total expectation that concludes the proof.

This should remind you of train/test procedures in machine learning.

An important class of symmetrized processes is obtained by considering an auxiliary set of i.i.d.
Rademacher r.v.s ε1, . . . , εn, with P(ε = 1) = P(ε = −1) = 1/2.

Definition 1.2. Let an i.i.d. sequence of symmetric r.r.v. ε1, . . . , εn independent of X1, . . . Xn.
The symmetrized empirical measure based on the sample X1, . . . Xn is defined by the measurable
map

P 0
n : h ∈ H 7→ P 0

nh =
1

n

n∑
i=1

εih(Xi) . (1)

In particular, if the ε’s are Rademacher, then P 0
n defines the Rademacher empirical measure.

Reminder 1.1. The intuition of considering such a process lies in the interpretation of the ε’s as
a vector of noise r.v.s. If the class H is too large, then we can always find a functions that is highly
correlated with random noise, thus yielding in a large valued for the sup.

Remark 1.2. 1. In the following, we will only refer to P 0
n as the Rademacher empirical measure,

if not stated otherwise.

2. Again, we ignore measurability considerations for the suprema involved in the numerous for-
mulations.

We will now see why we will use for all the proofs results such as Lemma 1.1. to go from suprema
of Pn − P to those based on P 0

n : it is symmetric conditionally on the X’s, so that the increment
condition (sub-Gaussian) and zero mean for the chaining method are fulfilled, fundamental to next
Chapter.

1.2 Symmetrization in expectation

Lemma 1.3. Suppose conditions of Definition 1.2. Consider a nondecreasing and convex function
Φ : R → R, then

EΦ (∥Pn − P∥H) ≤ EΦ
(
2∥P 0

n∥H
)
.

Proof. Let an independent sample X ′
1, . . . X

′
n, i.i.d. drawn from P , of symmetrized empirical mea-

sure

P
′0
n h =

1

n

n∑
i=1

εih(X
′
i) .

Then, because ∥Pn − P ′
n∥H has same distribution as ∥P 0

n − P
′0
n ∥H (notice this by conditioning on

the X,X ′s and because the measures are based on the same ε’s), by Lemma 1.1, and because Φ is
nondecreasing

EΦ (∥Pn − P∥H) ≤ EΦ (∥Pn − P ′
n∥H) = EΦ

(
∥P 0

n − P
′0
n ∥H

)
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then, notice that by convexity using Jensen’s inequality

EΦ
(
∥P 0

n − P
′0
n ∥H

)
≤ EΦ

(
∥P 0

n∥H + ∥P
′0
n ∥H

)
= EΦ

(
2∥P 0

n∥H
)
.

Remark 1.3. Notice the similarity of with the results in Chapter 4 for generic Rademacher com-
plexitis: we can view the symmetrization as a contraction property.

We now generalize this result to any sequence of independent coordinate process {Z1,h, . . . , Zn,h}
indexed by h ∈ H, that is measurable, in the sense of marginal measurability w.r.t. i. If the coordi-
nates are i.i.d., then the empirical measure is obtained by taking Zi,h = h(Xi)− Ph. Importantly,
it is interesting to symmetrize a process if one can then de-symmetrize it, that is to say, that the
suprema of both measures are comparable.

Theorem 1.4. Let a general independent centered process {Z1,h, . . . , Zn,h}h∈H, and an independent
i.i.d. sample of symmetric r.r.v. ε1, . . . , εn. Then, for any nondecreasing and convex function
Φ : R → R,

EΦ

(
1

2

∥∥∥∥∥
n∑

i=1

εiZi

∥∥∥∥∥
H

)
≤ EΦ

(∥∥∥∥∥
n∑

i=1

Zi

∥∥∥∥∥
H

)
≤ EΦ

(
2

∥∥∥∥∥
n∑

i=1

εi(Zi − µi)

∥∥∥∥∥
H

)
,

where µi : H → R, for all i ≤ n, are arbitrary functions.

Corollary 1.5. Consider a set of i.i.d. r.v.s X1, . . . Xn, and an independent i.i.d. sequence of
Rademacher r.v.s ε1, . . . , εn. Consider the class of measurable functions H. Then, for any nonde-
creasing and convex function Φ : R → R,

EΦ

(
1

2
sup
h∈H

∣∣∣∣∣
n∑

i=1

εi(h(Xi)− Ph)

∣∣∣∣∣
)

≤ EΦ (∥Pn − P∥H) ≤ EΦ

(
2 sup
h∈H

∣∣∣∣∣
n∑

i=1

εih(Xi)

∣∣∣∣∣
)

.

Proof of Corollary. The upperbound follows from Lemma 1.3. The lower bound is straightforward
by using convexity and the definition of the supremum with the Rademacher r.v.s.. Precisely

EΦ

(
1

2
sup
h∈H

∣∣∣∣∣
n∑

i=1

εi(h(Xi)− Ph)

∣∣∣∣∣
)

≤ EΦ
(
1

2
∥Pn − P ′

n∥H

)
.

Then, by adding and substracting the mean Ph inside the supnorm, the triangular inequality yields

∥Pn − P ′
n∥H ≤ ∥Pn − P∥H + ∥P ′

n − P∥H

because Φ is nondecreasing

Φ(
1

2
∥Pn − P ′

n∥H) ≤ Φ(
1

2
∥Pn − P∥H +

1

2
∥P ′

n − P∥H)

and the convexity with the fact that the X and X’s are identically distributed concludes the proof
.

Remark 1.4. Corollary 1.5 will be used with specific choices of Φ, such as Φ : t 7→ t and Φ : t 7→ eλt,
for λ > 0.
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1.3 Symmetrization in probability

We state now a simple yet very useful lemma, that will be proved during the exercise session.

Lemma 1.6. Let H be a class of measurable functions for any h ∈ H, for any u > 0

P(|(Pn − P )(h)| > u/2) ≤ 1

2
. (2)

Then, for any u > 0

P(∥Pn − P∥H > u) ≤ 4P
(
∥P 0

n∥H >
u

4

)
.

Proof. Let an i.i.d. sample X ′
1, . . . , X

′
n independent of the X’s. Let u > 0. On the event {∥Pn −

P∥H > u} there exists a random function h∗ ∈ H such that |Pnh
∗ − Ph∗| > u. We first prove that

P(∥Pn − P∥H > u) ≤ 2P
(
∥Pn − P ′

n∥H >
u

2

)
.

Notice that because ∥Pn − P ′
n∥H ≥ |Pnh

∗ − P ′
nh

∗| conditionally on the X’s,

P(∥Pn − P ′
n∥H > u/2) = EP(∥Pn − P ′

n∥H > u/2|X1, . . . , Xn)

≥ EP(|Pnh
∗ − P ′

nh
∗| > u/2|X1, . . . , Xn)

= P(|Pnh
∗ − P ′

nh
∗| > u/2)

and by the triangular inequality

|Pnh
∗ − P ′

nh
∗| ≤ |Pnh

∗ − Ph∗|+ |P ′
nh

∗ − Ph∗|

P(∥Pn − P ′
n∥H > u/2) ≥ P(|Pnh

∗ − Ph∗| > u, |P ′
nh

∗ − Ph∗| < u/2)

= EP(|Pnh
∗ − Ph∗| > u, |P ′

nh
∗ − Ph∗| < u/2|X1, . . . , Xn)

= E [1{|Pnh
∗ − Ph∗| > u}P(|P ′

nh
∗ − Ph∗| < u/2|X1, . . . , Xn)]

Now using the assumption Eq. (2)

P(∥Pn−P ′
n∥H > u/2) ≥ 1

2
E [1{|Pnh

∗ − Ph∗| > u}] = 1

2
P(|Pnh

∗−Ph∗| > u) =
1

2
P(∥Pn−P∥H > u) .

Then, the triangular inequality on the left-hand-side yields

P(∥Pn − P∥H > u) ≤ 2P(∥Pn − P ′
n∥H > u/2) = 2P(∥P 0

n − P ′0
n ∥H > u/2)

≤ 2P(∥P 0
n∥H > u/4) + 2P(∥P ′0

n ∥H > u/4) = 4P(∥P 0
n∥H > u/4) .

Remark 1.5. If H is composed of functions uniformly bounded by 1, then the pointwise condition
Eq. (2) is fulfilled as proved below.
We next lower bound the tail probability using Chebychev’s Inequality

P(|P ′
nh

∗ − Ph∗| ≤ u/2|X1, . . . , Xn) ≥ 1− Var(P ′
nh

∗|X1, . . . , Xn)

u2/4
.

The process P ′
nh

∗ conditionally on the X’s, is invariant in permutations of the indices i ≤ n, and
recalling that the functions are uniformly bounded by 1, it fulfills the bounded differences condition,
thus

Var(P ′
nh

∗|X1, . . . , Xn) ≤
∑

(1/n)2

4
=

1

4n
,

and plugging it in the previous inequality yields

P(|P ′
nh

∗ − Ph∗| ≤ u/2|X1, . . . , Xn) ≥ 1− 1

nu2
≥ 1

2
.

because nu2 ≥ 2.
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2 Concentration Inequalities

We prove that if the supremum of the Rademacher empirical process is of order o(1), then the index
class of measurable functions H is Glivenko-Cantelli. This Theorem illustrates how the Rademacher
empirical process measures the size of a process. Recall that the RC for a fixed function h ∈ H is
intuitively the correlation between the vector (h(X1), . . . , h(Xn)) and the ‘noise’ vector (ε1, . . . , εn).

Theorem 2.1. Suppose the class H to be composed of measurable functions h : X → R uniformly
bounded by a finite constant K > 0, i.e, ∥h∥∞ ≤ K. Then, for any u > 0,

P(∥Pn − P∥H ≥ 2E∥P 0
n∥H + u) ≤ e−nu2/(2K2) .

If it holds true, and that Rn(H) = o(1), then H is P -Glivenko-Cantelli:

∥Pn − P∥H
a.s.
⇝ 0 .

Proof. We first prove the tail bound.

∥Pn − P∥H = sup
h∈H

|Pnh− Ph| =: Z(X1, . . . , Xn) .

We show how to use McDiarmid’s inequality applied to Z. Notice that because the process Z is
invariant on permutations on the coordinates, we check the bounded differences inequality only
through one of the coordinates, e.g., X1. Let X

′
1 and independent copy of X1, then, for any g ∈ H,

|
n∑

i=1

g(Xi)−Pg|−nZ(X ′
1, . . . , Xn) = |g(X1)+

n∑
i=2

g(Xi)−nPg|− sup
h∈H

|h(X ′
1)+

n∑
i=2

h(Xi)−nPh|

≤ |g(X1) +

n∑
i=2

g(Xi)− nPg| − |g(X ′
1) +

n∑
i=2

g(Xi)− nPg| ≤ |g(X1)− g(X ′
1)| ≤ 2K ,

by the triangular inequality and using the uniform boundness of the functions in H. Then, taking
the sup on the left-hand side proves that Z satisfies the bounded differences condition:

Z(X1, . . . , Xn)− Z(X ′
1, . . . , Xn) ≤

2K

n
.

McDiarmid’s inequality yields, for any u ≥ 0,

P(Z(X1, . . . , Xn)− EZ(X1, . . . , Xn) ≥ u) ≤ e−nt2/(2K2) .

That says with probability at least 1− δ, for δ ∈ (0, 1),

Z(X1, . . . , Xn) ≤ EZ(X1, . . . , Xn) +K

√
2 log(1/δ)

n
.

We then use the symmetrization argument on the expectation, and in particular Lemma 1.3 that
concludes the proof.

Remark 2.1. Notice that we can reformulate the concentration inequality as follows. Let δ ∈ (0, 1),

then δ = e−nu2/(2K2) iff. u = K
√

2 log(1/δ)/n. Then with probability at least 1− δ

∥Pn − P∥H ≤ 2E∥P 0
n∥H +K

√
2 log(1/δ)

n
. (3)

Some remarks are important. This holds true as soon as δ ∈ (0, 1), i.e., n ≥ K
√
2 log(1/δ): the

higher the probability of Eq. (3) holds true, the bigger the sample size should be. If E∥P 0
n∥H is

at least of similar rate as OP(n
−1/2), then Eq. (3) recovers the rates of UCLT. This is especially

interesting if it is sharp, i.e. constant K is the smallest as possible, and it is very not informative
if K → ∞, as it is equivalent to the asymptotic regime (because n → ∞ then).
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Notice that without the symmetrization argument, McDiarmid’s inequality shows that, to control
the probability of uniform deviation of Z, then one needs to control its mean value first. The next
Chapter will focus on providing maximal inequalities for index classes fulfilling various assumptions.

We end with an important result when the class H is of VC-type, with finite dimension, then we
can prove the Vapnik-Chervonenkis theorem, by upperbounding the Rademacher complexity by a
function of the VC-dimension.

Theorem 2.2 (Vapnik-Chervonenkis Theorem). Let an i.i.d. sample X1, . . . , Xn, valued in Rd, of
probability distribution P . Then for any class of Borelian sets C ⊂ Rd, it holds true that for any
u > 0,

P(∥Pn − P∥C > u) ≤ 8mn(C)e−nu2/32 ,

where mn(C) is the shattering coefficient of the class C.

Proof. Step 1: Symmetrization. To use Lemma 1.6, notice that we have a similar result than that
of Remark 1.5. Precisely, notice that for any C ∈ C,

Pn(C)− P (C) =
1

n

n∑
i=1

(1C(Xi)− P (C))

thus nPn(C) is a Binomial r.v. B(n, P (C)) and thus has variance given by

Var(P ′
nh

∗|X1, . . . , Xn) =
P (C)(1− P (C))

n
≤ 1

4n
,

because supx∈[0,1] x(1− x) = 1/4. Thus we can apply Lemma 1.6, and we obtain for all u > 0,

P(∥Pn − P∥C > u) ≤ 4P
(
∥P 0

n∥C >
u

4

)
. (4)

Step 2: Approximation of the supnorm.

Notice that

P
(
∥P 0

n∥C >
u

4

)
= EP

(
∥P 0

n∥C >
u

4
|X1, . . . , Xn

)
If we consider the points X1, . . . , Xn to be fixed, then, the image vector 1C(X1), . . . , 1C(Xn) take
|{{X1, . . . , Xn} ∩ C, C ∈ C}| distinct values when letting C ∈ C, that is bounded from above by
the shattering coefficient given by mn(C). Thus, we can consider a finite subset C0 depending on
the dataset, and of size at most mn(C) such that

P
(
∥P 0

n∥C >
u

4
|X1, . . . , Xn

)
= P

(
∥P 0

n∥C >
u

4
|X1, . . . , Xn

)
≤ P

(
∃C ∈ C0, |P 0

n(C)| > u

4
|X1, . . . , Xn

)
≤

∑
C∈C0

P
(
|P 0

n(C)| > u

4
|X1, . . . , Xn

)
≤ mn(C) sup

C∈C
P
(
|P 0

n(C)| > u

4
|X1, . . . , Xn

)
.

Thus

P(∥Pn − P∥C > u) ≤ 4mn(C)E
[
sup
C∈C

P
(
|P 0

n(C)| > u

4
|X1, . . . , Xn

)]
(5)

6



Step 3: Concentration inequality. Conditionally on the X’s, the average
∑

i εi1C(Xi) is only a sum
of n independent r.v.s, centered, and valued in [−1, 1]. Thus, Hoeffding’s inequality applies

P
(
|P 0

n(C)| > u

4
|X1, . . . , Xn

)
= P

(
|n
∑
i

εi1C(Xi)| >
nu

4
|X1, . . . , Xn

)
≤ 2e−nu2/32 .

and thus
P(∥Pn − P∥C > u) ≤ 8mn(C)e−nu2/32 . (6)

We will see in the next Chapter how to obtain similar bound for general uncountable classes of
functions.
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