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This chapter focuses on providing an upperbound of E [sup,c; | X¢|] and shows why it measures the
size of a generic process {X; }rer, when the index set is considered to be infinite. We will present a
general method, namely chaining method, for obtaining sharp bounds of the quantity E [sup,cp | Xy|]
called mazimal inequalities. We see that if the size of the index set T can be analyzed w.r.t. a
distance based on the process X as in the Chapter 4, then we can control the worst deviation of
the process uniformly on 7'

Notations. We will use the notations of Chapter 5 without further notice. Recall that we con-
sidered an i.i.d. samples Xi,...X,, defined on the p.s. (Q,A,P), valued in a measurable space
X CR?, d e N*, of probability distribution P and of empirical p.d. P,.

1 Introduction to the Chaining Method

1.1 Finite Index Set

Suppose the set T to be finite. We want to upperbound the maximum of a finite number of r.v.s.
Notice that
Elsup X < E[Y | X:[] < |T|supE|X,] .
teT = teT

Remark 1.1. 1. Controlling the magnitude of each of the r.v.s X-s seems unsatisfactory, and
we want to take advantage of possibly some tail assumption of the r.v.s.

2. The bound grows linearly with the size of T that is, again, unsatisfactory. It seems that we
cannot get any good conclusion from this.

Suppose now that the r.v.s X have bounded p-moment, then Jensen’s inequality helps us understand
a refined control

E[sup X;] < E[sup | X,|P]}/? < |T|*/? sup E[| X,|P]/P .
teT teT teT

Remark 1.2. This bound is more interesting: if p is large, then the tails of the r.v.s are vanishing
implying a smaller value for the expectation. In addition, the larger p and the slower growth in
terms of |T.

We prove a first mazimal inequality to see how to use more general functionals related to Cramér-
Chernoff method resulting in sharper bounds. Before stating the first result, recall an important
definition.



Definition 1.1. A process (X;)ier defined on a metric space (T, d) is centered (v > 0)-sub-Gaussian
if PX; =0, if, forall A >0, forallt € T,

2
Ux() = log Bl ] < 2

Lemma 1.2. Consider a finite collection of elements |T| < oo, and the process X; be centered
v-sub-Gaussian. Suppose that we observe an i.i.d. sequence of X of size n of empirical measure
P,,. Then it holds true that

E{nmxﬁ%ﬂ}g viog2T1) 1)
teT n

Remark 1.3. 1. The result is interesting as soon as we choose n > /v1og(2|T)).
2. We study the maz because the class of functions is finite, thus the supnorm is attainable.
3. Notice that the size of the class enters into play similarly as the square-root of the entropy.

4. This is the strongest result we can have, and it is sharp: If we know the best constant v
upperbounding the variance of the process, then we cannot obtain better upperbound.

5. Notice that it can be related to Massart’s inequality (Massart (2000), Lemma 5.2). Notice that
we consider the absolute valued here, yielding a 2 in the log.

Proof. By Jensen’s inequality:
E |max|Pot|| = ~E|logexp Amax|P|
wax Patl] - = 32 [logexp dgge P,
1
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X log Z E [exp A| Ppt|] -
teT

Notice that el*l < e* + e~ so that for A > 0, and using the sub-Gaussianity assumption yields
Elexp{A|P.t[}] < Elexp{APat}] + Elexp{—-AP,t}] < 2eX/2" .

Thus
log(2(T]) | M

E Pt < .
[ml nta@— ;| on

Minimizing w.r.t. A* = y/2nlog2|T|/v yields the result.
O

We can see this result similarly to the Chernoff bound that we studied in Chapter 2, i.e., if
log E[e*Xt] < 4()), then P(X; > u) < e ¥ ™ for all w > 0 and t € T. We thus formulate
the maximal tail inequality.

Lemma 1.3 (Maximal tail inequality). Consider the process X; as defined in Lemma 1.2, then for
all 6 € (0,1), with probability at least 1 — ¢

V/v1og(2N) N Vv log(1/6) .

max | P,t| <
teT



Remark 1.4. This result is again sharp, as soon as all the X -s are independent. Notice that if there
is dependence, and for example all r.v.s are equal for all t, then essentially max;<n |Ppt;| = |Ppt1|
and thus the bound is far from being optimal.

The next section provides a generic method for obtaining similar rate of convergence, when the
index set is uncountable.
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