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This chapter focuses on providing an upperbound of E [supt∈T |Xt|] and shows why it measures the
size of a generic process {Xt}t∈T , when the index set is considered to be infinite. We will present a
general method, namely chaining method, for obtaining sharp bounds of the quantity E [supt∈T |Xt|]
called maximal inequalities. We see that if the size of the index set T can be analyzed w.r.t. a
distance based on the process X as in the Chapter 4, then we can control the worst deviation of
the process uniformly on T .

Notations. We will use the notations of Chapter 5 without further notice. Recall that we con-
sidered an i.i.d. samples X1, . . . Xn defined on the p.s. (Ω,A,P), valued in a measurable space
X ⊆ Rd, d ∈ N∗, of probability distribution P and of empirical p.d. Pn.

1 Introduction to the Chaining Method

1.1 Finite Index Set

Suppose the set T to be finite. We want to upperbound the maximum of a finite number of r.v.s.
Notice that

E[sup
t∈T

Xt] ≤ E[
∑
t∈T

|Xt|] ≤ |T | sup
t∈T

E|Xt| .

Remark 1.1. 1. Controlling the magnitude of each of the r.v.s X-s seems unsatisfactory, and
we want to take advantage of possibly some tail assumption of the r.v.s.

2. The bound grows linearly with the size of T that is, again, unsatisfactory. It seems that we
cannot get any good conclusion from this.

Suppose now that the r.v.s X have bounded p-moment, then Jensen’s inequality helps us understand
a refined control

E[sup
t∈T

Xt] ≤ E[sup
t∈T

|Xt|p]1/p ≤ |T |1/p sup
t∈T

E[|Xt|p]1/p .

Remark 1.2. This bound is more interesting: if p is large, then the tails of the r.v.s are vanishing
implying a smaller value for the expectation. In addition, the larger p and the slower growth in
terms of |T |.

We prove a first maximal inequality to see how to use more general functionals related to Cramér-
Chernoff method resulting in sharper bounds. Before stating the first result, recall an important
definition.
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Definition 1.1. A process (Xt)t∈T defined on a metric space (T, d) is centered (ν > 0)-sub-Gaussian
if PXt = 0, if, for all λ > 0, for all t ∈ T ,

ψX(λ) = logE[eλXt ] ≤ λ2ν

2
.

Lemma 1.2. Consider a finite collection of elements |T | < ∞, and the process Xt be centered
ν-sub-Gaussian. Suppose that we observe an i.i.d. sequence of Xt of size n of empirical measure
Pn. Then it holds true that

E
[
max
t∈T

|Pnt|
]
≤

√
ν log(2|T |)

n
. (1)

Remark 1.3. 1. The result is interesting as soon as we choose n ≥
√
ν log(2|T |).

2. We study the max because the class of functions is finite, thus the supnorm is attainable.

3. Notice that the size of the class enters into play similarly as the square-root of the entropy.

4. This is the strongest result we can have, and it is sharp: If we know the best constant v
upperbounding the variance of the process, then we cannot obtain better upperbound.

5. Notice that it can be related to Massart’s inequality (Massart (2000), Lemma 5.2). Notice that
we consider the absolute valued here, yielding a 2 in the log.

Proof. By Jensen’s inequality:

E
[
max
t∈T

|Pnt|
]

=
1

λ
E
[
log expλmax

t∈T
|Pnt|

]
≤ 1

λ
logE

[
expλmax

t∈T
|Pnt|

]
=

1

λ
logE

[
max
t∈T

expλ|Pnt|
]

≤ 1

λ
log

∑
t∈T

E [expλ|Pnt|] .

Notice that e|x| ≤ ex + e−x, so that for λ ≥ 0, and using the sub-Gaussianity assumption yields

E[exp{λ|Pnt|}] ≤ E[exp{λPnt}] + E[exp{−λPnt}] ≤ 2eλ
2ν/2n .

Thus

E
[
max
t∈T

|Pnt|
]
≤ log(2|T |)

λ
+
λν

2n
.

Minimizing w.r.t. λ∗ =
√

2n log 2|T |/ν yields the result.

We can see this result similarly to the Chernoff bound that we studied in Chapter 2, i.e., if
logE[eλXt ] ≤ ψ(λ), then P(Xt ≥ u) ≤ e−ψ

∗(u), for all u ≥ 0 and t ∈ T . We thus formulate
the maximal tail inequality.

Lemma 1.3 (Maximal tail inequality). Consider the process Xt as defined in Lemma 1.2, then for
all δ ∈ (0, 1), with probability at least 1− δ

max
t∈T

|Pnt| ≤
√
ν log(2N)

n
+

√
ν log(1/δ)

n
.
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Remark 1.4. This result is again sharp, as soon as all the X-s are independent. Notice that if there
is dependence, and for example all r.v.s are equal for all t, then essentially maxi≤N |Pntj | = |Pnt1|
and thus the bound is far from being optimal.

The next section provides a generic method for obtaining similar rate of convergence, when the
index set is uncountable.

1.2 One-step Discretization Chain under an Entropic Condition

From that simple derivation when considering the set T to be finite/countable, we saw that we can
replace the supremum by the maximum, to then invoke the union bound. The idea is to approximate
the supremum over T by a maximum of increments over an increasing sequence of covering sets with
accuracy ε, plus an approximation error depending on ε and converging to 0. We will see that the
sup can be upperbounded by the maximum of increments that depend on their size and number.
Consider now an index class that can be approximated with an ε-cover w.r.t. the stochastic distance
based dX based on the process Xt. A key tool for the following results is to be able to control the
size of the increments of the process Xs−Xt in terms of the distance between the two points s and
t, formulated below.

Definition 1.4. A process (Xt)t∈T defined on a metric space (T, d) is said to satisfy the increment
condition if, for all u > 0, for all s, t ∈ T ,

P(|Xs −Xt| ≥ ud(s, t)) ≤ 2 exp

(
−u

2

2

)
.

We say that the diameter of (T, d) is defined by D(T ) = sups,t∈T d(s, t).

Reminder 1.5. A centered process (Xt)t∈T defined on a metric space (T, d) is said to be sub-
Gaussian iff

E[eλ(Xs−Xt)] ≤ eλ
2dX(s,t)2/2 ,

for all λ ∈ R, and for all s, t ∈ T .

Remark 1.6. Sub-Gaussian processes satisfy the increment condition w.r.t. a stochatstic metric dX
that it can be a pseudometric. It is typically dX(s, t) = E[|Xs −Xt|2]1/2. Gaussian or Rademacher
processes indexed on [0, 1], we consider the Euclidean metric d(s, t) = ∥s− t∥2.

Lemma 1.5. Suppose (Xt)t∈T to be a sub-Gaussian centered process w.r.t dX . Then for any
ε ∈ [0, D(T )], such that N(ε, T, dX) ≥ c, with c > 0 universal constant, it holds true that

E
[
sup
t,t′∈T

(Xt −Xt′)

]
≤ 2E

[
sup

t,t′∈T, dX(t,t′)≤ε
(Xt −Xt′)

]
+ 4D(T )

√
logN(ε, T, dX) .

Proof. The idea of the proof is to use a cover of T to approximate the increment (Xt −Xt′) by the
increments based on the centers of the covering sequence, with an additional approximation error.

Let ε > 0. Define by t1, . . . , tN the centers of the ε-cover of T . Then, for any t ∈ T , there exists an
index i ≤ N , such that dX(t, ti) ≤ ε. Hence

Xt −Xt1 = Xt −Xti︸ ︷︷ ︸
increment in X between t and its closest center ti

+ Xti −Xt1︸ ︷︷ ︸
increment in X between the best approximation of t and any center of the cover
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Notice that
Xt −Xti ≤ sup

t,t′∈T, dX(t,t′)≤ε
(Xt −Xt′)

because both t and ti are in the ith element of the cover, thus dX(t, ti) ≤ ε by construction. And

Xti −Xt1 ≤ max
i≤N

|Xti −Xt1 |

because both ti and t1 are centers of the cover of T . Thus

Xt −Xt1 ≤ sup
t,t′∈T, dX(t,t′)≤ε

(Xt −Xt′) + max
i≤N

|Xti −Xt1 | . (2)

It holds true for any point t′ ∈ T as well (the cover is independent of t), so that we can add both
bounds to obtain

sup
t,t′∈T

(Xt −Xt′) ≤ 2 sup
t,t′∈T, dX(t,t′)≤ε

(Xt −Xt′) + 2max
i≤N

|Xti −Xt1 | .

Notice that because the r.v.s are sub-Gaussian, then each increament is centered sub-Gaussian as
well, with at most dX(ti, t1) ≤ D(T ) for the index set of the max. Lemma 1.2 applies, to the
maximum on the right

E
[
max
i≤N

|Xti −Xt1 |
]
≤ 2D(T )

√
logN .

We can select the optimal size of the cover to be N = N(ε, T, dX), and the result is proved.

Remark 1.7. It is not clear why we consider increments until we point out the following fact. For
any fixed t′ ∈ T , then

E
[
sup
t∈T

Xt

]
= E

[
sup
t∈T

(Xt −Xt′)

]
and it is evident now that

E
[
sup
t∈T

Xt

]
≤ E

[
sup
t,t′∈T

(Xt −Xt′)

]
.

We consider some examples.

Example 1.8 (Lipschitz processes). Consider the assumptions from Lemma 1.5, and that there
exists a r.v. L such that Xt is L-Lipschitz, then

E
[
sup
t,t′∈T

(Xt −Xt′)

]
≤ 2 inf

ε∈[0,D(T )]
{εE[L] + 4D(T )

√
logN(ε, T, dX)} .

Example 1.9 (Localized Canonical Gaussian Complexity). Recall that G(T ) = E[supt∈T Gt] =
E[supt∈T ⟨η, t⟩], with T ⊂ Rd. Suppose 0 ∈ T , and consider the ℓ2-ball of radius ε by T (ε) =
{t− t′ ∈ Rd, ∥t− t′∥2 ≤ ε}. The natural metric dX is the Euclidean ∥ · ∥2. Thus Lemma 1.5 shows
that we can control the Gaussian complexity of T by its localized complexity based on the ball T (ε)

G(T ) ≤ inf
ε∈[0,D(T )]

{G(T (ε)) + 2D(T )
√

logN2(ε, T )} ,

with N2(ε, T ) being the ε-covering number of T w.r.t. the Euclidean norm. Now, using Example
3.2 of Chapter 4, we have the explicit bound G(T (ε)) ≤ ε

√
d. It remains to compute an explicit

upperbound of N2(ε, T ) (left as exercise). Notice that we can get rid of the constant 2 in that case.

Example 1.10 (VC-classes of functions). Suppose H to be a VC-class of functions with finite
VC-dimension. By Lemma 4.6, we have that

√
logN(ε, T, dX) ≤ C

√
V log(1/ε).
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1.3 Generic chaining based on covering sets - Dudley’s entropy integral

Important intuition of the chaining method. Before, the supremum was approximated by
a finite maximum over an ε-cover with an additional approximation error. We will now write the
supremum as a finite sum of maxima indexed by successively refined sets.

Definition 1.6. Let (T, d) be a pseudometric space, and consider an ε-cover of finite covering
number N(ε, T, d) such that Dudley’s entropy integral is well-defined by

J (ε,D(T )) =

∫ D(T )

ε

√
logN(u, T, d)du ,

where D(T ) = sups,t∈T d(s, t) is the diameter of T .

Theorem 1.7 (Wainwright , Theorem 5.22). Consider Xt a sub-Gaussian centered process w.r.t.
the induced pseudometric dX on T . Then, for any ε ∈ [0, D(T )],

E
[
sup
t,t′∈T

(Xt −Xt′)

]
≤ 2E

[
sup

t,t′∈T, dX(t,t′)≤ε
(Xt −Xt′)

]
+ 32

∫ D(T )

ε/4

√
logN(u, T, dX)du .

Corollary 1.8 (Dudley’s Entropy Integral). Consider Xt a sub-Gaussian centered process w.r.t.
the induced pseudometric dX on T .

E
[
sup
t∈T

Xt

]
≤ 32

∫ D(T )

0

√
logN(ε, T, dX)dε .

Proof. Board.

Remark 1.11. Why is this method called chaining? We want to refine the control of the second
term in Lemma 1.5.

Recall that we start with the ε-cover of T having N(ε) = N(ε, t, d) elements, as in Lemma 1.5,
defined by T0 = {t1, . . . , tN}. For any m = 1 . . . ,M we consider refined covers Tm of T0 composed
of Nm ≤ N(εm) elements, with εm = 2−mD, where M is such that TM = T0 (it exists since T0 is
finite), thus ε = 2−(M−1)(D/2) = 2−MD. By defining πm the to be the best approximation of t ∈ T0
by an element of the subset Tm - where optimality is in the sense of minimizing d - the proof relies
on the decomposition relating Xt to Xγ1 , where γ1 ∈ T1 via a telescopic sum, where γM = t, and
γm = πm(t). The chain is

T0 ∋ t = γM → γM−1 := πM−1(t) → . . .→ γ1 ∈ T1 . (3)

Then one can control the increment

|Xt −Xγ1 | =
M∑
m=2

|Xγm −Xγm−1
| ≤

M∑
m=2

max
u∈Tm

|Xu −Xπm−1(u)|

A similar chain γ′ can be obtained for any other element t′ ∈ T0, and thus we can upperbound

max
t,t′∈T0

|Xt −Xt′ | ≤ max
t,t′∈T1

|Xt −Xt′ |+ 2

M∑
m=2

max
u∈Tm

|Xu −Xπm−1(u)|

that refines the second term of Lemma 1.5.
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Maximal inequality for VC-classes of functions. We first need an important result relating
VC-dimension for VC-classes of functions, and the size of a covering set.

Lemma 1.9. Let H be a VC-class of functions with measurable envelope function H(t), and let
r ∈ N∗. Then, for any ε > 0, there exists a universal constant C > 0, such that

N(ε∥H∥r,H, Lr(Q)) ≤ CV(16e)V
(
1

ε

)2V

,

for any p.m. Q s.t. ∥H∥r = (
∫
|H(x)|rdQ(x))1/r <∞.

Corollary 1.10. Let H be a VC-class of functions uniformly bounded by a finite constant K > 0,
and of finite VC-dimension V > 0. Consider an i.i.d. random sample X1, . . . , Xn drawn from P .
There exists a universal constant C > 0, such that

E [∥Pn − P∥H] ≤ C

√
V
n
.

Remark 1.12. Compare this rate to the ones obtained in Exercise session 7: what is the gain from
Theorem 1.7 compared to the one-step discretization (Lemma 1.5)?

Proof. By symmetrization we write

E [∥Pn − P∥H] ≤ 2E
[
∥P 0

n∥H
]

and notice that P 0
n = (1/n)

∑n
i=1 εih(Xi) is the empirical Rademacher complexity based on the

random sample X1, . . . , Xn. We want to apply Dudley’s entropy integral with ε = 0 to the process
{
√
nP 0

nh, h ∈ H} conditionally on the Xi’s. The process is centered, it has sub-Gaussian increments
w.r.t. the empirical distance conditionally on the Xi’s

dX(h, g)2 =
1

n

n∑
i=1

(h(Xi)− g(Xi))
2

and that suph,g∈H dX(h, g) ≤ 2K. Sequentially using Remark 1.7, and Dudley’s maximal inequality

Eε
[
∥P 0

n∥H
]
≤ 1√

n
Eε

[
sup
h,g∈H

1√
n
|
n∑
i=1

εih(Xi)− g(Xi)|

]
≤ 1√

n
32

∫ 2K

0

√
logN(ε, T, dX)dε .

Now using Lemma 1.9, where the envelope function here is supposed to be uniformly bounded by
K, it yields,

N(ε,H, dX) ≤ CV(16e)V
(
K

ε

)2V

,

thus expressing the log and separating the terms depending on V, ε, the result is obtained by lastly
integrating w.r.t. P .

2 Lower Bounds: Optimal rates

This last section proves a complementary result to that of Lemma 1.5 (one-step discretization) and
Theorem 1.7 (Dudley’s entropy integral). We will prove a lower bound for the uniform deviation
of Gaussian processes in expectation. First, we provide general results for comparing two processes
indexed by the same set. Then, we define a new metric measure for a set, namely ıpacking numbers,
to prove the main theorem for Gaussian processes, known as Sudakov’s Theorem.
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2.1 Gaussian Comparison Inequalities

We want to compare two processes Xt, Yt, indexed by the same set T , in the following sense. Given
a real-valued function Φ, we would like to compare the real value E[Φ(X)] to E[Φ(Y )], and in
particular for Φ(Xt) = supt∈T Xt. We focus on Gaussian processes.

Reminder 2.1. We say that Xt, t ∈ T is a centered Gaussian process if the random variables
{Xt1 , . . . , XtM }, are centered and jointly Gaussian, i.e., any linear combination is Gaussian, for all
M ≥ 1, and {t1, . . . , tM} ⊂ T .
In addition, for centered Gaussian r.v.s, its sub-Gaussian parameters equals its variance, and the
canonical metric defined on T is given by

dX(t, t′) = E[(Xt −Xt′)
2] .

The first two results are formulated in terms of correlations and variances.

Theorem 2.1. Let {X1, . . . , XM} and {Y1, . . . , YM} be two centered Gaussian vectors. Suppose
that there exist two disjoint subsets A,B of {1, . . . ,M}2 such that

E[XiXj ] ≤ E[YiYj ], ∀i, j ∈ A

E[XiXj ] ≥ E[YiYj ], ∀i, j ∈ B

E[XiXj ] = E[YiYj ], ∀i, j ̸∈ A ∪B .

Let Φ : RN → R be twice-differentiable, such that

∂2Φ(u)

∂ui∂uj
≥ 0, ∀i, j ∈ A

∂2Φ(u)

∂ui∂uj
≤ 0, ∀i, j ∈ B .

Then, it holds true that
E[Φ(X)] ≤ E[Φ(Y )] (4)

Proof. Exercise.

An important Corollary is the following.

Corollary 2.2 (Slepian’s inequality). Let {X1, . . . , XM} and {Y1, . . . , YM} be two centered Gaus-
sian vectors. If

E[XiXj ] ≥ E[YiYj ], ∀i ̸= j

E[X2
i ] = E[Y 2

i ], ∀i ∈ {1, . . . ,M} ,

then it holds true that
E
[
max
i=1...M

Xi

]
≤ E

[
max
i=1...M

Yi

]
. (5)

Proof. Board.

We now end with a result using the pseudometrics induced by the processes, namely dX = E[(Xi−
Xj)

2] and dY = E[(Yi − Yj)
2].

Theorem 2.3 (Sudakov-Fernique’s Theorem). Let {X1, . . . , XM} and {Y1, . . . , YM} be two centered
Gaussian vectors. If

E[(Xi −Xj)
2] ≤ E[(Yi − Yj)

2], ∀i, j ,
then

E
[
max
i=1...M

Xi

]
≤ E

[
max
i=1...M

Yi

]
. (6)
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2.2 Lower Bound for Gaussian Processes

We are now ready to state the main result: lower bound for Gaussian Processes based on packing
numbers. We first formulate a lower bound for finite maxima of Gaussian processes.

Lemma 2.4. Let {X1, . . . , XM} be a set of centered Gaussian i.i.d. r.v.s of variance σ2 > 0. Then
there exists a small constant c > 0 such that

E
[
max
i≤M

Xi

]
≥ cσ

√
logM .

Proof. Exercise.

Packing Numbers.

Definition 2.5. An ε-packing of a set T w.r.t. a metric d, is a set {t1, . . . , tM} ⊂ T s.t. d(ti, tj) > ε,
for all i ̸= j. The ε-packing number M(ε, T, d) is defined as the cardinality of the largest ε-packing
of T .

Remark 2.2. An ε-packing can be a collection of balls of at most ε/2 radii (the centers should be
strictly varepsilon-appart), centered on elements of the index set T , and such that the intersections
are empty.

Lemma 2.6. Let ε > 0. The packing and covering numbers are comparable

M(2ε, T, d) ≤ N(ε, T, d) ≤M(ε, T, d) .

Thus, when ε→ 0, packing and covering numbers have similar behavior.

Example 2.3 (Unit cubes). • d = 1. Let T = [−1, 1], equipped with d(t, t′) = |t − t′|. Let
ε > 0. Then Lemma 2.6 yields

⌊1/ε⌋ ≤ N(ε, T, | · |) ≤ 1/ε+ 1

and for ε very small, N(ε, T, | · |) = O(1/ε)

• Exercise. Prove that for d ∈ N∗, it holds true that N(ε, [−1, 1]d, ∥ · ∥∞) = O((1/ε)d), where
∥t∥∞ = supi≤d |ti|.

Lower bound. We state the main Theorem of this section.

Theorem 2.7 (Sudakov minoration). Let {Xt, t ∈ T} be a centered Gaussian process indexed by
T ̸= ∅. Then, there exists a small constant c > 0, such that

E
[
sup
t∈T

Xt

]
≥ sup

ε>0
cε
√
logM(ε, T, dX) ,

where dX(t, t′) = E[(Xt −Xt′)
2].

Proof. Board.

Example 2.4 (Lower bounds for Gaussian complexity).

8


	Introduction to the Chaining Method
	Finite Index Set
	One-step Discretization Chain under an Entropic Condition
	Generic chaining based on covering sets - Dudley's entropy integral

	Lower Bounds: Optimal rates
	Gaussian Comparison Inequalities
	Lower Bound for Gaussian Processes


