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This chapter focuses on providing an upperbound of E [sup,c; | X¢|] and shows why it measures the
size of a generic process {X; }rer, when the index set is considered to be infinite. We will present a
general method, namely chaining method, for obtaining sharp bounds of the quantity E [sup,cp | Xy|]
called mazimal inequalities. We see that if the size of the index set T can be analyzed w.r.t. a
distance based on the process X as in the Chapter 4, then we can control the worst deviation of
the process uniformly on 7'

Notations. We will use the notations of Chapter 5 without further notice. Recall that we con-
sidered an i.i.d. samples Xi,...X,, defined on the p.s. (Q,A,P), valued in a measurable space
X CR?, d e N*, of probability distribution P and of empirical p.d. P,.

1 Introduction to the Chaining Method

1.1 Finite Index Set

Suppose the set T to be finite. We want to upperbound the maximum of a finite number of r.v.s.
Notice that
Elsup X < E[Y | X:[] < |T|supE|X,] .
teT = teT

Remark 1.1. 1. Controlling the magnitude of each of the r.v.s X-s seems unsatisfactory, and
we want to take advantage of possibly some tail assumption of the r.v.s.

2. The bound grows linearly with the size of T that is, again, unsatisfactory. It seems that we
cannot get any good conclusion from this.

Suppose now that the r.v.s X have bounded p-moment, then Jensen’s inequality helps us understand
a refined control

E[sup X;] < E[sup | X,|P]}/? < |T|*/? sup E[| X,|P]/P .
teT teT teT

Remark 1.2. This bound is more interesting: if p is large, then the tails of the r.v.s are vanishing
implying a smaller value for the expectation. In addition, the larger p and the slower growth in
terms of |T.

We prove a first mazimal inequality to see how to use more general functionals related to Cramér-
Chernoff method resulting in sharper bounds. Before stating the first result, recall an important
definition.



Definition 1.1. A process (X;)ier defined on a metric space (T, d) is centered (v > 0)-sub-Gaussian
if PX; =0, if, forall A >0, forallt € T,

2
Ux() = log Bl ] < 2

Lemma 1.2. Consider a finite collection of elements |T| < oo, and the process X; be centered
v-sub-Gaussian. Suppose that we observe an i.i.d. sequence of X of size n of empirical measure
P,,. Then it holds true that

E{nmxﬁ%ﬂ}g viog2T1) 1)
teT n

Remark 1.3. 1. The result is interesting as soon as we choose n > /v1og(2|T)).
2. We study the maz because the class of functions is finite, thus the supnorm is attainable.
3. Notice that the size of the class enters into play similarly as the square-root of the entropy.

4. This is the strongest result we can have, and it is sharp: If we know the best constant v
upperbounding the variance of the process, then we cannot obtain better upperbound.

5. Notice that it can be related to Massart’s inequality (Massart (2000), Lemma 5.2). Notice that
we consider the absolute valued here, yielding a 2 in the log.

Proof. By Jensen’s inequality:
E |max|Pot|| = ~E|logexp Amax|P|
wax Patl] - = 32 [logexp dgge P,
1
< —
< 5 logE [exp)\rtneaTx|Pnt|}

1
= 5 logE [I?&g(exp /\Pnt|]

IN

1
X log Z E [exp A| Ppt|] -
teT

Notice that el*l < e* + e~ so that for A > 0, and using the sub-Gaussianity assumption yields
Elexp{A|P.t[}] < Elexp{APat}] + Elexp{—-AP,t}] < 2eX/2" .

Thus log@T)) A
og v
E Pt < ————+ — .
{rtne?% " |] S U™
Minimizing w.r.t. A* = y/2nlog2|T|/v yields the result.
O

We can see this result similarly to the Chernoff bound that we studied in Chapter 2, i.e., if
log E[e*Xt] < 4()), then P(X; > u) < e ¥ ™ for all w > 0 and t € T. We thus formulate
the maximal tail inequality.

Lemma 1.3 (Maximal tail inequality). Consider the process X; as defined in Lemma 1.2, then for
all 6 € (0,1), with probability at least 1 — ¢

V/v1og(2N) N Vv log(1/6) .

max | P,t| <
teT



Remark 1.4. This result is again sharp, as soon as all the X -s are independent. Notice that if there
is dependence, and for example all r.v.s are equal for all t, then essentially max;<n |Ppt;| = |Ppt1|
and thus the bound is far from being optimal.

The next section provides a generic method for obtaining similar rate of convergence, when the
index set is uncountable.

1.2 One-step Discretization Chain under an Entropic Condition

From that simple derivation when considering the set T to be finite/countable, we saw that we can
replace the supremum by the maximum, to then invoke the union bound. The idea is to approximate
the supremum over T by a maximum of increments over an increasing sequence of covering sets with
accuracy €, plus an approximation error depending on ¢ and converging to 0. We will see that the
sup can be upperbounded by the maximum of increments that depend on their size and number.
Consider now an index class that can be approximated with an e-cover w.r.t. the stochastic distance
based dx based on the process X;. A key tool for the following results is to be able to control the
size of the increments of the process X, — X; in terms of the distance between the two points s and
t, formulated below.

Definition 1.4. A process (X;)ter defined on a metric space (T, d) is said to satisfy the increment
condition if, for all w > 0, for all s,t € T,

2
P(|Xs — X¢| > ud(s,t)) < 2exp (—Z) .

We say that the diameter of (7', d) is defined by D(T') = sup; 47 d(s, t).

Reminder 1.5. A centered process (Xi)ier defined on a metric space (T,d) is said to be sub-

Gaussian iff
]E[ex(xrxt)] < e)\QdX(s,t)Q/Q

3

for all X € R, and for all s,t € T.

Remark 1.6. Sub-Gaussian processes satisfy the increment condition w.r.t. a stochatstic metric dx
that it can be a pseudometric. It is typically dx (s,t) = E[| X, — X;|?]*/2. Gaussian or Rademacher
processes indezxed on [0, 1], we consider the Fuclidean metric d(s,t) = ||s — t||2.

Lemma 1.5. Suppose (Xi)ier to be a sub-Gaussian centered process w.r.t dx. Then for any
e € [0, D(T)], such that N(e,T,dx) > ¢, with ¢ > 0 universal constant, it holds true that

sup (Xt — Xp)| +4D(T)\/log N(e, T, dx) .

t,t’ €T, dx (t,t')<e

E [ sup (X — Xt/)} <2E

tt'eT

Proof. The idea of the proof is to use a cover of T to approximate the increment (X; — X;/) by the
increments based on the centers of the covering sequence, with an additional approximation error.

Let € > 0. Define by t',...,t" the centers of the e-cover of T'. Then, for any ¢ € T, there exists an
index # < N, such that dx(¢,t*) < e. Hence

Xt - th = Xt - Xti
——

increment in X between ¢ and its closest center t*

+ Xti - th
———

increment in X between the best approximation of ¢ and any center of the cover



Notice that
Xt - Xti S sup (Xt - Xt/)
tt'eT, dx (t,t')<e

because both ¢ and #* are in the ith element of the cover, thus dx(¢,t*) < e by construction. And

Xy — Xpn < Xy — X
t tl_lf%%d t o]

because both ¢* and t! are centers of the cover of T. Thus

Xy —Xp < sup (X, — Xp) 4+ max | X, — X1 . @)
t,t’eT, dx (t,t")<e i<N

It holds true for any point ¢’ € T as well (the cover is independent of t), so that we can add both
bounds to obtain

sup (X — Xp) <2 sup (Xt — Xp) +2max | Xy — Xp| .
Lt ET t,t/ €T, dx (t,t')<e i<N

Notice that because the r.v.s are sub-Gaussian, then each increament is centered sub-Gaussian as
well, with at most dx(t',t!) < D(T) for the index set of the max. Lemma 1.2 applies, to the
maximum on the right

E {ng\)ﬂXﬁ - th@ <2D(T)+/log N .
We can select the optimal size of the cover to be N = N(e,T,dx), and the result is proved. O

Remark 1.7. It is not clear why we consider increments until we point out the following fact. For
any fived t' € T, then

E [sup Xt} =F {sup(Xt — Xt/)}
teT teT
and it is evident now that

E {sup X{l < E |: sup (Xt — Xt/):|
teT tt'eT

We consider some examples.

Example 1.8 (Lipschitz processes). Consider the assumptions from Lemma 1.5, and that there
erists a r.v. L such that X; is L-Lipschitz, then

E { sup (X — X,y)] <2 inf {eE[L]+4D(T)\/logN(e,T,dx)} .
tt' €T €€[0,D(T)]

Example 1.9 (Localized Canonical Gaussian Complexity). Recall that G(T) = E[sup,cr G¢| =
E[sup,er(n,t)], with T C R Suppose 0 € T, and consider the l3-ball of radius € by T(c) =
{t—t' e R4, ||t — |2 < €}. The natural metric dx is the Euclidean || - ||2. Thus Lemma 1.5 shows
that we can control the Gaussian complexity of T by its localized complexity based on the ball T'(g)

g(T) < inf {G(T(e)) +2D(T)+/log N2(e,T)} ,
€€[0,D(T)]
with No(e,T) being the e-covering number of T w.r.t. the Euclidean norm. Now, using Example
3.2 of Chapter 4, we have the explicit bound G(T(¢)) < evd. It remains to compute an explicit
upperbound of No(e,T) (left as exercise). Notice that we can get rid of the constant 2 in that case.

Example 1.10 (VC-classes of functions). Suppose H to be a VC-class of functions with finite
VC-dimension. By Lemma 4.6, we have that \/log N(e,T,dx) < C+/Vlog(1/e).




1.3 Generic chaining based on covering sets - Dudley’s entropy integral

Important intuition of the chaining method. Before, the supremum was approximated by
a finite maximum over an e-cover with an additional approximation error. We will now write the
supremum as a finite sum of maxima indexed by successively refined sets.

Definition 1.6. Let (7,d) be a pseudometric space, and consider an e-cover of finite covering
number N (e, T, d) such that Dudley’s entropy integral is well-defined by

D(T)
J(e.D(T)) = / Vg NET.d) |

where D(T') = sup, ;7 d(s,t) is the diameter of T

Theorem 1.7 (Wainwright , Theorem 5.22). Consider X; a sub-Gaussian centered process w.r.t.
the induced pseudometric dx on T. Then, for any e € [0, D(T)],

sup (Xt — Xt/)
t,t/ €T, dx (t,t')<e

E |: sup (Xt — Xt/):| < 2
t,t'eT

D(T)
—|—32/ V0egN(e, T,dx) .
e/4

Corollary 1.8 (Dudley’s Entropy Integral). Consider X; a sub-Gaussian centered process w.r.t.
the induced pseudometric dx on T.

D(T)
E {supXt} < 32/ Vieg N(e, T,dx) .
0

teT

Proof. Board.

1.4 Generic chaining based on admissible partitions



	Introduction to the Chaining Method
	Finite Index Set
	One-step Discretization Chain under an Entropic Condition
	Generic chaining based on covering sets - Dudley's entropy integral
	Generic chaining based on admissible partitions


