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This chapter focuses on measuring the size of uncountable classes of functions, or of sets, defined
as their complexity. The intuition being that, on the one hand, the bigger the size, the likelier we
can approximate the true model/measure. On the other hand, if the class is extremely large, then
one can yield a NP-hard problem. It is important to keep in mind that an empirical process will
concentrate with high probability, if the complexity of its index class can be upperbounded. We
will detail three important tools, discuss their relations to uniform asymptotic convergences, and
permanence properties.

Reminder 0.1 (Union bound.). We will (massively) use in the proofs the so-called union bound
that we recall below. Consider a countable set of measurable events Ay, ..., Ay, with N € N* then

N N
P (U Ai> < ZIP(Ai) < N%@;P(Ai) .
=1 =1 -

Apply this to the maximum of a set.

Motivation. If the class is supposed of finite cardinality, or countable, then the union bound
can be used directly. Let H = {hq,...,hn} composed of a finite number of measurable functions
N € N*. Then, the uniform deviation of the empirical measure can be upperbounded as follows (we
suppose everything is well-defined). We want to control the probability for any § > 0,

]P){HPYL_P”H 25} .

Notice that, because |[H| = N < oo, |P, — P|lu = suppey |Pnhi — Ph;i| = max;<y |Pyhi — Phyl,
thus, by the union bound

N
P{||P, — Pl > 6} <> P{|Pyh; — Phi| > 6} .

i=1

We want to apply Hoeffding’s inequality. Suppose that there exists a constant C' > 0, such that
sup,cy |hi(z)] < C, for all i < N, and Ph = 0 for simplicity, for all h € H.

P{”Pn”?{ > 5} < 2Ne_2"52/02 )

Notations. In the following sections, we will define a series of results, for which we place ourselves
in a general setting. We denote by {Z(t)}+er a process, where T is a generic set endowed with a
(pseudo)metric d. We suppose for technical reasons the process Z(t) to have bounded sample

functions'.

1Versions with bounded sample paths a.s. is sufficient.



1 Entropic Measures of Classes of Functions

We start by defining a purely deterministic way of controlling the size of a semimetric space, and
thus of a stochastic process.

Consider (2, A,P) to be an arbitrary probability space and let X : Q — X be an arbitrary random
map of distribution P. Let (T,d) be a semimetric space. We think of subset of (T, d) mainly as
subset of the L,(P)-space, with ¢ € N*, defined by

LyP)={h:X >R, Plhl%<ox}

endowed with the associated norm ,
1
1hllg = (PR|7) " .
The constant e will always be in (0, 00) in this chapter.

This section can be extended to general semimetric spaces.

1.1 Covering and Bracketing Numbers

Covering Numbers.

Definition 1.1 (e-cover). A e-cover of the set T w.r.t. d is a set {¢1,...,ty} C T, such that for
any ¢t € T, there exists a m € {1,..., N}, such that d(¢,t,,) < e.

Definition 1.2 (Covering number). Let ¢ > 0 be fixed. The e-covering number of (7, d) is the
cardinality of the smallest e-cover of the set T'.

We consider in particular the e-cover in terms of the balls. The e-covering number of (T, d) is the
smallest number of open balls of radius at most € needed to cover T, defined by

N(e,T,d) = min{N € N*, 3(t;);<ny T C Ui<nBq(ti,e)} ,
where the balls are defined by By(t;,¢) := {t € T, d(t,t;) < e}. The entropy of (T, d) is defined by
H(e,T,d) =log N(e,T,d) .
The function € — H (e, T, d) is called the metric entropy.

Remark 1.1. This definition provides a control of a set T in terms of the set of e-balls covering
the set T'. We think of metric entropy when T is totally bounded, i.e., when the covering number is
finite for all € > 0.

Remark 1.2. The covering number is a decreasing function of the radius €: for all e < &, it holds
that N(e,T,d) > N(&',T,d). Notice that N(e,T,d) — oo, for ¢ — 0. Our interest is when this
is at a logarithm rate. In particular, if im._,olog N(e,T,d)log(1/e) exists, then it is the metric
dimension.

Example 1.3 (Covering numbers of cubes). Consider T = [—1,1], equipped with the semimetric
d(t, ') = [t = t'|. If we divide [-1,,1] into N = |1/e] = 1 sub-intervals, centers at the points
t; = —1+2(i—1)e, for alli < N, and of length at most 2, then it is an e-cover by construction:

for any point t € [—1,1], there exists some m < N, such that d(t,t,,) < e. Thus
1
N(e,[-1,1],d) < = +1.
€
NB: It can be generalized to d-dimentional cube, with bound (1 + 1)<,

We state and prove a very useful result.



Lemma 1.3. Let T = {h: [0,1] — [0,1], h is I-Lipschitz}. Then, for some constant A, it holds
that 4

og (e, T, |- oe) < =

for all e > 0.

Proof. Suppose that h(0) = 0 for all functions h € H for simplicity. Notice first that, if ¢ > 1, then
only one ball is necessary to cover T', thus N (e, T, || - |loo) = 1.

We now consider € € (0,1). We construct an e-cover of T' w.r.t. the uniform norm || - || that has
cardinality upperbounded by e/¢ for some constant A > 0.

We construct am e-grid of the y-axis, and a e(/L)-grid of the z-axis.

Define the uniform grid of [0,1] as follows: 0 = 29 < 21 < ... < zxy = 1, with z; = ke, for all
k<N —1,and N = |1/e], where we recall that |-] is the floor function defined by: for any = € R,
|z] = max{n € Z, n < z}.

We define the intervals by I = (zx—1, 2], and Iy = [xg, x1].
For all h € H, consider the function A : [0,1] — R by

= h(:ck)

IOED SRS

k<N

Notice first that for all k < N, h(zy) — EL@J = e(h(zk) — L@j) < ¢ by definition of the floor
function (approximation error).

Then, the function A is piecewise constant on the intervals I and takes values of the form of ic,
with i € {0,...,|1/e]}.

For any k < N, for all x € I}, we have
h(@) = h(@)] < |h(z) = h(zx)| + [h(zx) = h(z)] < 2,
because h is 1-Lipschitz and the approximation error. Thus ||k — h|| < 2¢.
Now, we need to count how many distinct functions ~ when considering all h-s in H.

For h(z1), there are N choices, as the origin has been fixed. Then for all h,
(k) = Mar—1)| < [h(zr) = (k)| + [R(zr-1) = (k)| + [A(zr—1) — h(zp-1)] < 3¢

there are 7 choices for the next value h(zy). Thus, the set {h, h € H} is a 2e-cover if H an is
composed of N7LY/¢l distinct points. Thus log N(g, T, || - ||oo) < log N + |1/ log 7, that concludes
the proof.

O

Bracketing Numbers. Now we consider only T' to be subset of L,(P) space.

We define a different approach to measure the size of a functional space, namely through constructing
pointwise functions bounding the elements of the set T'.

Definition 1.4 (Bracketing number). Let two functions s and ¢, the bracket [/, u] is the set of all
function h such that I < h < u. Let € > 0 be fixed. The e-bracketing number of (7| - ||,) is the
smallest number of e-brackets needed to cover T', defined by

]\/vB(é“,T7 || . ||q) = min{N S N*, El(li,ui)iSN S T, ||lz — U,'Hq < g, T C UiSN[li,ui]} .
The entropy of (7T, d) is defined by
HB(&T’ H ’ ”q) = logNB(57T7 H ’ ||q) .



Example 1.4 (Distribution function). Let Xi,...,X,, i.i.d. sample drawn from P, and ¢ < 1.
Suppose that T = {1(—o0,x](-), = € R}, and consider a grid points of R: —infty = zo < 71 <
... < xn = oo that generate the brackets of the form [1(—oo, z;—1], 1(—00, x;]]. These brackets have
Li(P) size € using that F(x;—) — F(x;) < €. And the total number of N can be chosen smaller
than 2/e. Notice that, because we can bound the Lo-norm by the Ly in this case, the size of the
Lo (P)-brackets are bounded by \/e. Thus Ng(v/e, T, ||-|l2) < 2/ hence they are of polynomial order
1/€2.

Remark 1.5. 1. The centers are not necessarily required to be in T, but they need to have finite
norm.

2. Consider T C Ly(P), then for all e >0,
N(€7T7 || : ”q) < NB(2€7T7 || : ||q) .

If h is in a 2e-bracket, then ||l —ullq < 2e, andl < h <wu. Thusl—(I+u)/2 <h—(I4+u)/2 <
u—(U+w/24f (—uw)/2<h—(10+u)/2<(u-0/2f |h—(1+u)/2| < (u—1)/2, thus
|h—(+u)/2|q <2/2=c¢.

3. Notice that in general, converse inequalities do not hold.

4. In conclusion, Np is always bigger than N. The main argument for using in some applications
bracketing numbers is related to the pointwise control of any function h: l(x) < h(z) < u(x)
for any x € X, that is different from the integrated Ly-norm.

1.2 Uniform Asymptotic Laws

In order to relate complexity measures with Glivenko-Cantelli classes, we first need to exhibit a

function that upperbounds pointwise all functions in T defined as envelope function x — H(x),
such that |h(z)| < H(x).

The key observation being that, for any ¢-norm, if |h(z)| < H(x) then ||h]|, < ||H]l4- (ie. from
pointwise to norm comparison)

Notice also that the minimal envelope function is given by @ — sup;cq, |h(x)|.

Definition 1.5. The uniform entropy number of T relative to Ly(P) is defined by

Sl}ljplogN(lellq,T, - llg)

where the sup is taken over all probability measures such that (PH?)'/¢ = || H|, < cc.

We are ready now to state two important theorems.

Theorem 1.6. Let T C Li(P). Then, T is P-Glivenko-Cantelli if the associate bracketing number
is finite, i.e., Ng(e, T, - |l1) < oo, for all e > 0.

Proof. Exercise 4 week 1! O

Theorem 1.7. Let T C L1(P) composed of P-measurable functions. If T has P-integrable envelope
function H, such that the entropy measure of the subset Ty = {h1{H < K}, h € T} w.r.t. the
empirical measure log N(e,Tx, L1(P,)) is op(n) for all e, K > 0, then ||P, — P|lr — 0 a.s. and in
mean.

In particular T' is P-Glivenko-Cantelli.

Remark 1.6. 1. The conditionlog N (e, Tk, L1(P,)) = op(n) is equivalent to (1/n)log N(e, Tk, L1(P,)) —
0 in probability when n — oo.



2. The statement of the Theorem based on entropy and its proof are more complicated than the
one based on bracketing numbers. However, it provides a sufficient and mecessary condition
that can be more easily checked, as we will see in the next section in particular.

In fact, similar conditions can be showed to characterize Donsker classes yielding uniform central
limit theorems. The first is based on bracketing numbers, while the second on requires some finite
integral of the uniform entropy number. We will not prove the latter, as it requires techniques that
will be studied at length in the next chapters.

Theorem 1.8. Let T C Lo(P) composed of measurable functions. Then, T is P-Donsker if

o0
| ViR NG T Ty de < o
0

Theorem 1.9. Let T C Li(P). Then, T is P-Donsker if it is P-measurable, with P-integrable
envelope function H, if its uniform covering number is finite, i.e.,

1
/ sup o N1 T @) de <
0

Now that the necessary conditions for weak uniform convergence to hold true, we need practical
conditions to check. The following section exhibits classes of functions and sets with combinatorial
properties fulfill the necessary conditions above.

2 A special case: Vapnik-Chervonenkis classes

This section will show that particular classes, known as Vapnik-Chervonenkis (VC) classes of sets,
provide polynomial upperbound of the uniform covering number in 1/¢.

2.1 Definitions

Example 2.1 (Binary class of functions.). We start with a simple class H of measurable functions
taking values in {0,1}. For any n-sample 2™ = {x1,...,2,}, we want to measure the complezxity of
the class of functions H valued at x™. The complezity is related to the size of the set valued at z",
that is related to its cardinality.

Because the functions take binary values, then H(z™) contains at most 2" elements. If there exists
a finite sample size n < 0o such that H describes all possible values, i.e., |H(x™)| = 2™, then H is
said to be a VC-class.

We now define the general notions underlying Example 2.1.

Definition 2.1. Let C be a class of measurable sets of the sample space X. We say that C picks
out a subset A of the sample 2™ = {z1,...,z,} if it can be described by a subset of C' C C. That
is, if there exists a C' C C such that

{xl,...,xn}ﬂC:A.

We define the shattering coefficient by

mp,(C)= sup |{ANC, CeC}.
|Al=n, ACX

The VC-dimension of C is defined by

VY = sup{m,(C) =2"} ,
neN



i.e. such that C shatters the sample of size V. We say that C is a Vapnik-Chervonenkis class
(VC-class) if its VC-dimension is finite, i.e., V < oc.

The VC-dimension of a function class is related to the largest n (sample size), for which there is
some collection of points z™, that is shattered by C, i.e., such that for any function of C, the function
valued at this collection of points ™ can describe all possible 2™ values.

Example 2.2 (Half-spaces in R%). Show that the class of half-spaces ({(—o0,x], z € R}) is a
VC-class of sets of VC-dimension equal to 1.

Proof for d = 1: For any single point x1, both subsets {x1} and the empty set can be picked out by
that class.

If we consider two distinct points x1 < x4, then it is impossible to find an interval (—oo, x] containing
zo but not x1. Thus)V = 1.

Example 2.3 (Intervals in R?). Show that the class of half-spaces ({(y,z], * > y € R}) is a
VC-class of sets of VC-dimension equal to d+ 1.

Proof for d = 1: For any single point x1, both subsets {x1} and the empty set can be picked out by
that class.

If we consider two distinct points 1 < x2, then it is possible to find an interval (y,x] containing s
but not x1. Now consider three distinct points x1 < xo < x3, it is impossible to shatter the extremes
1, X3, without containing xs. Thus V = 2.

Ezercise, extend to d > 2.
Although the intuition of the previous example is quite straightforward, other classes of functions
might require some strong results, such as the following ones.

Lemma 2.2 (Sauer’s lemma). Let C be a VC-class of finite dimension V. Then, for any n >V

ma(C) < Z; (?) .

In particular m,(C) < (n+1)V.

Lemma 2.3 (Vector spaces). Suppose H to be a class of measurable functions h : X — R of finite
dimension. Then, H forms a VC-class with VC-dimension bounded by dim(H) + 2.

Notice the relation we have with the Example 2.1 by defining the class H = {1¢, C € C}. More

generally, we can define VC-classes of functions as follows.

Definition 2.4. Consider a class H of measurable functions h : X — R. The subgraph of any
function h € H, is defined by {(z,t), t < h(x)}, for any ¢t € R. Then, we say that H is VC-class, if
the class of subgraphs on X x R is VC-class of sets.

In applications such as in statistical learning, VC-classes of functions are fundamental classes (see
Exercise session).

We state basic operations for VC-classes of measurable functions such that the VC-type is preserved.
Similar properties can be formulated in terms of classes of sets.

Proposition 2.5 (VC-permanence properties). Let H, G be two VC-classes of measurable func-
tions. Let ® : R — R monotone and ¥ : X' — X be fized. The following classes are VC-subgraphs:

o —H
e HVG={hVg heH, geG}, HAG



e HoW ={h(¥), heH}
o PoH ={D(h), he H}

Example 2.4. Show that the class of translates {h(x — t),t € R}, with h being fized, has VC-
dimension equal to 2.

2.2 VC(C-dimension and Covering Numbers

A very useful property is that the uniform entropy number can be upperbounded by an exponentially
decreasing function of the VC-dimension. That is to say that if a class of sets is VC, then we can
apply uniform convergence theorems.

Lemma 2.6. Let P be a probability measure on (X, A). Let H be a class of measurable functions,
such that it has a square-integrable measurable envelope function H(t), i.e., PH? < co

1 \
N<e||H||2,H,-||2>sc< ) 7

€
where the norm here is relative to La(P), and C > 0 is a universal constant.

Lemma 2.6 can be extended to subsets of L,(P), with ¢ > 1, as soon as the envelope function has
L,(P)-norm strictly positive. However, the constant C' will not be universal anymore, and depends
on the VC-dimension. See Theorem 2.6.7. in (van der Vaart and Wellner, 1996).

Remark 2.5. Lemma 2.6 and generalizations of it are fundamental in empirical process theory,
msofar as they provide guarantees for stochastic processes indexed by infinite classes satisfying the
conditions for their uniform asymptotic behaviors (e.g. Glivenko-Cantelli’s and Donsker’s types of
theorems). In statistical applications, under some conditions, it can be shown that plug-in estimator
are uniformly consistent.

Remark 2.6. This VC-classes are more conservative as Lemma 2.6. holds true for the covering
number and not their entropy.

3 Random measures of complexity: Rademacher and Gaussian processes

In the last sections, we saw how to describe the size of the set T' in terms of deterministic concepts,
w.r.t. probability measures. We present, here, a modern approach to describe the structure of the
set T: the intuition is to deduce information about 7' through the knowledge of the data that we
have. Precisely, consider T' C R?, we define the following two complexity measures.

Example 3.1 (Binary classification). Consider the binary classification problem, i.e., based on an
i.i.d. sample, we want to find the best classifier h : X — {—1,41} that assigns to each observation
the true label Y; € {—1,4+1}. Then, minimizing the classification error, > 1{h(X;) # Y;}, is
equivalent to minimizing > Y;h(X;) w.r.t. h € H.

A classic risk measure in learning theory is known as the Rademacher empirical complexity taking
the form of suppen Y iy €ih(X;), where the £;-s are i.i.d. 1 r.v.s. It quantifies the worst statistical
error we could commit based on the function class H.

3.1 Definitions and Examples

Definition 3.1 (Rademacher complexity). Let & be a Rademacher r.v., such that P(e = 1) = P(e =
—1) = 1/2. The Rademacher canonical process indexed by T C R? is defined by

d
Rt = <E7t> = Zgiti .
i=1



The Rademacher complexity of T is given by R(T') = E[sup,cp Ry).

We can similarly define standard Gaussian complexity.

Definition 3.2 (Gaussian complexity). Let 7 be a standard Gaussian r.v.. The Gaussian canonical
process indexed by T C R? is defined by

d
Gy = (n,t) = thi .
i=1
The Gaussian complezity of T is given by G(T') = E[sup,cr Gyl

These canonical complexities and why they play a key role in the control of the complexity of sets
as shown below.

Example 3.2 (Euclidean ball). Define the Euclidean ball by T = {t € R, ||t|lo < 1}. First, by
Cauchy-Schwarz inequality we have

R(T) =E

d d
sup (g,t)| = E (255)1/2 sup () t2)1/?
[[t]2<1 i=1 ltll2<1 i=1

For the Gaussian complezity, we similarly obtain

d d d
S sup (3 tw] E [(2 ﬁ)lﬂ] ©)

i=1 lltlla<1 3 i=1

Q(T)El sup (n,t)| =E

lItll2<1

Then, the square-root function being concave, Jensen’s inequality applies

Recall that the l3-norm of a standard d-dimentional Gaussian variable equals to d.

Example 3.3 (¢1-balls). Define the ¢1-ball by T = {t € R?, ||t||; < 1}. Prove that R(T) =1 and
G(T) < C+/logd. Exercise

Remark 3.4. Notice that Rademacher and Gaussian complezities are comparable, and we will give
an explicit constant factor in the next Proposition.

3.2 Properties

Proposition 3.3 (Comparison R and G). Consider T to be composed of elements valued in R?.
Let n be a standard Gaussian r.v. and € be a Rademacher r.v.
Then,

\/ER(T) < G(T) < 2¢/logd R(T) .

Proof. Board. O

Remark 3.5. Proposition 3.3 shows that, although Rademacher and Gaussian complexities are
comparable, the latter can be substantially larger than the Rademacher one. In fact, Rademacher
complexity will be mainly used in the problems studied in this class (and also in the literature).



Another property of both complexities that turns out to be very useful in practice, especially in
Empirical Risk Minimization problems, is that of contraction. Consider a fixed function & =
(®;, i = 1,...,d), centered , i.e., ®;(0) = 0, and L-Lipschitz. Suppose we are interested in the
image of the complexities by this map defined by

d .
SUPZ‘I%(Q)& y

teT =

R(®(T)) = E

and

d
G(e(1)=E EEIT) Z D (ti)ni

Proposition 3.4 (Contraction property). Consider T to be composed of elements valued in R?,
and a centered L-Lipschitz function ® = (®q,...,®4), i.e., D;(0) = 0. The following assertions
hold true.

1. R(®(T)) < 2LR(T)
2. G(®(T)) < LG(T)

Proof. Exercise. O
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