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Notations. Without additional notice, we consider the same notations as in the lecture notes.

Linear classifiers. In this session, we will prove fundamental generalization guarantees for linear
classifiers.

Consider the r.v. X valued in Rd, with d ∈ N∗, endowed with its Borelian σ-algebra, and let its
random label Y valued in {0, 1}. Define P the joint distribution of (X,Y ). We consider the class
H of all possible classifiers defined as measurable functions h : Rd → {0, 1}, i.e., it assigns to any
point x a label 0 or 1.

The goal is to find the best classifier h minimizing the classification risk

L : h ∈ H 7→ P(Y ̸= h(X)) ∈ [0, 1] , (1)

where we consider that L∗ = infh∈H L(h) exists. Consider an i.i.d. sample {(Xi, Yi)}i≤n drawn

from P , and denote by ĥ the empirical minimizer of the empirical risk function defined as follows:

ĥ ∈ argmin
h∈H

1

n

n∑
i=1

1{h(Xi) ̸= Yi} =: argmin
h∈H

Ln(h) .

Exercise 1 (Binary Loss). In this setup, we consider linear classifiers taking the form of

hθ0,θ : x 7→ 1{⟨θ, x⟩+ θ0 > 0} , (2)

where θ = (θ1, . . . , θd) ∈ Rd and θ0 ∈ R are the parameters we want to optimize. We denote by H0

this class.

1. Show that we can equivalently consider the problem with θ0 = 0. We set θ0 = 0 in the
remaining exercise.

2. Prove that
L(ĥ)− inf

h∈H0

L(h) ≤ 2 sup
h∈H0

|Ln(h)− L(h)| . (3)

3. Prove that the class linear classifiers can be reformulated as a VC-class of sets and provide
an upperbound on its VC-dimension.
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4. Prove that, for any δ ∈ (0, 1), it holds true with probability at least 1− δ

L(ĥ)− inf
h∈H0

L(h) ≤ 8

√
2(d+ 1) log(n+ 1)

n
+ 8

√
log(1/δ)

n
, (4)

as soon as n ≥ 2.

5. Correct the previous statement and give an order of lower bound for the sample size n for the
inequality to hold true.

6. Notice that the optimal output ĥ depends on the random dataset. Prove a generalization
guarantee for ĥ, i.e., derive the upperbound of E[L(ĥ)]− infh∈H0 L(h).

7. Conclude that, if we are able to generate an infinite amount of data from P , then it holds true
that

L(ĥ)− inf
h∈H0

L(h) → 0 , (5)

in probability, and for n → ∞.

Exercise 2 (Hinge Loss). We consider here θ0 = 0. We now study the generalization perfomance
of Support Vectore Machine (SVM) algorithm. Consider the same framework, and defined the hinge
loss composing the hypothesis class H1, by

hθ : x 7→ max(0, 1− y⟨θ, x⟩) = (1− y⟨θ, x⟩)+ , (6)

with θ ∈ Θ ⊆ Rd, and with associated risk function

L : h ∈ H 7→ E[h(X,Y )] . (7)

Based on an i.i.d. random sample {(Xi, Yi)}i≤n drawn from P , then we can consider the optimal
empirial discriminant function as being solution of

ĥ ∈ argmin
h∈H

1

n

n∑
i=1

max(0, 1− Yi⟨θ,Xi⟩) =: argmin
h∈H

Ln(h) .

1. Show the graph of the hinge loss function to explain why the associate classifier is of the form
1{sign(⟨θ, x⟩) ̸= y}.

2. Prove that the hinge loss function is 1-Lipschitz.

3. Prove similar upperbound as in question 4, using the empirical Rademacher complexity asso-
ciated with the hinge loss, ie., with probability at least 1− δ,

L(ĥ)− inf
h∈H1

L(h) ≤ 2Rn(H1) + C

√
log(1/δ)

n
, (8)

and determine the explicit constant C > 0.
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