

Empirical Processes

MAA110 - EPFL

Nikitas Georgakis*, Myrto Limnios*

11/03/2025

Sub-Gaussian random variables. Recall that a centered r.v. X is sub-Gaussian with variance parameter $\nu \geq 0$, if

$$\psi_X(\lambda) := \log \mathbb{E}[e^{\lambda X}] \leq \frac{\lambda^2 \nu}{2}. \quad (1)$$

The following exercises will provide other equivalent characterizations.

Exercise 1 (Sub-Gaussian random variables). *Consider X to be sub-Gaussian with variance parameter $\nu \geq 0$. Prove that the following assertions are equivalent and give the explicit value of the constants C_1, C_2, C_3, C_4 , up to numerical multiplicative constants K that change for each of the statements ($C_i \leq KC_j$).*

(i) *sub-Gaussian tails. For all $t \geq 0$,*

$$\mathbb{P}(|X| \geq t) \leq 2 \exp \left\{ -\frac{t^2}{C_1 \nu} \right\}$$

(ii) *sub-Gaussian moments. For all $k \in \mathbb{N}^*$*

$$\mathbb{E}[|X|^k]^{1/k} \leq C_2 \sqrt{\nu k}$$

(iii) *Super-exponential moments.*

$$\mathbb{E} \left[\exp \left\{ \frac{X^2}{C_3 \nu} \right\} \right] \leq e$$

Exercise 2 (Rademacher r.v.). *Let a Rademacher r.v. ε , i.e., such that $\mathbb{P}(\varepsilon = 1) = \mathbb{P}(\varepsilon = -1) = 1/2$. Prove that ε is sub-Gaussian, and give the exact variance parameter.*

Exercise 3 (Rademacher average). *Let $n \in \mathbb{N}^*$ be fixed. Let an i.i.d. sequence of Rademacher variables $\varepsilon_1, \dots, \varepsilon_n$, independent of the i.i.d. sample X_1, \dots, X_n composed of centered square-integrable random variables. The Rademacher average is defined by*

$$R_n = \sum_{i=1}^n \varepsilon_i X_i, \quad (2)$$

Prove that the following inequality holds true, for all $t \geq 0$, and give the explicit value of the constant $c > 0$.

$$\mathbb{P}\{|R_n| \geq t\} \leq 2e^{-t^2/2c^2}. \quad (3)$$

*{first.last}@epfl.ch, Office MA1493, CM1618

Orlicz norms. Orlicz spaces characterize broader classes of random variables, for which sub-Gaussian and sub-Exponential are special cases.

A class of Orlicz functions is composed by functions $\psi : \mathbb{R}_+ \rightarrow \mathbb{R}_+$, s.t. $\psi(0) = 0$ and $\psi \rightarrow \infty$ when $t \rightarrow \infty$.

For a r.v. X , we define its Orlicz norm by

$$\|X\|_\psi := \inf\{t > 0, \quad \mathbb{E}[\psi(|X|/t)] \leq 1\} . \quad (4)$$

Exercise 4 (Orlicz norm). 1. Prove that $\|\cdot\|_\psi$ is convex on the space of random variables.

Hint: show that the bivariate function $(t, x) \in [0, \infty)^2 \mapsto t\psi(x/t)$ is convex in both coordinates.

2. Prove that $\|\cdot\|_\psi$ is a norm.

Exercise 5 (Properties). 1. Notice that choosing $\psi(t) = t^p$, with $p > 0$ recovers the classical L_p -norm

2. Define $\psi_p(t) = e^{|x|^p} - 1$, with $p \in \{1, 2\}$. Prove that

$$\|X\|_{\psi_2}^2 = \|X^2\|_{\psi_1}$$

and that for any r.v. Y independent of X

$$\|XY\|_{\psi_1} \leq \|X\|_{\psi_2} \|Y\|_{\psi_2} .$$

Exercise 6. Le X be a r.v. with finite ψ_1 -norm.

1. Prove that for all $t \geq 0$,

$$\mathbb{P}(|X| \geq t) \leq 2 \exp(-t/\|X\|_{\psi_1}) . \quad (5)$$

2. Suppose now that X is centered, and define $Z = X/\|X\|_{\psi_1}$. Prove that for all $|\lambda| \leq 1/2$,

$$\psi_Z(\lambda) \leq 4\lambda^2 \quad (6)$$