

Empirical Processes

MAA110 - EPFL

Nikitas Georgakis*, Myrto Limnios*

27/05/2025

Notations. Without additional notice, we consider the same notations as in the lecture notes. We use the sup-norm for any function $h : \mathcal{X} \rightarrow \mathbb{R}$, defined by $\|h\|_\infty = \sup_{t \in \mathcal{X}} |h(t)|$.

Exercise 1. Consider two independent and i.i.d. sequences X_1, \dots, X_n and Y_1, \dots, Y_m resp. drawn from a probability distribution P, Q on a measurable space \mathcal{X} and $k, \ell : \mathcal{X}^2 \rightarrow \mathbb{R}$ a square integrable function resp. w.r.t. $P \otimes P$ and $P \otimes Q$.

1. Derive the Hoeffding decomposition of the U -statistics defined below

$$\begin{aligned} U_n(k) &= \frac{1}{n(n-1)} \sum_{1 \leq i \neq j \leq n} k(X_i, X_j) \\ U_{n,m}(\ell) &= \frac{1}{nm} \sum_{i=1}^n \sum_{j=1}^m \ell(X_i, Y_j) \end{aligned}$$

2. Suppose that the class \mathcal{K} of kernel functions $k(x, x')$ is VC-type with parameters (A, \mathcal{V}) , with bounded sup-norm and second moment by a finite constant. Prove a maximal inequality for $U_n(k)$ uniformly over \mathcal{K} .

Exercise 2 (2nd-order Gaussian chaos). Consider $X = (X_1, \dots, X_n)$ to be a centered Gaussian vector of covariance matrix I_n , and let $A = (a_{i,j})_{i,j \leq n}$ be a symmetric real-valued matrix, s.t., $a_{ii} = 0$ for all $i \leq n$. Define the quadratic form

$$Z = X^T A X = \sum_{i,j \leq n} a_{i,j} X_i X_j$$

1. Prove that for all $\lambda \in (0, 1/2)$

$$\log \mathbb{E} e^{\lambda(X_1^2 - 1)} \leq \frac{\lambda^2}{1 - 2\lambda} \quad (1)$$

2. Prove that Z is a zero-mean r.v. that can be written as a weighted sum of standard Gaussian r.v.s (Hint: Use the spectral decomposition of A)

3. Prove that for all $\lambda \in (0, 1/(2\alpha))$

$$\psi_Z(\lambda) \leq \frac{\lambda^2 \|A\|}{1 - 2\lambda\alpha} \quad (2)$$

where $\alpha = \max_i |\alpha_i|$ and $\|A\|^2 = \sum_{i \leq n} \alpha_i^2$.

Hint: Use the rotational invariance of standard Gaussian r.v.s and notice that Z has the same distribution as $\sum_{i=1}^n \alpha_i^2 (X_i^2 - 1)$ where the α_i -s are inherited from $Q2$

4. Conclude that for any $u > 0$

$$\mathbb{P}(Z > 2\|A\|\sqrt{u} + 2\alpha u) \leq e^{-t} \quad (3)$$

*{first.last}@epfl.ch, Office MA1493, CM1618