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Binary classification. Consider an input r.v. valued in a measurable space X ⊂ Rd, with d ∈ N∗,
and an output r.v. Y valued in {0, 1}. Denote by P the joint distribution of (X,Y ), and define the
regression function (posterior distribution) by

η : x ∈ X 7→ P (Y = 1|X = x) .

Exercise 1. Derive the explicit formula for η as function of θ and p, when we consider first that
X ⊂ [0, 1], and P such that:

1. the conditional distribution of X given Y = 0 is P0 = U([0, θ]), with θ ∈ (0, 1)

2. the conditional distribution of X given Y = 1 is P1 = U([0, 1])

3. p = P(Y = 1) ∈ (0, 1).

Exercise 2 (Bayes classifier). Suppose now that X ⊂ R+, and denote by PX the marginal of X,
as well as the regression function given by:

η : x ∈ X 7→ x

x+ θ
,

for all θ > 0. Consider a collection of classifiers H = {h : X −→ {0, 1}, h measurable}. The
associate binary loss is defined as

ℓh : (x, y) ∈ X × {0, 1} 7→ 1{h(x) ̸= y} ,

i.e., equals to 1 if the predictor h mislabels the input x. The goal is to find the optimal classifier
known as the Bayes classifier h∗, that minimizes the associated risk

R(h) = E[ℓh(X,Y )] = P(h(X) ̸= Y ) .

1. Recall the minimization problem for which η is the unique solution.

2. Derive the explicit formula for the risk as function of η.

3. Prove that the Bayes risk equals to

R(h∗) =

∫
X
min(η(x), 1− η(x))dPX(x)

Deduce the explicit formula for h∗ as function of η.
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4. Derive the Bayes risk for PX = U([0, αθ]), with α > 1

Exercise 3. Consider the r.v. X = (T,U, V ), of independent coordinates distributed from a
standard exponential distribution. Let θ > 0 be fixed and define the response variable by Y =
1{T + U + V ≤ θ}.

1. Derive the Bayes function when V is not observed, i.e., h∗(T,U), and the associated Bayes
risk.

2. Consider now that T is not observed. Continue the above computations and compare the
respective risk functions for θ = 9.

3. Propose a classifier when none of the coordinates of X are observed. Derive its risk.

Uniform convergence. This exercise shows that if we are able to approximate (discretize) the
function class H into an (arbitrarily) finite class Hε, depending on ε, then we can prove a ULLN.

Exercise 4 (Glivenko-Cantelli’s Theorem with bracketing). Let (Ω,A, P ) be a probability space.
Consider a class H of measurable functions h : X → R, such that P |h| < ∞, and X a r.v. of
probability distribution P . Let X1, . . . , Xn an i.i.d. sample drawn from P , with n ∈ N∗. Define the
standard empirical process by

(h, ω) ∈ H × Ω 7→ 1√
n

n∑
i=1

(h(Xi)− Eh(X)) =
√
n(Pn(ω)− P )(h) ∈ R .

Let ε > 0 be fixed. Suppose that there exists a class of functions Hε such that we can bound any
function h ∈ H by elements of Hε. Specifically, for all h ∈ H we can find hl, hu ∈ Hε, such that
hl ≤ h ≤ hu, and P (hl − hu) ≤ ε.

Prove that
∥Pn − P∥H := sup

h∈H
|Pnh− Ph| a.s.−→

n→∞
0 .

Exercise 5. Prove that any continuous map between two metric spaces is Borel-measurable. Hint:
Use the definition of measurable maps.
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