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Binary classification. Consider an input r.v. valued in a measurable space X C R¢, with d € N*,
and an output r.v. Y valued in {0,1}. Denote by P the joint distribution of (X,Y"), and define the
regression function (posterior distribution) by

n:xe€eX—PY=1X=xz).

Exercise 1. Derive the explicit formula for n as function of # and p, when we consider first that
X C [0,1], and P such that:

1. the conditional distribution of X given Y =0 is Py = U([0,0]), with 6 € (0,1)
2. the conditional distribution of X given Y = 11is P, = U([0,1])
3.p=PY =1)€(0,1).

Exercise 2 (Bayes classifier). Suppose now that X C R, and denote by Px the marginal of X,
as well as the regression function given by:

x
reX = —— |
n:e r+0

for all 8 > 0. Consider a collection of classifiers H = {h : X — {0,1}, h measurable}. The
associate binary loss is defined as

by : (x,y) € X x{0,1} — L{h(x) £y},

i.e., equals to 1 if the predictor h mislabels the input x. The goal is to find the optimal classifier
known as the Bayes classifter h*, that minimizes the associated risk

R(h) = E[64(X,Y)] = B(h(X) £ Y) .

1. Recall the minimization problem for which 7 is the unique solution.
2. Derive the explicit formula for the risk as function of 7.

3. Prove that the Bayes risk equals to

R(h*) = /X min(y(z), 1 — n(z))dPx ()

Deduce the explicit formula for A* as function of 7.
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4. Derive the Bayes risk for Py = U([0,af)]), with o > 1

Exercise 3. Consider the r.v. X = (T,U,V), of independent coordinates distributed from a
standard exponential distribution. Let # > 0 be fixed and define the response variable by ¥ =
H{T+U+V <6}

1. Derive the Bayes function when V is not observed, i.e., h*(T,U), and the associated Bayes
risk.

2. Consider now that T is not observed. Continue the above computations and compare the
respective risk functions for 6 = 9.

3. Propose a classifier when none of the coordinates of X are observed. Derive its risk.

Uniform convergence. This exercise shows that if we are able to approximate (discretize) the
function class H into an (arbitrarily) finite class H., depending on ¢, then we can prove a ULLN.

Exercise 4 (Glivenko-Cantelli’s Theorem with bracketing). Let (€,.4, P) be a probability space.
Consider a class H of measurable functions h : X — R, such that PJh| < oo, and X a r.v. of
probability distribution P. Let Xi,..., X, an i.i.d. sample drawn from P, with n € N*. Define the
standard empirical process by

(h,w) € H x Qs \/iﬁ i(h(xi) —ER(X)) = Vi(Po(w) — P)(h) €R .
=1

Let € > 0 be fixed. Suppose that there exists a class of functions H. such that we can bound any
function h € H by elements of H.. Specifically, for all h € H we can find h;, h, € H., such that
hi < h < hy, and P(h; — hy) < e.

Prove that
| P, — Pll3 := sup |P,h — Ph| &% 0.
heH n—00

Exercise 5. Prove that any continuous map between two metric spaces is Borel-measurable. Hint:
Use the definition of measurable maps.



