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So far we have studied collections of statistics that took the form of empirical averages based on
i.(i.d.) r.v.s. This Chapter focus on estimators taking more complicated form, known as U -statistics,
for which the theory goes back to the fundamental works of Halmos (1946) and Hoeffding (1948).
This Chapter focuses on their properties: unbiased, lower variance, some asymptotic guarantees,
and importantly their concentration properties.

1 General Definitions and Properties

Let θ be a functional defined on a set F of real-valued distribution functions, such that

θ : F ∈ F 7→ θ(F ) .

Based on a i.i.d. sample X1, . . . , Xn drawn from an unknown distribution F , the goal is to estimate
the function θ(F ).

Theorem 1.1 (Halmos). Let θ be a parameter of an unknown distribution F . Then, it admits an
unbiased estimator for sufficiently large sample size n iff. for some q ∈ N∗, there exists a function
h : X q → R, such that

θ = E[h(X1, . . . , Xq)] .

In fact, we can do slightly better than the natural estimator, and consider all possible permutations
over the data, that is called U -statistic.

Definition 1.2. A symmetric one-sample U -statistic of kernel h and of order q ∈ N∗, is defined by

Un(h) =

(
n

q

)−1 ∑
σ∈Sn

h(Xσ(1), . . . , Xσ(q)) , (1)

where Sn is the set of all permutations of {1, . . . , n}, i.e., the sum is over all the subsets 1 ≤ i1 <
. . . < iq ≤ n of the indices {1, . . . , n}.

Remark 1.1. Symmetric kernels are defined based on a measurable kernel h̃ by: h(x1, . . . , xq) =

(q!)−1
∑

σ∈Sq
h̃(xσ(1), . . . , xσ(q)). Two fundamental references for U -statistics are Lee (1990), be-

ing the first comprehensive monograph on classic probability asymptotic theory and applications to
statistical models. Korolyuk and Bororvskich (1994), generalize the results by relating/decomposing
the U -statistics to/in reverse martingales valued in different types of spaces (Banach and Hilbert
spaces).

Example 1.2. Basic examples for estimating the parameters of a i.i.d. random sample X1, . . . , Xn,

under some basic moment-based assumptions, and with X, X ′ i.i.d.∼ F , are as follows:
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1. mean: θ(F ) = EX∼F [X], then Un = (1/n)
∑n

i=1 Xi

2. variance: θ(F ) = Var[X], then Un =
(
n
2

)−1 ∑
1≤i<j≤n(Xi −Xj)

2

3. covariance: θ(F ) = Cov[X,X ′], then Un =
(
n
2

)−1
(1/2)

∑
1≤i<j≤n(Xi −Xj)(X

′
i −X ′

j)

We can similarly define two-sample U -statistics as follows.

Definition 1.3. Let two independent and i.i.d. random samples X1, . . . , Xn and Y1, . . . , Ym, drawn
from two different p.d.s F,G. A symmetric two-sample U -statistic of kernel h and of order (q, s) ∈
N∗ × N∗, is defined by

Un,m(h) =

(
n

q

)−1(
m

s

)−1 ∑
σ∈Sn

∑
σ′∈Sm

h(Xσ(1), . . . , Xσ(q), Yσ′(1), . . . , Yσ′(s)) . (2)

Example 1.3. Mann-Whitney statistic is an important example of two-sample U -statistic of order
(1, 1). Suppose we want to test the equality of F,G, if F is stochastically larger that G. We want
to estimate P(X ≥ Y ). The corresponding U -statistic takes the form

Un,m =
1

nm

n∑
i=1

m∑
j=1

1{Xi ≥ Yj} .

It is of kernel h(x, y) = 1{X ≥ Y }, and one can construct a test statistic based on Un,m.

Projection methods. It is clear that U -statistic take a complicated form, that differs from what
we have studied so far. This paragraph presents two important methods for decomposition any
U -statistic into a main term being empirical averages, for which we can use classic theorems and
concentration results, while the rest of the terms will be proved to be negligeable for large enough
sample size and under some conditions.

The first method is known as Hajèk’s projection, and is applicable to any square-integrable function
of the data. The idea is to project onto a set, say C, spanned by the data and composed of functions
of the form

∑n
i=1 gi(Xi), where the functions gi : X → R are square-integrable and measurable.

Theorem 1.4 (Hajèk’s projection method). Consider the set C as defined above, based on a set of
independent r.v.s X1, . . . , Xn. Then, for any statistic T defined on the data sample, its projection
onto C is defined by

T̂ (X1, . . . , Xn) =

n∑
i=1

E[T |Xi]− (n− 1)E[T ] .

Proof. The RHS is clearly an element of C, it remains to prove the orthogonality property (T − T̂
orthogonal to C).

Remark 1.4. If the data is i.i.d., and T is measurable and symmetric in its arguments, then
E[T |Xi = x] = E[T (x,X2, . . . , Xn)] .

We know formulate a complete decomposition tailored for U -statistics of any order q.

Theorem 1.5 (Hoeffding decomposition). Consider the U -statistic as defined in Eq. (2). For
j ∈ {2, . . . , q}, let hj(x1, . . . , xj) = E[h(X1, . . . , Xq) | X1 = x1, . . . , Xj = xj ], such that the kernels
are recursively defined:

h(1)(x1) = h1(x1)− θ ,

h(j)(x1, . . . , xj) = hj(x1, . . . , xj)−
j−1∑
c=1

∑
σ∈Sc

h(c)(xσ(1), . . . , xσ(c))− θ , ∀j ∈ {2, . . . , q} .
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Then the U -statistic of degree q is decomposed as

Un(h) = θ +

q∑
j=1

(
q

j

)
U (j)
n (h(j)), (3)

where the U
(j)
n are the U -statistics based on kernel h(j) of degree j.

An important characterization is the order of degeneracy (also related to the rank of the statistic).
Indeed, a U -statistic is said to be degenerate or order c w.r.t. a probability measure, if the first c
terms of the decomposition equal to zero a.s.. Its variance is of order n−(c+1). In particular, the
order of degeneracy controls the limit distribution of the statistic, see e.g. Serfling (1980).

Theorem 1.6 (Theorem 1.6.2, Lee (1990)). Consider the decomposition of Theorem 1.5. Then,
for all j ≤ q and c ≤ j − 1,

E[h(j)(X1, . . . , Xj) | X1, . . . , Xc] = 0 (4)

and the kernels E[h(j)(X1, . . . , Xj)] = 0.

It results that the sequence U
(j)
n is of rank j, for j ≤ q.

Asymptotic properties. We now state a version of CLT for U -statistics based on one sample.
A similar extension can be obtained for two-sample U -statistics.

We consider the kernel h to be fixed, and define the projection of Un − θ onto C defined by

Ûn =

n∑
i=1

E[Un − θ|Xi] =
q

n

n∑
i=1

h1(Xi) ,

with h1(Xi) = E[h(x,X2, . . . , Xq)]− θ.

Theorem 1.7. If the kernel function h is square-integrable, then
√
n(U − θ − Ûn)

P−→ 0.

Thus
√
n(U − θ) ⇝ Z, with Z ∼ N (0, q2ξ), where ξ = Cov(h(X1, . . . , Xq), h(X

′
1, . . . , X

′
q)), where

the X1, . . . , Xn, X
′
1, . . . , X

′
n are i.i.d.

2 Concentration Results

This section states concentration properties of U -statistics around their mean. We first establish
for one sample and fixed kernel, then extend to one- and two-sample U -processes.

2.1 Concentration properties for fixed kernel

We start with a simple Lemma achieving slow rate of convergence of order OP(q/
√
n).

Lemma 2.1. Consider Un to be of order q ∈ N∗ and of kernel h based on an independent sample
X1, . . . , Xn. Suppose that for all x = (x1, . . . , xq), |h(x)| ≤ B < ∞. Then, for any t > 0,

P(|Un − θ| > t) ≤ 2e−t2n/(2B2q2) .

Proof. Exercise.

We prove that this rate can be sharper and achieves OP(
√
q/n).
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Lemma 2.2. Consider Un to be of order q ∈ N∗ and of kernel h based on an independent sample
X1, . . . , Xn. Suppose that for all x = (x1, . . . , xq), |h(x)| ≤ B < ∞. Then, for any t > 0,

P(|Un − θ| > t) ≤ 2e−t2n/(2B2q) .

Proof. Board.

2.2 Maximal inequalities for VC-classes of kernels

Definition 2.3 (One-sample U -statistics of degree 2). Let n ≥ 2. Consider a i.i.d. sequence
X1, . . . , Xn drawn from a probability distribution µ on a measurable space X and k : X 2 → R a
square integrable function w.r.t. P ⊗P . The one-sample U -statistic of degree 2 and kernel function
k based on the Xi’s is defined as:

Un(k) =
1

n(n− 1)

∑
1≤i ̸=j≤n

k(Xi, Xj) . (5)

Example 2.1. (Gaussian chaos of order 2) Consider X = (X1, . . . , Xn) to be a centered Gaussian
vector of covariance matrix In, and let A = (ai,j)i,j≤n be a symmetric real-valued matrix, s.t., aii = 0
for all i ≤ n. Define the quadratic form

Z = XTAX =
∑
i,j≤n

ai,jXiXj .

Definition 2.4 (Two-sample U -statistics of degree (1, 1)). Let n, m in N∗. Consider two inde-
pendent i.i.d. sequences X1, . . . , Xn and Y1, . . . , Ym respectively drawn from the probability
distributions P and Q on the measurable spaces X and Y. Let ℓ : X ×Y → R be a square integrable
function w.r.t. P ⊗Q. The two-sample U -statistic of degree (1, 1), with kernel function ℓ and based
on the Xi’s and the Yj ’s is defined as:

Un,m(ℓ) =
1

nm

n∑
i=1

m∑
j=1

ℓ(Xi, Yj) . (6)

Example 2.2. A classic example of two-sample U -statistic of degree (1, 1) is the Mann-Whitney
statistic, of kernel ℓ(x, y) = I{y < x}+(1/2)I{y = x} on R2. It is a natural (unbiased) estimator of
the AUC: when computed from univariate samples X1, . . . , Xn and Y1, . . . , Ym with distributions
P and Q on R, its Hoeffding decomposition yields

AUCP̂n,Q̂m
= P{X ≥ Y}+ 1

n

n∑
i=1

(Q̂m(Xi)−E[Q(X)])− 1

m

∑
j≤m

(P̂n(Yj)−E[P(Y)])+oPP,Q

(
1

n
+

1

m

)
.

(7)
can be thus viewed as an affine transformation of the rank-sum Wilcoxon statistic.

We obtain concentration bounds for U -processes using Hoeffding’s decomposition, and treat each
of the terms from the obtained decomposition separately as we will see in the next section.

2.3 Concentration inequalities for U-processes

Similar to concentration bounds for empirical processes, this section encompasses concentration
bounds for U -processes defined as collections of U -statistics indexed by classes of kernels.

Let K a class of kernel functions of order (2), U -processes based on a i.i.d. sample {X1, . . . , Xn}
are referred to as the mapping
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k ∈ K 7→ Un(k) =
1

n(n− 1)

∑
1≤i ̸=j≤n

k(Xi, Xj) (8)

and similarly to empirical process, the goal is to control the uniform deviations of {Un(k)−θ(k)}k∈K.
The selected results give insight into the control of such random object, depending on the type of
class of kernels and on the measurability assumption for the uniform bound. Similarly, we refer to
U -processes of degree (1, 1), based on the two i.i.d. and independent samples {X1, . . . , Xn} and
{Y1, . . . , Ym}, indexed by a class of kernels L the collection {Un,m(ℓ)}ℓ∈L.

We start with a maximal inequality proved by Nolan and Pollard (1987), for degenerate U -processes
of degree 2 for general classes of symmetric kernels, later extended to two-sample degenerate U -
processes of degree (1, 1) by Neumeyer (2004).

Lemma 2.5 (Consequence of Theorem 6, Nolan and Pollard (1987)). Let n ≥ 2 and X1, . . . ,
Xn be i.i.d. random variables drawn from a probability distribution P on a measurable space X .
Let K be a class of measurable kernels k : X 2 → R such that supx,x′∈X 2 |k(x, x′)| ≤ D < +∞
and

∫
X 2 k

2(x, x′)P (dx)µ(dx′) ≤ σ2 ≤ D2, that defines a degenerate one-sample U -process of degree
2, based on the Xi’s: {Un(k) k ∈ K}. Suppose in addition that the class K is of VC-type with
parameters (A,V). There exists a constant C > 0, such that:

E
[
sup
k∈K

|Un(k)|
]
≤ 2σC

n− 1

(
1

4
+ V log(A)

)
. (9)

Lemma 2.6 (Consequence of Lemma 2.4, Neumeyer (2004)). Let (n, m) ∈ N∗. Consider two
independent i.i.d. random samples X1, . . . , Xn and Y1, . . . , Ym respectively drawn from the proba-
bility distributions P and Q on the measurable spaces X and Y. Let L be a class of degenerate
non-symmetrical kernels ℓ : X × Y → R such that sup(x,y)∈X×Y |ℓ(x, y)| ≤ L < +∞ and∫
X×Y ℓ2(x, y)P (dx)Q(dy) ≤ σ2 ≤ L2, that defines a degenerate two-sample U -process of degree
(1, 1), based on the Xi, Yj’s: {Un,m(ℓ), ℓ ∈ L}. Suppose in addition that the class L is of VC-type
with parameters (A,V). There exists a constant C > 0, such that:

E
[
sup
ℓ∈L

|Un,m(ℓ)|
]
≤ 2σC√

nm

(
1

4
+ V log(A)

)
. (10)

Major (2006) proved a concentration bound for one-sample degenerate U -processes of arbitrary
degree indexed by L2-dense classes of non-symmetric kernels. The lemma below formulates this
result adapted to the present framework.

Lemma 2.7 (Theorem 2, Major (2006)). Suppose the conditions of Lemma 2.5 fulfilled. Then,
there exist constants C1 > 0, C2 ≥ 1 and C3 ≥ 0 depending on (A,V) such that:

P
{
sup
k∈K

|Un(k)| ≥ t

}
≤ C2 exp

{
−C3(n− 1)t

σ

}
, (11)

as soon as C1 log(2D/σ) ≤ (n− 1)t/σ ≤ nσ2/D2.

Consider two independent i.i.d. random samples X1, . . . , Xn and Y1, . . . , Ym respectively drawn
from the probability distributions µ and ν on the measurable spaces X and Y. Let L be a class
of degenerate non-symmetrical kernels ℓ : X × Y → R for which the following assumptions are
considered.

Theorem 2.8 (Lemma 16, Clémençon, Limnios and Vayatis (2021)). Suppose the conditions of
Lemma 2.6 to be fulfilled. Then, for all t > 0, there exists a universal constant K > 2 such that:

P
{
sup
ℓ∈L

|Un,m(ℓ)| ≥ t

}
≤ K2V(A/L)2Ve4/L

2

exp

{
−nmt2

ML2

}
, (12)
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for all nmt2 > max(84 log(2)L2V, (log(2)L2V/2)1+δ), δ ∈ (1, 2) constant and M = 163/2.

We omit the proofs as being very technical.

3 Application: The two-sample problem

We exposed the two-sample problem, and introduced an unbiased estimator of the Maximum Mean
Discrepancy taking the form of U -statistic. It is considered as state-of-the-art statistical method
and was introduced by Gretton et al. (2012).
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