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In this Chapter we will see how empirical process theory is used to explain recent achievements
of particular Machine Learning algorithms with interest in classification. Without any further
discussion, we place ourselves in highdimensional settings, wherein classical statistical theory might
be applicable only at the price of some strong requisites. We will particularly focus on how to
go beyond the rate Op(1/4/n), and will give an insight on model selection procedures based on
complexity penalization.

1 Framework and Basic Results

1.1 Framework

When considering an observation (image, text, etc.), the basic goal of classification is to predict
its class. Suppose z € X with X being the feature space equipped with its o-algebra. In binary
classification, the class of z is encoded in a variable y valued in {—1,41}, and the goal is to build
a measurable function h : X — {—1,+1} to predict the class of z. We say that the classifier h
commits an error if its prediction differs from its true class, i.e., if h(z) # y.

The learning problem is the following. Let (X,Y) be a X x {—1,1} pair of r.v.s, of p.d. described
by the pair (P,n), where P is the marginal of X, and 7 is the posterior distribution of Y given X,
ie, n(x) =PY =1|X = ).

The performance of the classifier h is measured by its probability of error:

L(h) = P(h(X) £ Y) . (1)

We formulate a straightforward result, yet fundamental.

Lemma 1.1. The oracle classifier minimizing the probability of error is given by
h*:x e X 21{n(x) >1/2} -1, (2)
and it is called the Bayes classifier. It satisfies
L(h) > L(h*)=:L*, VYh,
and it holds true for any classifier h

L(h) = L* = E[I{h(z) # h*(2)}[21{n(z) > 1/2} = 1]} . 3)



In practice as h* is unknown we estimate it based on a sample of observations. Let {(X1,Y1),..., (X,, Y,)} =
D,, composed of n-i.i.d. copies of (X,Y) that we use to build an empirical classifier h,(X) =
ho(X,D,). We measure the performance of h, based on its conditional probability of error

L{hn) = B(ha(X) # Y Dy).

The goal of Empirical Risk Minimization (ERM) is to find the best (see how) classificer h,, achieving
a performance tending to that of h*.

1.2 Empirical Risk Minimization

Definition 1.2. Let a class H composed of classifiers being measurable functions h : X — {—1,+1}.
Define the empirical error of the classifier h based on D,, to be:

1 n
Ln(h) = - > 1{h(X;) £ Vi)
i=1
It is the most natural estimator of the probability of error L(h).

We seek to estimate the empirical minimizer of L,, being

h; € argmin L, (h) ,
heH

corresponding to minimizing the average of mislabellings we commit on D,, using an element of the
class H. We list some basic properties that highlight the necessity to prove uniform control of the
worst estimation error within the class H.

Proposition 1.3. Consider the previous notations, then the following assertions hold true with
probability one, and for all h € H.

1. Lu(h) < La(h)
2. L(I%) — infpen L(R) < 25upyey [ (h) — L(D)
8. L(RS) < Lu(hs) + 2supper | Ln(h) — L(R)|

Proof. Exercise. O

Remark 1.1 (Interpretation). 1. If we can guarantee that sup,cy |Ln(h) — L(h)| is small with
high probability, then the probability of error using h}, is not much larger than the probability
of error within the class H.

2. We recognize a quantity for which we proved finite sample control of its expectation, taking
the form of mazximal inequalities (Chapter 6), namely supy,cqy |Ln(h) — L(h)|. It essentially
corresponds to the uniform deviation of the empirical measure L, w.r.t. its mean L.

Theorem 1.4. Suppose the class H to be a VC-class of functions, with finite VC-dimension V.
Let § € (0,1), then the estimation error of h, is upperbounded as follows, with probability at least

1-94,
2log(1/6
L(hy,) — inf L(h) < c\ﬁ+ \/W 7
heH n n
with C' > 0 being a universal constant.
Proof. Exercise. .

In the following section, we will focus on explaining how to obtain faster convergence rates than

Op(1/v/n).



2 Fast Rates of Convergence

We intend to explain some phenomena witnessed in experiments wherein algorithms converge to the
oracle at rate Op(1/n®), with a € [1/2,1]. The key ingredient for these recent results take advantage
on second-order control of the second moments, being natural for binary-valued functions in {0, 1}.

2.1 Relative Deviation

We begin with some analysis highlighting the importance of controlling the variance of empirical
processes.

Consider a generic measurable function g : Z — {0,1} and consider an n-i.i.d. random sam-
ple Z1,...,Z,. Notice that the empirical measure P,g based on the Z;-s is just an average of
Bernoulli r.v.s with parameter the mean Pg. Then, for any fixed function g, because the images
9(Z1),...,9(Z,) are a.s. bounded, Hoeffding’s inequality yields w.p. at least 1 — ¢

Pg— Pog < 21%(1/5). (4)

Notice that the most difficult case is when Pg = 1/2. Also, the variance is also bounded, and
Bernstein’s inequality yields

Pg— Po,g < \/ZVarP(g) log(1/0) n 21log(1/6) . o)

n 3n

Proof. Exercise. O

Indeed, because the function g is valued in {0,1}, then Varp(g) < Pg(l — Pg) < Pg. Again, the
smaller the expectation, the tighter the bound. We already see some hope for improvement from a
rate of 1/4/n requiring some further assumptions and analysis of the variance.

We now state a Theorem going back to Vapnik and Chervonenkis (around 1980). We are essentially
interested in proving advanced results for the estimation error of the empirical classifier defined in
the previous section.

We want to tackle the eventuality of having candidate functions in G that potentially could present
very large values but with small probability (e.g. unbounded functions) and that of functions with
Pg close to 1/2, i.e., having high variance.

As first important idea, still studied now, is to rescale by y/Pg the empirical deviation, ending up
with quantity having similar behavior. Thus we want for bound

. Pn,g— Py

sup

ge¢  VPg .

Theorem 2.1 (Vapnik-Chervonenkis, 1982). Let G be a class of measurable functions valued in
{0,1}, and denote by man(G) the shattering coefficient based on the dataset D = {Z1,...,Zan} of
i.i.d. r.v.s. Let 6 € (0,1), then w.p. at least 1 — 0, it holds true for all g € G

Pog— Py _ ) \/logmgn(g)+log(4/5)
vVPg T n

P,g— Pg < 2\/10gm2n(g)+log(4/5)
P.g - n

)




Remark 2.1. If P,g < (1 —t)Pg for all g then (Ezercise)

4log man(G) + log(4/9)
t2n '

Pg <

We now apply it in classification.

Theorem 2.2 (Classification). Let h) € H be the empirical minimizer of the empirical probability
of error L,, based on D,,. Suppose G to be VC-class with finite VC-dimension V. Let § € (0,1),
then w.p. at least 1 — 4,

L(h*) < Lo(h®) +2\/Ln(h%)V1og(n+ 12L+log(4/5) +4Vlog(n+ 12L+log(4/5) '
Proof. Exercise. O

Remark 2.2. 1. Notice that all the quantities on the right-hand-side are known and only depend
on G and on the dataset D,,.

2. Relative deviation yields generalization guarantees interpolating between rates Op(1/V log(n)/n)
and Op(Vlog(n)/n) with multiplier being the empirical classification error of hl.

3. Suppose a quite strong assumption, that the minimizer of L(h) in H achieves no error, i.c.,
I eH, LK) =0, ie, W(X)=Y as. then L,(h%) =0 and we get

L(h%) — inf L(h) < Vlog(n +1) +log(4/0)
heH n

So now the question is, how to interpolate between the two terms appearing in the upperbound on
Thereom 2.27

Corollary 2.3. Suppose that the infimum of L(h) over H is achieved, i.e., that there exists h' € H
such that L(h') = infreqy L(h). Let 6 € (0,1), then w.p. at least 1 — 6,

Viog(n + 1) + log(4/9) n CVlog(n + 1) + log(4/6)

n n

L(h%) — L(W) < C\/L(h’)

)

where C' > 0 is a universal constant.

Proof. Exercise. O

2.2 Noise Conditions

The key ingredient is the relation between the variance and the mean for functions valued in {0,1}
to obtain fast rates of convergence for L(h}) — infpey L(h). In particular, if we are able to choose
the class of candidate functions H such the the infimum equals to 0 (ideal setting), then we expect
the upperbound using supy,cq |Ln(h) — L(h)]| to be loose.

To use this intuition, consider G to be composed of functions based on H defined as follows g(z,y) —
Hh(x) £y} — {W(z) # y}, with L(h') = infrey L(h).



Massart and Mammen-Tsybakov’s noise conditions. Suppose the class H is composed of
N functions fulfilling for some s > 0 and « € (0, 1],

Var(g) < (Pg) | (6)

S

Theorem 2.4. Consider the framework above, and suppose that there ezists a pair (s, a) € (0, 00) X
(0,1], such that for all g € G, the condition (6) is fulfilled. Let § € (0,1), then w.p. at least 1 — 4,

1/(2—a)
L(h;) — jnf L(h) < (21°g(N/‘5)> .
€ ns<

Proof. Exercise. O

Remark 2.3. We may wonder whether (6) is a reasonable assumption to make. Let us consider
classification framework, and let h* be Bayes classifier and that n is bounded away from 1/2, i.e.,
suppose that there exists s > 0 such that [n(x)—1/2| > s, for allz € X. This is known as Massart’s
noise condition. Consider the class G based on the classifiers H. We can conclude that

Varg < E[(1{h(z) # y} — 1{h" (z) # y})*] < E[({A(x) # h*(2)})*] = E[1{h(z) # h*(2)}]
< (1/s)E[1{h(z) # h*(x)}|n(x) = 1/2[]] = (1/s)(L(h) = L*) = Pg/s ,

where we used the assumption of the posterior distribution, and Lemma 1.1. Thus Eq. (6) is fulfilled
with o = 1, and thus
Theorem 2.4 yields
log(N/d
L(kY) - L* < QM _

ns
It is clear that the larger s is, and the easier the problem is, yielding a tighter control of the gener-
alization error of the empirical minimizer .

We will see that we can relax the condition (6), or Massart’s noise condition.

Definition 2.5 (Mammen-Tsybakov’s noise condition). The noise in binary classification satisfies
Mammen-Tsybakov’s noise condition if there exists constants a € (0,1), B > 0, tog € (0,1/2], such
that for all ¢ € [0, to]

P(|n(X) —1/2| < t) < Bt*/0=*)

Remark 2.4. 1. It relaxes Massart’s condition by assuming that the posterior distribution is
bounded aways from 1/2 with large probability.

2. Notice that is the zero-error case, i.e., when n € {0,1}, then we obtain fast rates.

We formulate an important consequence of Mammen-Tsybakov’s noise condition, relating the vari-
ance to the mean, as initially wished.

Lemma 2.6. Suppose Mammen-Tsybakov’s noise condition to be fulfilled for a triplet of constants
«a, B, tg. Then, it holds true that for any classifier h € H.:

P(h(X) # h*(X)) < C(L(h) — L7)*

where the constant C' > 0 depends on «, B, tg.
Proof. Recall that

L(h) = L* = E[1{h(z) # h*(x)}|n(x) — 1/2|]
> 2tP[h(x) # h*(2), In(x) —1/2] > 1]

E[1{h(z) # b*(2)}n(z) = 1/2[1{|n(z) - 1/2] > t}]
2tP[h(x) # h*(2)] = 2tP[In(x) —1/2] <]

> 2tP[h(z) # h*(x)] — 2Bt/ (=)

2
>



# h*(z)] =)/ with b > 0 constant, such
% b (@) = 2B/ OB(z) £ b ()],
2b~* and the result is obtained. O

We can choose ¢, such that ¢ € [0,to]. Take ¢ = bP[h(x)
that b < tg, then the last quantity equals to 2bP[h(x)
Because the second term is positive, we can choose C =

We conclude by proving fast rates for the excess of risk of the empirical minimizer A} under
Mammen-Tsybakov’s noise condition.

Theorem 2.7. Suppose the conditions of Mammen-Tsybakov’s noise condition to be fulfilled. We
consider the size of the class H to be finite and equal to N € N*. Let § € (0,1), with probability at
least 1 — 9, it holds true that

1/(2-a)
L(h) — inf L(h) < C (bg(N/‘s)> :

heH n

where the constant C' > 0 depends on «, B, tg.

Proof. Board. O

Remark 2.5. 1. This bound is of similar flavor as that of Theorem 2.4. It interpolates between
the slow regime (o — 0) and the fast one (o — 1). Notice in addition that we loose the effect
of parameter s: if the n is bounded away from 1/2, then s — 1/2, and thus the upperbound
under Massart’s condition will be sharper.

2. For both Theorems, the empirical minimizer b}, is estimated independently on the noise con-
dition. It is thus independent on «, thanks to ERM, that is very important (because unknown
in practice).

3. Again, we emphasize that those results hold true only if the oracle classifier is in the class H!!

4. In statistical learning literature, the exposed noise assumptions are often referred to margin
condition.

5. More general classes of classifiers. There is a rich literature establishing generalization of
the theory exposed, under entropic/VC conditions on H, that rely on localization of the risk
formulating a Bernstein-type of bound in terms of the modulus of continuity of the functions,
initially proved by Talagrand. We will not study this case however. Recently, it was further
extended by not considering that h* € H (e.g. Bousquet and Zhivotovskiy, 2020).

A minimax lower bound. Lastly, we may wonder whether the stated rates are informative, i.e.,
if we could think of a better method to select a classifier than by ERM. We will give some intuition
by stating a minimax lower bound. We consider H to have finite VC-dimension V > 0. We want
to show that for any picked classifier from H, we can find a distribution on the data, performing
worse than the bound. So, we want to establish a lower bound on the quantity

inf sup {L(h,)— inf L(h
pf s (i) — fof L(0)

where the infimum is taken over all datadriven estimators in H, and the supremum is taken over
all the distributions G of the pair (X,Y), and h,, is a classifier depending on the dataset D,, (not
restricted to ERM solutions).

Notice first a direct consequence of Corollary 2.3 is the following result.

Corollary 2.8. Consider the assumptions of Corollary 2.3 to be fulfilled. Then, there exists a
constant C' > 0, such that

EL(h,) — inf L(h) <
(hn) jnf (h)<C

+C

\/infheH L(h)Vlogn Vlogn
n n



Proof. Exercise. O

Before stating the main result, we formulate lower bounds for two extreme cases (no margin re-
striction and zero-error classifier), when the class of functions # is supposed to be VC-type, from
Haussler, Littlestone, and Warmuth (1994) and Vapnik Chervonenkis (1971,1979) for instance.

Corollary 2.9. Consider the assumptions of Corollary 2.3 to be fulfilled. And consider the class
of joint distributions G of the pair (X,Y). The following two assertions hold true.

1. If s =0, then

e® v-1
inf EL —L*> > -1
inf sup (hn) N ¥n > 5(V - 1) (7)
2. If s=1, then
—1
infsupEL(h,) — L* > Y ,  Vn>max(2,V—1), (8)
hn @ 4dn

where the infimum is taken over all datadriven estimators.

Massart and Nédélec (2006) proved a lower bound interpolating between the two extreme cases.

Theorem 2.10. Suppose the minimaz risk over the set of distributions fulfilling Massart’s noise
condition for a given s > 0. Then, there exists a universal constant C' > 0, such that if V > 2, then

v v
inf sup EL(hy,) — L* > Cmin(—, 1/ —) ,
inf sup (hn) > Cmin(——,4/—)

foralln >V.

It proves that there is a small gap between the lower and upperbounds, of rate logn. Again, it has

been improved under some additional conditions on . Notice that the margin condition s > \/g

implies fast rates but at the price of the constant C'.
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