

TOPICS IN PROBABILITY. PART I: CONCENTRATION

EXERCISE SHEET 2: VARIANCE BOUNDS

1. WARM UP

Exercise 1. Let X be any (possibly vector-valued) random variable, f be a measurable real-valued function on the state space of X . Show that

$$\text{Var}[f(X)] \leq \frac{1}{4}(\sup f - \inf f)^2 \quad \text{and} \quad \text{Var}[f(X)] \leq \mathbb{E}[(f(X) - \inf f)^2].$$

Proof. Note that $\text{Var}[f(X)] = \text{Var}[f(X) - a] \leq \mathbb{E}[(f(X) - a)^2]$ for all $a \in \mathbb{R}$. The second inequality follows by choosing $a = \inf f$. As for the first inequality, consider $a = \frac{\inf f + \sup f}{2}$, then almost surely $|f(X) - a| \leq \frac{\sup f - \inf f}{2}$. \square

Exercise 2 (Square root of Chi-squared distribution).

Let Z be a non-negative random variable such that Z^2 is chi-squared distributed with D degrees of freedom. Prove that

$$\sqrt{D} - 1 \leq \mathbb{E}[Z] \leq \sqrt{D}.$$

Hint: Recall how chi-squared distributed random variable is related to a Gaussian vector.

Proof. Recall that Z^2 has the same law as $|X|^2 = \sum_{i=1}^D X_i^2$, where $X = (X_1, \dots, X_D)$ is a Gaussian vector with standard normal iid coordinates. By Jensen's inequality we get

$$\mathbb{E}[Z] = \mathbb{E}[\sqrt{Z^2}] \leq \sqrt{\mathbb{E}[Z^2]} = \sqrt{\sum_{i=1}^D \mathbb{E}[X_i^2]} = \sqrt{D}.$$

For the lower bound note that by Hölder's inequality we get,

$$\mathbb{E}[Z^2] = \mathbb{E}[Z^{2/3+4/3}] \leq \mathbb{E}[Z]^{2/3} \mathbb{E}[Z^4]^{1/3}.$$

In particular, since $\mathbb{E}[Z^2] = D$ and $\mathbb{E}[Z^4] = \sum_{i=1}^D \mathbb{E}[X_i^4] + 2 \sum_{j < i} \mathbb{E}[X_i^2] \mathbb{E}[X_j^2] = 3D + D(D-1) = D(D+2)$, we get

$$\mathbb{E}[Z] \geq \sqrt{\frac{\mathbb{E}[Z^2]^3}{\mathbb{E}[Z^4]}} = \sqrt{\frac{D^3}{D(D+2)}} \geq \sqrt{D} - 1.$$

The latter inequality is just a computation. \square

2. AN ALTERNATIVE PROOF OF EFRON-STEIN INEQUALITY

Exercise 3 (Proof using martingales). Let X_1, \dots, X_n be independent, $f : \mathbb{R}^n \rightarrow \mathbb{R}$ such that $\mathbb{E}[f^2] < \infty$. Prove that

$$\text{Var}[f] \leq \sum_{i=1}^n \mathbb{E}[\text{Var}[f|(X_j)_{j \neq i}]]$$

proceeding as follows:

- (1) Consider $S_m = \mathbb{E}[f|X_1, \dots, X_m]$ for $m \geq 1$ and $S_0 = \mathbb{E}[f]$ and show that it is a martingale satisfying $S_n = f$;
- (2) Prove that for a square-integrable martingale S_n with $S_0 = \mathbb{E}[S_n]$,

$$\text{Var}[S_n] = \sum_{i=1}^n \mathbb{E}[(S_i - S_{i-1})^2];$$

- (3) Show that

$$S_i - S_{i-1} = \mathbb{E}[f - \mathbb{E}[f|(X_j)_{j \neq i}]]|X_1, \dots, X_i];$$

- (4) Conclude.

Proof. Let $S_0 = \mathbb{E}[f]$ and $S_m = \mathbb{E}[f|X_1, \dots, X_m]$ for $1 \leq m \leq n$. By tower-property of conditional expectation and measurability of $f = f(X_1, \dots, X_n)$ w.r.t. $\mathcal{F}_n := \sigma(X_1, \dots, X_n)$, $(S_m)_{m=0}^n$ is clearly an $(\mathcal{F}_m)_m$ -martingale satisfying $S_n = f$. Moreover, since f is square-integrable, so is S_m for any m . Note that if $1 \leq i < j \leq n$, by "taking out what's known" property of conditional expectation, we get

$$\mathbb{E}[(S_i - S_{i-1})(S_j - S_{j-1})] = \mathbb{E}[(S_i - S_{i-1}) \underbrace{\mathbb{E}[S_j - S_{j-1}|\mathcal{F}_{j-1}]}_{=0}] = 0.$$

Therefore,

$$\text{Var}[S_n] = \mathbb{E}[(S_n - \mathbb{E}[S_n])^2] = \sum_{1 \leq i, j \leq n} \mathbb{E}[(S_i - S_{i-1})(S_j - S_{j-1})] = \sum_{i=1}^n \mathbb{E}[(S_i - S_{i-1})^2].$$

Furthermore, since S_{i-1} is \mathcal{F}_i -measurable

$$S_i - S_{i-1} = \mathbb{E}[f - S_{i-1}|X_1, \dots, X_i];$$

but by tower property we also have,

$$S_{i-1} = \mathbb{E}[f|X_1, \dots, X_{i-1}] = \mathbb{E}[\mathbb{E}[f|X_1, \dots, X_{i-1}, X_{i+1}, \dots, X_n]|X_1, \dots, X_{i-1}],$$

which is independent of X_i since $(X_j)_j$ are i.i.d, and thus,

$$S_{i-1} = \mathbb{E}[\mathbb{E}[f|X_1, \dots, X_{i-1}, X_{i+1}, \dots, X_n]|X_1, \dots, X_i]$$

almost surely. Hence, as desired $S_i - S_{i-1} = \mathbb{E}[f - \mathbb{E}[f|(X_j)_{j \neq i}]]|X_1, \dots, X_i]$. We are ready to conclude:

$$\begin{aligned} \text{Var}[f] &= \sum_{i=1}^n \mathbb{E}[\mathbb{E}[f - \mathbb{E}[f|(X_j)_{j \neq i}]]|X_1, \dots, X_i]^2 \\ &\stackrel{\text{Jensen}}{\leq} \sum_{i=1}^n \mathbb{E}[\mathbb{E}[(f - \mathbb{E}[f|(X_j)_{j \neq i}])^2|X_1, \dots, X_i]] \\ &= \sum_{i=1}^n \mathbb{E}[\mathbb{E}[(f - \mathbb{E}[f|(X_j)_{j \neq i}])^2]] \\ &= \sum_{i=1}^n \mathbb{E}[\underbrace{\mathbb{E}[(f - \mathbb{E}[f|(X_j)_{j \neq i}])^2]}_{=\text{Var}[f|(X_j)_{j \neq i}]}|(X_j)_{j \neq i}]. \end{aligned}$$

□

3. APPLICATIONS OF EFRON-STEIN INEQUALITY

Exercise 4 (Among Lipschitz functions the sum has the largest variance).

Consider the class \mathcal{F} of functions $f : \mathbb{R}^n \rightarrow \mathbb{R}$ that are Lipschitz w.r.t. ℓ^1 distance, i.e., if $x = (x_1, \dots, x_n) \in \mathbb{R}^n$ and $y = (y_1, \dots, y_n) \in \mathbb{R}^n$, then $|f(x) - f(y)| \leq \sum_{i=1}^n |x_i - y_i|$. Let $X = (X_1, \dots, X_n)$ be a vector of independent variables of finite variance. Use the Efron-Stein inequality to show that the maximal value of $\text{Var}[f(X)]$ over $f \in \mathcal{F}$ is attained by the function $f(x) = \sum_{i=1}^n x_i$.

Proof. By Efron-Stein inequality for any $f \in \mathcal{F}$,

$$\begin{aligned} \text{Var}[f(X)] &\leq \frac{1}{2} \sum_{i=1}^n \mathbb{E} [(f(X) - (f(X))'_i)^2] \leq \frac{1}{2} \sum_{i=1}^n \mathbb{E} [|X_i - X'_i|^2] \\ &= \sum_{i=1}^n (\mathbb{E}[X_i^2] - \mathbb{E}[X_i]^2) = \sum_{i=1}^n \text{Var}[X_i] = \text{Var} \left[\sum_{i=1}^n X_i \right] = \text{Var}[f_0(X)], \end{aligned}$$

where X' is an independent copy of X and $(f(X))'_i = f(X_1, \dots, X_{i-1}, X'_i, X_{i+1}, \dots, X_n)$. The upper estimate finishes the proof. □

Exercise 5 (Rademacher processes).

Let $\varepsilon_1, \dots, \varepsilon_n$ be independent Rademacher variables, i.e., Bernoulli random variables taking values ± 1 with probability $1/2$, let $T \subset \mathbb{R}^n$. First check the following easy identity:

$$\sup_{t \in T} \text{Var} \left[\sum_{k=1}^n \varepsilon_k t_k \right] = \sup_{t \in T} \sum_{k=1}^n t_k^2.$$

Now prove that

$$\text{Var} \left[\sup_{t \in T} \sum_{k=1}^n \varepsilon_k t_k \right] \leq 4 \sup_{t \in T} \sum_{k=1}^n t_k^2.$$

Thus, taking the supremum inside the variance costs at most a constant factor.

Remark: one can get constant 2 instead of 4 in the above inequality.

Proof. The first identity follows from the fact that the variance of sum of independent random variables is the sum of variances of these variables, and $\text{Var}[\varepsilon_k t_k] = t_k^2$.

To prove the second bound, let us set $Z := \sup_{t \in T} \sum_{k=1}^n \varepsilon_k t_k$. Let $\varepsilon'_1, \dots, \varepsilon'_n$ be independent copies of $\varepsilon_1, \dots, \varepsilon_n$ and $Z'_i := \sup_{t \in T} \left[\sum_{j:j \neq i} \varepsilon_j t_j + \varepsilon'_i t_i \right]$. Let t^* be a random vector such that $Z = \sum_{i=1}^n \varepsilon_i t_i^*$. Assume that $\sup_{t \in T} \sum_{k=1}^n t_k^2$ is finite, since otherwise there is nothing to show. Note also that this implies that T has to be bounded and hence Z, Z' are well-defined square-integrable variables. Then for all $i = 1, \dots, n$,

$$Z - Z'_i \leq (\varepsilon_i - \varepsilon'_i) t_i^* \quad \text{and so} \quad (Z - Z'_i)_+^2 \leq (\varepsilon_i - \varepsilon'_i)^2 (t_i^*)^2,$$

where the first inequality follows since for any two real-valued functions f, g on common domain, $(f - g)(u) \geq f(u) - \sup g$. The second inequality follows since if $f \leq a$ and x is such that $f_+(x) = 0$, then clearly $f_+(x)^2 \leq 0 \leq a^2(x)$, if x is such that $f_+(x) \neq 0$, then

$f(x) = f_+(x) \geq 0$ and so $0 \leq f(x) \leq a(x)$ and $f_+^2(x) = f^2(x) \leq a^2(x)$. Using that ε'_i is independent of $\varepsilon_1, \dots, \varepsilon_n$ we obtain by properties of conditional expectation,

$$\mathbb{E}[(Z - Z'_i)_+] \leq \mathbb{E}[\mathbb{E}[(\varepsilon_i - \varepsilon'_i)^2(t_i^*)^2 | \varepsilon_1, \dots, \varepsilon_n]] = 2\mathbb{E}[(t_i^*)^2].$$

By the Efron-Stein inequality we therefore get,

$$\text{Var}[Z] \leq 2\mathbb{E}\left[\sum_{i=1}^n t_i^*\right] \leq 2\sup_{t \in \bar{T}} \sum_{k=1}^n t_k^2 = 2\sup_{t \in T} \sum_{k=1}^n t_k^2.$$

□

Exercise 6 (Triangles in Erdős-Rényi graph).

Let Z be the number of triangles in a random graph $G \sim \mathcal{G}(n, p)$, where $\mathcal{G}(n, p)$ denote the Erdős-Rényi model, which is constructed on a set of n vertices by connecting every pair of distinct vertices independently with probability p (or alternatively delete edges independently from the complete graph on n vertices with probability $1 - p$). A triangle is a complete three-vertex subgraph. Calculate the variance of Z and compare it with what you get by using the Efron-Stein inequality to estimate it.

Proof. Let us first compute the variance explicitly. For this we denote the set of vertices $V = \{1, \dots, n\}$, and introduce the random variables for $i < j < k$: $X_{i,j,k} = \mathbf{1}_{\{i,j,k\}}$ is a triangle. In particular, $X_{i,j,k}$ is Bernoulli distributed with probability p^3 (probability that all three edges are present). Let Z be the number of triangles in G , then $Z = \sum_{i < j < k}^n X_{i,j,k}$ and $Z^2 = \sum_{i < j < k}^n \sum_{p < q < r} X_{i,j,k} X_{p,q,r}$. Hence,

$$\begin{aligned} \mathbb{E}[Z] &= \sum_{i < j < k}^n p^3 = \binom{n}{3} p^3; \\ \mathbb{E}[Z^2] &= \sum_{i < j < k}^n \sum_{p < q < r} \mathbb{E}[X_{i,j,k} X_{p,q,r}]. \end{aligned}$$

To compute the variance we need expressions for $\mathbb{E}[X_{i,j,k} X_{p,q,r}]$ with $i < j < k, p < q < r$. Let us consider possible cases:

- $\{i, j, k\} = \{p, q, r\}$ so that there must be three distinct edges present. Thus, $\mathbb{E}[X_{i,j,k} X_{p,q,r}] = p^3$. There are exactly $\binom{n}{3}$ elements of such form in the expression for $\mathbb{E}[Z^2]$.
- $\{i, j, k\}$ and $\{p, q, r\}$ have two common elements meaning that there must be 5 distinct edges present. Thus, $\mathbb{E}[X_{i,j,k} X_{p,q,r}] = p^5$. There are $2 \binom{n}{4} \binom{4}{2} = 12 \binom{n}{4}$ elements of this type.
- $\{i, j, k\}$ and $\{p, q, r\}$ have one common element so that there must be 6 distinct edges present. Hence, $\mathbb{E}[X_{i,j,k} X_{p,q,r}] = p^6$. There are $\binom{n}{5} \binom{5}{1} \binom{4}{2} = 30 \binom{n}{5}$ such elements.
- $\{i, j, k\}$ and $\{p, q, r\}$ have no common elements, meaning that there must be 6 distinct edges present. Hence, $\mathbb{E}[X_{i,j,k} X_{p,q,r}] = p^6$. There are $\binom{n}{6} \binom{6}{3} = 20 \binom{n}{6}$ such elements.

Therefore,

$$\text{Var}[Z] = \mathbb{E}[Z^2] - \mathbb{E}[Z]^2 = \binom{n}{3} p^3 + 12 \binom{n}{4} p^5 + 30 \binom{n}{5} p^6 + 20 \binom{n}{6} p^6 - \binom{n}{3}^2 p^6.$$

To use the Efron-Stein estimate we need to slightly modify the variables we are working with. We write $m = \binom{n}{2}$ for the number of edges in the complete graph, and let Y_1, \dots, Y_m be iid

Bernoulli variables with probability p (edge is present or not). Let T be a set of all triples of edges forming a triangle. Then $Z = \sum_{t=\{p,q,r\} \in T} \prod_{i \in t} X_i$. Let us write $I_t := \prod_{i \in t} X_i$ (equal in law to I_t^2). So we get,

$$\begin{aligned}\mathbb{E}[Z] &= \sum_{t \in T} \mathbb{E}[I_t]; \\ \text{Var}[Z] &= \sum_{t \in T} (\mathbb{E}[I_t^2] - \mathbb{E}[I_t]^2) + \sum_{s \neq t \in T: s \cap t \neq \emptyset} (\mathbb{E}[I_t I_s] - \mathbb{E}[I_t] \mathbb{E}[I_s]) \\ &= \sum_{t \in T} (\mathbb{E}[I_t] - \mathbb{E}[I_t]^2) + \sum_{s \neq t \in T: s \cap t \neq \emptyset} (\mathbb{E}[I_t I_s] - \mathbb{E}[I_t] \mathbb{E}[I_s]).\end{aligned}$$

Define $\delta = (\sum_{s,t \in T: s \cap t \neq \emptyset} \mathbb{E}[I_t I_s]) / \mathbb{E}[Z]$. A direct upper bound for the variance is

$$\text{Var}[Z] \leq \sum_{t \in T} \mathbb{E}[I_t] + \sum_{s,t \in T: s \cap t \neq \emptyset} \mathbb{E}[I_t I_s] = (1 + \delta) \mathbb{E}[Z].$$

On the other hand, by Efron-Stein we get

$$\begin{aligned}\text{Var}[Z] &\leq \sum_{i=1}^m \mathbb{E}[(Z - Z'_i)_-^2] \leq \sum_{i=1}^m \mathbb{E} \left[\left(\sum_{t: i \in t} I_t \right)^2 \right] = \sum_i \mathbb{E} \left[\sum_{t: i \in t} I_t + \sum_{s \neq t: i \in s \cap t} I_t I_s \right] \\ &= \sum_t \sum_{i \in t} \mathbb{E}[I_t] + \sum_{t \neq s} \sum_{i \in t \cap s} \mathbb{E}[I_t I_s] \leq 3(1 + \delta) \mathbb{E}[Z]\end{aligned}$$

where Z'_k depends on $X_1, \dots, X_{k-1}, X'_k, X_{k+1}, \dots, X_m$ as Z on X_1, \dots, X_m with X'_k 's are independent copies of X_k 's. The last inequality comes from the fact that the cardinality of $t \in T$ is 3.

In particular, the Efron-Stein bound is 3 times larger than the direct bound on the variance.

Remark: note that the latter approach works for more general sets T with elements of bounded cardinality. \square