TOPICS IN PROBABILITY. PART I: CONCENTRATION

EXERCISE SHEET 2: VARIANCE BOUNDS
1. WARM UP

Exercise 1. Let X be any (possibly vector-valued) random variable, f be a measurable real-
valued function on the state space of X. Show that

Varlf(X)] < (sup f—inf )7 and  Var[f(X)] <EI(7(X) ~ inf f)°).

Proof. Note that Var[f(X)] = Var[f(X) —a] < E[(f(X) — a)?] for all a € R. The second
inequality follows by choosing a = inf f. As for the first inequality, consider a = inf f—gsup f’
then almost surely |f(X) —a| < Supf;inff' -

Exercise 2 (Square root of Chi-squared distribution).
Let Z be a non-negative random variable such that Z? is chi-squared distributed with D
degrees of freedom. Prove that

VD —1<E[Z] < VD.
Hint: Recall how chi-squared distributed random variable is related to a Gaussian vector.

Proof. Recall that Z2 has the same law as [X|> = 27, X2, where X = (X,..., Xp) is a

1)

Gaussian vector with standard normal iid coordinates. By Jensen’s inequality we get

For the lower bound note that by Hélder’s inequality we get,
E[ZQ} _ E[Z2/3+4/3] < E[z]2/3]E[Z4]1/3

In particular, since E[Z?] = D and E[Z*] = 37| E[X}]+23",_, E[X?E[X?] = 3D+ D(D —
1) = D(D +2), we get

E[Z2]3 D3
ElZ] 2 \/E[Z4] - \/D(D+2) 2 VD 1.

The latter inequality is just a computation. 0

2. AN ALTERNATIVE PROOF OF EFRON-STEIN INEQUALITY

Exercise 3 (Proof using martingales). Let Xi,..., X, be independent, f : R — R such
that E[f?] < co. Prove that

Var[f] < ZE[Var[fl(Xj)j#H
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proceeding as follows:
(1) Consider S,, = E[f|X1,...,X}] for m > 1 and Sy = E[f] and show that it is a
martingale satisfying S, = f;
(2) Prove that for a square-integrable martingale S, with So = E[S,],

Var|[S, ZE [(S; — Si—1)?;

(8) Show that
Si—Si1=E [f E[f[(X ﬁéz ’Xh---,X};

(4) Conclude.
Proof. Let Sy = E[f] and S,, = E[f|X1,...,X,] for 1 < m < n. By tower-property of
conditional expectation and measurability of f = f(Xy,..., X,,) wr.t. F, =o(Xy, ..., X,),
(Sl _o is clearly an (F,,)n-martingale satisfying S,, = f. Moreover, since f is square-
integrable, so is S, for any m. Note that if 1 < i < 57 < n, by "taking out what’s known"
property of conditional expectation, we get

E[(Si = 5i-1)(S; = Sj-1)] = E[(Si = Si-1) E[S; — SjalFjl] =

—0

Therefore,
Var[S,] = E[(S, —E[S,])°] = D E[(S; — Sim1)(S; — Sj-1)] = D _E[(Si — Siz1)’]-
1<i,j<n i=1
Furthermore, since S;_; is JF;-measurable
Si—Si1=E[f —Si1|Xq,..., Xil;
but by tower property we also have,
Sic1 =E[f|X1, ..., Xil) = E[E[f|X1, ..., Xio1, Xig1, - X | X0, -0, X,

which is independent of X; since (Xj); are i.i.d, and thus,

Si-1 =E[E[f|X1,. .., Xi1, Xig1, - Xa]| X1, -, X

almost surely. Hence, as desired S; — S;_1 = [f E[f1(X;);£i ‘Xl, e Xi}. We are ready
to conclude:

Var|f ZE [f = EBUA(X) ) | X0, X))

Jensen

ZE (f = EIf 1)) )% Xa, - -, X
—ZE (f — E[f1(X;);)%]]

_ZE [(F = ELIG)5)* (X5)3] ]

—Var{|(X i)izi]
2




3. APPLICATIONS OF EFRON-STEIN INEQUALITY

Exercise 4 (Among Lipschitz functions the sum has the largest variance).
Consider the class F of functions f : R™ — R that are Lipschitz w.r.t. {* distance, i.e., if

r=(x1,...,2,) €ER" and y = (y1,...,yn) € R", then |f(x) — f(y)| < Doy |z — vil. Let
X = (Xy,...,X,) be a vector of independent variables of finite variance. Use the Efron-
Stein inequality to show that the mazimal value of Var[f(X)] over f € F is attained by the

function f(x) =" x;.
Proof. By Efron-Stein inequality for any f € F,

= > _(B[XF] — B[X)") = 3 Var[X{] = Var ZX = Var[fo(X)],

where X’ is an independent copy of X and (f(X)); = f(X1,.... Xi—1, X}, Xit1, ..., Xp).
The upper estimate finishes the proof. 0]

Exercise 5 (Rademacher processes).
Leteq, ..., e, beindependent Rademacher variables, i.e., Bernoulli random variables taking
values +1 with probability 1/2, let T C R™. First check the following easy identity:

Z 6ktk] = sup Z tk

tET

sup Var
teT

Now prove that

Var

sup Z ektk] < 4sup Z tk

tGT tET

Thus, taking the supremum inside the variance costs at most a constant factor.
Remark: one can get constant 2 instead of 4 in the above inequality.

Proof. The first identity follows from the fact that the variance of sum of independent random
variables is the sum of variances of these variables, and Var[eit;] = t3.
To prove the second bound, let us set Z = sup,ep > ., €xtr. Let €l ..., &), be independent

copies of €1,...,e, and Z = sup,ep [Zyﬁéz gjty + Egtl}. Let t* be a random vector such
that Z = >"1" | &;tF. Assume that sup,cp >, t7 is finite, since otherwise there is nothing to

show. Note also that this implies that 7" has to be bounded and hence Z, Z’ are well-defined
square-integrable variables. Then for all i =1,... n,

Z—7Z<(si—éet;  andso  (Z—Z)2 < (e —eh)?(t)),

where the first inequality follows since for any two real-valued functions f, g on common
domain, (f — g)(u) > f(u) —supg. The second inequality follows since if f < a and z is

such that f,(x) = 0, then clearly fi(z)*> < 0 < a*(z), if  is such that f,(z) # 0, then
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f(z) = fi(z) > 0 and so 0 < f(z) < a(z) and f2(z) = f*(z) < a*(x). Using that &} is
independent of €1, ..., we obtain by properties of conditional expectation,

E[(Z - Z)3] <E[E[(si — )*(£)*[er, - - eal] = 2E[(#])].
By the Efron-Stein inequality we therefore get,

Zt ] < QSupZtk = 2supZt2

teT p—q teT

Var[Z] < 2E

O

Exercise 6 (Triangles in Erdés-Rényi graph).

Let Z be the number of triangles in a random graph G ~ G(n,p), where G(n,p) denote the
Erdos-Rényi model, which is constructed on a set of n wvertices by connecting every pair of
distinct vertices independently with probability p (or alternatively delete edges independently
from the complete graph on n vertices with probability 1 —p). A triangle is a complete three-
vertex subgraph. Calculate the variance of Z and compare it with what you get by using the
Efron-Stein inequality to estimate it.

Proof. Let us first compute the variance explicitly. For this we denote the set of vertices
V ={1,...,n}, and introduce the random variables for i < j < k: Xijk = 1k} is a triangle-
In particular, X;; is Bernoulli distributed with probability p® (probability that all three
edges are present). Let Z be the number of triangles in G, then Z = 77 . | X; ;) and

7 = ZZ<J<kZp<q<TX kXpqr- Hence,
_ - 3 _ n 3
=2 (3)p
1<j<k

= Z Z E[Xi,j,ka,r]-

1<j<k p<q<r

To compute the variance we need expressions for E[X; ;x X, ] with ¢ < j < k,p < g <.
Let us consider possible cases:

o {i,j,k} = {p,q,r} so that there must be three distinct edges present. Thus, E[X; ; 1 X, ¢, =
p?. There are exactly () elements of such form in the expression for E[N?].

e {i,j,k} and {p, ¢, r} have two common elements meaning that there must be 5 distinct
edges present. Thus, E[X; ;1 X,q.-] = p°. There are 2(2) (;1) = 12(2) elements of this
type.

e {i,j,k} and {p, ¢, r} have one common element so that there must be 6 distinct edges
present. Hence, E[X ;1 X, ,.] = p®. There are (7;) (f) (;1) =30 (g) such elements.

e {i,j,k} and {p, ¢, 7} have no common elements, meaning that there must be 6 distinct

edges present. Hence, E[X; ;X ,,] = p®. There are (g’) (g) =20 (2) such elements.
Therefore,

Var[Z] = E[2?] - E[Z)2 = (g>p3 +12 (Z)p” +30 (Z)yf +20 (Z)p6 - (g) 2p6.

To use the Efron-Stein estimate we need to slightly modify the variables we are working with.

We write m = (g) for the number of edges in the complete graph, and let Yi,...,Y,, be iid
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Bernoulli variables with probability p (edge is present or not). Let T be a set of all triples of
edges forming a triangle. Then Z =3, _ . o7 [, Xi- Let us write I; == [],., X; (equal
in law to I?). So we get,

= ZE[[t];

1€t

Var[Z] =Y (B[] - E[L)+ Y (E[LL]—E[LJE[L])
teT s#teT :sNtA()

=Y (B[L] -E[L*)+ ) (E[LL] - E[LE[L]).
teT s#teT :sNtA()

Define 6 = (3_, jer.srizo EleLs])/E[Z]. A direct upper bound for the variance is
Var[Z]) <> E[L]+ > E[LL] = (1+6)E[Z].

teT $,tET:sNtAD
On the other hand, by Efron-Stein we get

Var[Z <ZEZ Zl)? <Z]E (th)2 ZE

tict

_ZZEItJrZZE]t (1+6)E[Z]
S t#s i€tNs

where Z; depends on Xi,..., Xp 1, X}, Xgs1,..., X as Z on Xy,..., X, with X}’s are
independent copies of X}’s. The last inequality comes from the fact that the cardinality of
teTis 3.
In particular, the Efron-Stein bound is 3 times larger than the direct bound on the variance.

Remark: note that the latter approach works for more general sets T" with elements of
bounded cardinality. 0
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