
TOPICS IN PROBABILITY. PART I: CONCENTRATION

Exercise sheet 2: Variance bounds

1. Warm up

Exercise 1. Let X be any (possibly vector-valued) random variable, f be a measurable real-
valued function on the state space of X. Show that

Var[f(X)] ≤ 1

4
(sup f − inf f)2 and Var[f(X)] ≤ E[(f(X)− inf f)2].

Proof. Note that Var[f(X)] = Var[f(X) − a] ≤ E[(f(X) − a)2] for all a ∈ R. The second
inequality follows by choosing a = inf f . As for the first inequality, consider a = inf f+sup f

2
,

then almost surely |f(X)− a| ≤ sup f−inf f
2

. □

Exercise 2 (Square root of Chi-squared distribution).
Let Z be a non-negative random variable such that Z2 is chi-squared distributed with D

degrees of freedom. Prove that
√
D − 1 ≤ E[Z] ≤

√
D.

Hint: Recall how chi-squared distributed random variable is related to a Gaussian vector.

Proof. Recall that Z2 has the same law as |X|2 =
∑D

i=1X
2
i , where X = (X1, . . . , XD) is a

Gaussian vector with standard normal iid coordinates. By Jensen’s inequality we get

E[Z] = E[
√
Z2] ≤

√
E[Z2] =

√√√√ D∑
i=1

E[X2
i ] =

√
D.

For the lower bound note that by Hölder’s inequality we get,

E[Z2] = E[Z2/3+4/3] ≤ E[Z]2/3E[Z4]1/3.

In particular, since E[Z2] = D and E[Z4] =
∑D

i=1 E[X4
i ]+2

∑
j<i E[X2

i ]E[X2
j ] = 3D+D(D−

1) = D(D + 2), we get

E[Z] ≥

√
E[Z2]3

E[Z4]
=

√
D3

D(D + 2)
≥

√
D − 1.

The latter inequality is just a computation. □

2. An alternative proof of Efron-Stein inequality

Exercise 3 (Proof using martingales). Let X1, . . . , Xn be independent, f : Rn → R such
that E[f 2] < ∞. Prove that

Var[f ] ≤
n∑

i=1

E
[
Var[f |(Xj)j ̸=i]

]
1



proceeding as follows:
(1) Consider Sm = E[f |X1, . . . , Xm] for m ≥ 1 and S0 = E[f ] and show that it is a

martingale satisfying Sn = f ;
(2) Prove that for a square-integrable martingale Sn with S0 = E[Sn],

Var[Sn] =
n∑

i=1

E[(Si − Si−1)
2];

(3) Show that

Si − Si−1 = E
[
f − E[f |(Xj)j ̸=i]

∣∣X1, . . . , Xi

]
;

(4) Conclude.

Proof. Let S0 = E[f ] and Sm = E[f |X1, . . . , Xm] for 1 ≤ m ≤ n. By tower-property of
conditional expectation and measurability of f = f(X1, . . . , Xn) w.r.t. Fn := σ(X1, . . . , Xn),
(Sm)

n
m=0 is clearly an (Fm)m-martingale satisfying Sn = f . Moreover, since f is square-

integrable, so is Sm for any m. Note that if 1 ≤ i < j ≤ n, by "taking out what’s known"
property of conditional expectation, we get

E[(Si − Si−1)(Sj − Sj−1)] = E[(Si − Si−1)E[Sj − Sj−1|Fj−1]︸ ︷︷ ︸
=0

] = 0.

Therefore,

Var[Sn] = E[(Sn − E[Sn])
2] =

∑
1≤i,j≤n

E[(Si − Si−1)(Sj − Sj−1)] =
n∑

i=1

E[(Si − Si−1)
2].

Furthermore, since Si−1 is Fi-measurable

Si − Si−1 = E[f − Si−1|X1, . . . , Xi];

but by tower property we also have,

Si−1 = E[f |X1, . . . , Xi−1] = E
[
E[f |X1, . . . , Xi−1, Xi+1, . . . , Xn]

∣∣X1, . . . , Xi−1

]
,

which is independent of Xi since (Xj)j are i.i.d, and thus,

Si−1 = E
[
E[f |X1, . . . , Xi−1, Xi+1, . . . , Xn]

∣∣X1, . . . , Xi

]
almost surely. Hence, as desired Si − Si−1 = E

[
f − E[f |(Xj)j ̸=i]

∣∣X1, . . . , Xi

]
. We are ready

to conclude:

Var[f ] =
n∑

i=1

E
[
E
[
f − E[f |(Xj)j ̸=i]

∣∣X1, . . . , Xi

]2]
Jensen
≤

n∑
i=1

E
[
E
[
(f − E[f |(Xj)j ̸=i])

2
∣∣X1, . . . , Xi

]]
=

n∑
i=1

E
[
E
[
(f − E[f |(Xj)j ̸=i])

2
]]

=
n∑

i=1

E
[
E
[
(f − E[f |(Xj)j ̸=i])

2
∣∣(Xj)j ̸=i

]︸ ︷︷ ︸
=Var[f |(Xj)j ̸=i]

]
.
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□

3. Applications of Efron-Stein inequality

Exercise 4 (Among Lipschitz functions the sum has the largest variance).
Consider the class F of functions f : Rn → R that are Lipschitz w.r.t. ℓ1 distance, i.e., if

x = (x1, . . . , xn) ∈ Rn and y = (y1, . . . , yn) ∈ Rn, then |f(x) − f(y)| ≤
∑n

i=1 |xi − yi|. Let
X = (X1, . . . , Xn) be a vector of independent variables of finite variance. Use the Efron-
Stein inequality to show that the maximal value of Var[f(X)] over f ∈ F is attained by the
function f(x) =

∑n
i=1 xi.

Proof. By Efron-Stein inequality for any f ∈ F ,

Var[f(X)] ≤ 1

2

n∑
i=1

E
[
(f(X)− (f(X))′i)

2
]
≤ 1

2

n∑
i=1

E
[
|Xi −X ′

i|2
]

=
n∑

i=1

(E[X2
i ]− E[Xi]

2) =
n∑

i=1

Var[Xi] = Var

[
n∑

i=1

Xi

]
= Var[f0(X)],

where X ′ is an independent copy of X and (f(X))′i = f(X1, . . . , Xi−1, X
′
i, Xi+1, . . . , Xn).

The upper estimate finishes the proof. □

Exercise 5 (Rademacher processes).
Let ε1, . . . , εn be independent Rademacher variables, i.e., Bernoulli random variables taking

values ±1 with probability 1/2, let T ⊂ Rn. First check the following easy identity:

sup
t∈T

Var

[
n∑

k=1

εktk

]
= sup

t∈T

n∑
k=1

t2k.

Now prove that

Var

[
sup
t∈T

n∑
k=1

εktk

]
≤ 4 sup

t∈T

n∑
k=1

t2k.

Thus, taking the supremum inside the variance costs at most a constant factor.
Remark: one can get constant 2 instead of 4 in the above inequality.

Proof. The first identity follows from the fact that the variance of sum of independent random
variables is the sum of variances of these variables, and Var[εktk] = t2k.

To prove the second bound, let us set Z := supt∈T
∑n

k=1 εktk. Let ε′1, . . . , ε′n be independent
copies of ε1, . . . , εn and Z ′

i := supt∈T

[∑n
j:j ̸=i εjtj + ε′iti

]
. Let t∗ be a random vector such

that Z =
∑n

i=1 εit
∗
i . Assume that supt∈T

∑n
k=1 t

2
k is finite, since otherwise there is nothing to

show. Note also that this implies that T has to be bounded and hence Z,Z ′ are well-defined
square-integrable variables. Then for all i = 1, . . . , n,

Z − Z ′
i ≤ (εi − ε′i)t

∗
i and so (Z − Z ′

i)
2
+ ≤ (εi − ε′i)

2(t∗i )
2,

where the first inequality follows since for any two real-valued functions f, g on common
domain, (f − g)(u) ≥ f(u) − sup g. The second inequality follows since if f ≤ a and x is
such that f+(x) = 0, then clearly f+(x)

2 ≤ 0 ≤ a2(x), if x is such that f+(x) ̸= 0, then
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f(x) = f+(x) ≥ 0 and so 0 ≤ f(x) ≤ a(x) and f 2
+(x) = f 2(x) ≤ a2(x). Using that ε′i is

independent of ε1, . . . , εn we obtain by properties of conditional expectation,

E
[
(Z − Z ′

i)
2
+

]
≤ E

[
E[(εi − ε′i)

2(t∗i )
2|ε1, . . . , εn]

]
= 2E[(t∗i )2].

By the Efron-Stein inequality we therefore get,

Var[Z] ≤ 2E

[
n∑

i=1

t∗i

]
≤ 2 sup

t∈T

n∑
k=1

t2k = 2 sup
t∈T

n∑
k=1

t2k.

□

Exercise 6 (Triangles in Erdös-Rényi graph).
Let Z be the number of triangles in a random graph G ∼ G(n, p), where G(n, p) denote the

Erdös-Rényi model, which is constructed on a set of n vertices by connecting every pair of
distinct vertices independently with probability p (or alternatively delete edges independently
from the complete graph on n vertices with probability 1− p). A triangle is a complete three-
vertex subgraph. Calculate the variance of Z and compare it with what you get by using the
Efron-Stein inequality to estimate it.

Proof. Let us first compute the variance explicitly. For this we denote the set of vertices
V = {1, . . . , n}, and introduce the random variables for i < j < k: Xi,j,k = 1{i,j,k} is a triangle.
In particular, Xi,j,k is Bernoulli distributed with probability p3 (probability that all three
edges are present). Let Z be the number of triangles in G, then Z =

∑n
i<j<k Xi,j,k and

Z2 =
∑n

i<j<k

∑n
p<q<r Xi,j,kXp,q,r. Hence,

E[Z] =
n∑

i<j<k

p3 =

(
n

3

)
p3;

E[Z2] =
n∑

i<j<k

n∑
p<q<r

E[Xi,j,kXp,q,r].

To compute the variance we need expressions for E[Xi,j,kXp,q,r] with i < j < k, p < q < r.
Let us consider possible cases:

• {i, j, k} = {p, q, r} so that there must be three distinct edges present. Thus, E[Xi,j,kXp,q,r] =
p3. There are exactly

(
n
3

)
elements of such form in the expression for E[N2].

• {i, j, k} and {p, q, r} have two common elements meaning that there must be 5 distinct
edges present. Thus, E[Xi,j,kXp,q,r] = p5. There are 2

(
n
4

)(
4
2

)
= 12

(
n
4

)
elements of this

type.
• {i, j, k} and {p, q, r} have one common element so that there must be 6 distinct edges

present. Hence, E[Xi,j,kXp,q,r] = p6. There are
(
n
5

)(
5
1

)(
4
2

)
= 30

(
n
5

)
such elements.

• {i, j, k} and {p, q, r} have no common elements, meaning that there must be 6 distinct
edges present. Hence, E[Xi,j,kXp,q,r] = p6. There are

(
n
6

)(
6
3

)
= 20

(
n
6

)
such elements.

Therefore,

Var[Z] = E[Z2]− E[Z]2 =
(
n

3

)
p3 + 12

(
n

4

)
p5 + 30

(
n

5

)
p6 + 20

(
n

6

)
p6 −

(
n

3

)2

p6.

To use the Efron-Stein estimate we need to slightly modify the variables we are working with.
We write m =

(
n
2

)
for the number of edges in the complete graph, and let Y1, . . . , Ym be iid
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Bernoulli variables with probability p (edge is present or not). Let T be a set of all triples of
edges forming a triangle. Then Z =

∑
t={p,q,r}∈T

∏
i∈t Xi. Let us write It :=

∏
i∈tXi (equal

in law to I2t ). So we get,

E[Z] =
∑
t∈T

E[It];

Var[Z] =
∑
t∈T

(E[I2t ]− E[It]2) +
∑

s ̸=t∈T :s∩t̸=∅

(E[ItIs]− E[It]E[Is])

=
∑
t∈T

(E[It]− E[It]2) +
∑

s ̸=t∈T :s∩t̸=∅

(E[ItIs]− E[It]E[Is]).

Define δ = (
∑

s,t∈T :s∩t̸=∅ E[ItIs])/E[Z]. A direct upper bound for the variance is

Var[Z] ≤
∑
t∈T

E[It] +
∑

s,t∈T :s∩t̸=∅

E[ItIs] = (1 + δ)E[Z].

On the other hand, by Efron-Stein we get

Var[Z] ≤
m∑
i=1

E[(Z − Z ′
i)

2
−] ≤

m∑
i=1

E

(∑
t:i∈t

It

)2
 =

∑
i

E

[∑
t:i∈t

It +
∑

s ̸=t:i∈s∩t

ItIs

]

=
∑
t

∑
i∈t

E[It] +
∑
t̸=s

∑
i∈t∩s

E[ItIs] ≤ 3(1 + δ)E[Z]

where Z ′
k depends on X1, . . . , Xk−1, X

′
k, Xk+1, . . . , Xm as Z on X1, . . . , Xm with X ′

k’s are
independent copies of Xk’s. The last inequality comes from the fact that the cardinality of
t ∈ T is 3.
In particular, the Efron-Stein bound is 3 times larger than the direct bound on the variance.

Remark: note that the latter approach works for more general sets T with elements of
bounded cardinality. □
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