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1 Intro
The last high-dimensional phenomenon that we will briefly look at is that of phase transitions.
We will consider it in the setting of boolean functions on product measures on the hypercube
{0, 1}N or in other words, we will take i.i.d. {0, 1}-valued random variables X1, X2, . . . , XN

and consider random functions f(X1, . . . , Xn) → {0, 1}.

Example 1.1. As an example consider the so called majority function: Mn(x1, . . . , xn) =
1∑n

i=1 xi>n/2 and the product measures where each X1 is equal to 1 with probability p. We
will measure the expected outcome: gn(p) := Ep(Mn) as a function of p. For n = 1, gn(p)
increases linearly from 0 to 1. But what happens at large n?

We still see that gn(1/2) = E1/2(Mn) = 1/2. Further by concentration of measure
Pp(|

∑n
i=1 Xi−np| > t

√
n) ≤ exp(−ct2). Thus, for every ϵ > 0, we have that gn(1/2+ϵ) → 1

and gn(1/2 − ϵ) → 0. We can make this even more precise - for each δ > 0, there is some
t > 0 such that gn(1/2 + t/

√
n) > 1 − δ and gn(1/2 − t/

√
n) < δ for all n large enough.

Verify that!

On the other hand if we would consider the so called dictator function, given by say
Dn = 1x1=1, the function gn(p) := Ep(Dn) would of course not have any phase transition,
but rather be linear for all n.

We will see that the general philosophy will be as follows: for symmetric increasing
boolean functions the phase transitions are sharp in the following sense.

Definition 1.2. A sequence of increasing boolean functions (fn) undergoes a sharp threshold
at (pn) if there exists a sequence (δn) tending to 0 such that:

gn(pn − δn) → 0 and gn(pn + δn) → 1.

By an increasing boolean function we mean here increasing w.r.t the natural partial order
on {0, 1}n - ω ≤ ω′ if and only if ωi ≤ ω′

i for all i = 1 . . . n.
As resources I recommend the book by van Handel and the notes by Duminil-Copin on

"Sharp threshold phenomena in statistical physics".
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2 Margulis-Russo lemma
Our aim is to understand the behaviour of gn(p) := Ep(fn) for a sequence of increasing
boolean functions fn. It comes out that one can calculate the derivative very nicely:

Lemma 2.1 (Margulis-Russo). We have that

dgn
dp

=
n∑

i=1

Ep(Di(fn)
2),

where as before Di(fn) := supz fn(x1, . . . , xi−1, z, xi+1, . . . , xn)−infz fn(x1, . . . , xi−1, z, xi+1, . . . , xn).

Remark 2.2. In the case of boolean functions on the hypercube g one can see that Ep(Di(g)
2) =

Pp(g(X) ̸= g(X
(i)
)), where in X(i) we have flipped the i−th bit (verify this)!. This quantity

Pp(g(X) ̸= g(X
(i)
)) is also often called the i−th influence of g and denoted Infi(g).

Proof. We write out
dgn
dp

=
d

dp

∑
x∈{0,1}n

p
∑

xi(1− p)n−
∑

xifn(x).

Taking the derivative and noting that xi ∈ {0, 1} we can write this conveniently as

∑
x∈{0,1}n

n∑
i=1

xip
∑

j ̸=i xj(1− p)n−1−
∑

i̸=j xjfn(x1, . . . , xi−1, 1, xi+1, . . . , xn)−

−
∑

x∈{0,1}n

n∑
i=1

(1− xi)p
∑

j ̸=i xj(1− p)n−1−
∑

i ̸=j xjfn(x1, . . . , xi−1, 0, xi+1, . . . , xn)

which is just equal to

n∑
i=1

(Ep(fn(X1, . . . , Xi−1, 1, Xi+1, . . . , Xn)− Ep(fn(X1, . . . , Xi−1, 0, Xi+1, . . . , Xn)) ,

which in turn equals
∑n

i=1 Ep((Difn)
2) as desired.

Now recall that by Efron-Stein we have that

Varp(fn) ≤
n∑

i=1

Ep((Difn)
2), (2.1)

giving the inequality dgn
dp

≥ Varp(fn). Thus we already see that if fn is not constant, then gn
is a strictly increasing function. Further, any improvement on (2.1) will make the derivative
larger and thus the transitions sharper. Let us make this precise.
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Lemma 2.3. Suppose that CnVarp(fn) ≤
∑n

i=1 Ep((Difn)
2) and let pc = pc(n) be such

that gn(pc) = 1/2. Then for every δ > 0 we have that gn(pc + δ) ≥ 1 − exp(−Cnδ) and
gn(pc − δ) < exp(−Cnδ).

Proof. The key observation is the following: since fn is {0, 1}-valued, Varp[fn] = Pp[fn =
1]− Pp[fn = 1]2 = gn(p)(1− gn(p)). Thus,

dgn(p)

dp
≥ Cngn(p)(1− gn(p))

can be rewritten as
(log

gn(p)

1− gn(p)
)′ ≥ Cn.

But now we can integrate this inequality between pc and pc+δ to obtain log gn(pc+δ)
1−gn(pc+δ)

≥ Cnδ.
Taking the exponent this gives

gn(pc + δ) ≥ 1− 1

1 + exp(Cδ)
≥ 1− exp(−Cnδ)

as desired. The other half works exactly in the same way.

Thus we need to just understand in which circumstances and by how much we can hope
to improve on the Poincaré inequality. Before doing that let us look at again at the example
of the majority function and try to rederive the sharpness by improving on the Efron-Stein.

3 Majority function is the sharpest
Example 3.1. We can calculate.

On the one hand Varp(Mn) = P(Mn > n/2)(1−P(Mn > n/2)) is equal to 1/4 at p = 1/2,
and is smaller at other p.

On the other hand a simple calculation shows that the total influence is of order
√
n (do

it!).
And thus we find the idea that somehow a rapid change happens in the window of size

1/
√
n.

In fact the majority function offers the sharpest transition for all increasing boolean
functions g which are "fair" in the sense that E1/2(g) = 1/2.1

Lemma 3.2. Let fn be a a fair increasing boolean function which is fair in the sense that
E1/2(fn) = 1/2. Then Ep(fn) ≥ Ep(Mn) for all p < 1/2 and Ep(fn) ≤ Ep(Mn) for all
p > 1/2.

1To understand the notion of "fair" think in terms of voting schemes.
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Proof. The property of fairness is equivalent to
∑

x fn(x) =
∑

xMn(x).
Further if fn ̸= Mn, as fn is also fair there must exist both some y with

∑n
i=1 yi < n/2

and fn(y) = 1 and some z with
∑n

i=1 zi > n/2 and fn(z) = 0. We can further suppose that
for all y′ ≤ y we have fn(y

′) = 0 and for all z′ ≥ z we have fn(z
′) = 1.

We will now see that swapping the values at z and y will still give us a fair function, that
we thereby increase Ep(f) for p > 1/2, decrease it for p < 1/2 and further we get closer to
the majority function.

Indeed, defining f̃ by letting f̃(x) = f(x) for x /∈ {y, z} and setting f̃(y) = 0 and f̃(z) =
0, we see directly from the definition that Ep(f̃) ≥ Ep(f) for p > 1/2 and Ep(f̃) ≤ Ep(f) for
p < 1/2.

But now either f̃ is the majority function, or we can iterate the same procedure. As with
every step there are less elements with

∑
i=1 xi > n/2 for which the function value is 0, this

procedure has to end with the majority function and the lemma follows.

4 Sharp transition for symmetric functions
We now state a key result on bounding the variance (whose proof we discuss next time) and
then deduce a nice generic threshold result from this.

Theorem 4.1 (Talagrand). There exists a constant c > 0 such that for any p ∈ [0, 1] and
n ∈ N, the following holds. For any increasing boolean function f : {0, 1}n → {0, 1},

Varp(f) ≤ c log

(
2

p(1− p)

) n∑
i=1

Infi[f ]

log
(

1
Infi[f ]

) .
Using this we can prove something rather beautiful.

Theorem 4.2 (Friedgut-Kalai). Suppose that an increasing boolean function fn is invariant
under a transitive family of permutations, i.e. fn(x) = fn(σ(x)) for any such permutation
σ.

Then for any δ > 0 Epc+δ(fn) > 1− n−c̃δ and Epc−δ(fn) < n−c̃δ for some constant c̃ > 0
that does not depend on n.

Proof. We need to just obtain the inequality c̃ log nVarp(fn) ≤
∑n

i=1 Infi[fn].
Observe that because of the symmetry all influences are equal. We consider two different

cases.

Either Infi[fn] ≥ logn
n

for all i, in which case

n∑
i=1

Infi[fn] ≥ log n ≥ log nVarp(fn).
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Or Infi[fn] <
logn
n

for all i. In this case, log(1/ Infi[fn]) ≥ log n − log log n. Thus, from
Talagrand’s inequality

Varp(fn) ≤ c

(
log

1

p(1− p)

)
2

log n− log log n

n∑
i=1

Infi[fn],

which gives some constant c̃ such that

c̃ log nVarp(fn) ≤
n∑

i=1

Infi(fn).

This constant does depend on p, but is compact on any interval away from 0 and 1 and
crucially is independent of n.
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