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1 Intro

The last high-dimensional phenomenon that we will briefly look at is that of phase transitions.
We will consider it in the setting of boolean functions on product measures on the hypercube
{0,1}* or in other words, we will take i.i.d. {0, 1}-valued random variables X, Xo, ..., Xy
and consider random functions f(Xy,...,X,) — {0,1}.

Example 1.1. As an example consider the so called majority function: M, (z1,...,x,) =
Iy 2;sns2 and the product measures where each Xy is equal to 1 with probability p. We
will measure the expected outcome: g,(p) = E,(M,) as a function of p. For n =1, g,(p)
increases linearly from 0 to 1. But what happens at large n?

We still see that g,(1/2) = Eq/9(M,) = 1/2. Further by concentration of measure
P,(| >0 Xi—np| > ty/n) < exp(—ct?). Thus, for every e > 0, we have that g,(1/2+¢) — 1
and gn(1/2 —€) — 0. We can make this even more precise - for each 6 > 0, there is some
t > 0 such that g,(1/2 +t/y/n) > 1 =10 and g,(1/2 — t/\/n) < & for all n large enough.
Verify that!

On the other hand if we would consider the so called dictator function, given by say
D,, = 1,,-4, the function g,(p) := E,(D,,) would of course not have any phase transition,
but rather be linear for all n.

We will see that the general philosophy will be as follows: for symmetric increasing
boolean functions the phase transitions are sharp in the following sense.

Definition 1.2. A sequence of increasing boolean functions (f,) undergoes a sharp threshold
at (pn) if there exists a sequence (6,,) tending to 0 such that:

By an increasing boolean function we mean here increasing w.r.t the natural partial order
on {0,1}" -w < ifand only if w; <w) foralli=1...n

As resources I recommend the book by van Handel and the notes by Duminil-Copin on
"Sharp threshold phenomena in statistical physics".



2 Margulis-Russo lemma

Our aim is to understand the behaviour of g¢,(p) := E,(f.) for a sequence of increasing
boolean functions f,,. It comes out that one can calculate the derivative very nicely:

Lemma 2.1 (Margulis-Russo). We have that
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where as before D;(f) := sup, fu(z1,. .., Zi—1,2,Tiv1, ..., xp)—inf, fro(@y, . 0 20, 2, g1, oo, Tp).

Remark 2.2. ]n the case of boolean functions on the hypercube g one can see that E,(D;(g)?) =
P,(g(X) # g(X )), where in X9 we have flipped the i—th bit (verify this)!. This quantity
P,(g(X) # g(X © )) is also often called the i—th influence of g and denoted Inf;(g).

Proof. We write out
d n > x; —> -
g = E p&="i( ().
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Taking the derivative and noting that x; € {0,1} we can write this conveniently as
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which is just equal to

n

> Ep(fulXey o Xim, 1, X, X)) = Bp(fa(Xn, o, Xi, 0, Xy, X0))

i=1
which in turn equals > | E,((D;f,)?) as desired. O

Now recall that by Efron-Stein we have that
Vary(fa) < > Ey((Difa)?), (2.1)
i=1

giving the inequality % > Var,(f,). Thus we already see that if f, is not constant, then g,
is a strictly increasing function. Further, any improvement on ([2.1)) will make the derivative
larger and thus the transitions sharper. Let us make this precise.



Lemma 2.3. Suppose that Cy, Var,(f,) < > E,((Difs)?) and let p. = pe(n) be such
that g,(p.) = 1/2. Then for every § > 0 we have that g,(p. + ) > 1 — exp(—C,0) and
gn(pc - 5) < eXp<_Cn5)'

Proof. The key observation is the following: since f, is {0, 1}-valued, Var,[f,] = P,[f, =
1] = Pylfn = 1J* = gu(p)(1 — gu(p)). Thus,

dgn(p)
> 1-—
o Crgn(p)(1 = gn(p))
can be rewritten as )
gn\P /
lo > C,
(log 1-— gn(p)>

But now we can integrate this inequality between p. and p.+ ¢ to obtain log % > Cp0.
Taking the exponent this gives

1
wpet+6)>1————>1-— —Cno
n(pe +0) = T oxp(C3) = exp(—Chd)
as desired. The other half works exactly in the same way. O]

Thus we need to just understand in which circumstances and by how much we can hope
to improve on the Poincaré inequality. Before doing that let us look at again at the example
of the majority function and try to rederive the sharpness by improving on the Efron-Stein.

3 Majority function is the sharpest

Example 3.1. We can calculate.

On the one hand Var,(M,) = P(M, > n/2)(1-P(M, > n/2)) is equal to 1/4 at p = 1/2,
and is smaller at other p.

On the other hand a simple calculation shows that the total influence is of order \/n (do
it!).

And thus we find the idea that somehow a rapid change happens in the window of size

1/\/7.

In fact the majority function offers the sharpest transition for all increasing boolean
functions g which are "fair" in the sense that E/2(g) = 1/ 2.E|

Lemma 3.2. Let f, be a a fair increasing boolean function which is fair in the sense that
Ei2(fn) = 1/2. Then E,(fn) > Ey(M,) for all p < 1/2 and E,(f,) < E,(M,) for all
p>1/2.

1To understand the notion of "fair" think in terms of voting schemes.



Proof. The property of fairness is equivalent to Y _ f,,(Z) = > __ M, (Z).

Further if f,, # M,, as f, is also fair there must exist both some 7 with """ | v; < n/2
and f,(y) = 1 and some Zz with Y | z; > n/2 and f,(Z) = 0. We can further suppose that
for all ¥ <7 we have f,(y') = 0 and for all 2’ > Z we have f,(Z') = 1.

We will now see that swapping the values at zZ and 7 will still give us a fair function, that
we thereby increase E,(f) for p > 1/2, decrease it for p < 1/2 and further we get closer to
the majority function.

Indeed, defining f by letting f () = f(T) for T ¢ {y,z} and setting f () =0and f(Z) =
0, we see directly from the definition that E,(f) > E,(f) for p > 1/2 and E,(f) < E,(f) for
p<1/2.

But now either f is the majority function, or we can iterate the same procedure. As with
every step there are less elements with ). , z; > n/2 for which the function value is 0, this

procedure has to end with the majority function and the lemma follows.
]

4 Sharp transition for symmetric functions

We now state a key result on bounding the variance (whose proof we discuss next time) and
then deduce a nice generic threshold result from this.

Theorem 4.1 (Talagrand). There ezists a constant ¢ > 0 such that for any p € [0,1] and
n € N, the following holds. For any increasing boolean function f: {0,1}" — {0, 1},

9 ) n Inf;[f]
p(l — p) i—1 log (ﬁ)

Using this we can prove something rather beautiful.

Var,(f) < clog (

Theorem 4.2 (Friedgut-Kalai). Suppose that an increasing boolean function f, is invariant
under a transitive family of permutations, i.e. f,(T) = f.(o(T)) for any such permutation
0.

Then for any 6 > 0 E,.15(fn) > 1 —n"% and E,,_s(f,) < n~% for some constant ¢ > 0
that does not depend on n.

Proof. We need to just obtain the inequality ¢lognVar,(f,) < >_' Inf;[f,].
Observe that because of the symmetry all influences are equal. We consider two different
cases.

Either Inf;[f,] > 8" for all 4, in which case

Zlnfi[fn] > logn > log nVar,(f,).

i=1



Or Inf;[f,] < 82 for all i. In this case, log(1/Inf;[f,]) > logn — loglogn. Thus, from

Talagrand’s inequality

1 2 -
Vary(fa) < C(ng(l—p)> logn—loglogn; nfil /]

which gives some constant ¢ such that

¢lognVar,(f,) < i Inf;(f,).

i=1

This constant does depend on p, but is compact on any interval away from 0 and 1 and

crucially is independent of n.
O
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