
Wigner’s semicircle law part II

November 18, 2024

1 Last time
Last time we spent time to formalise the problem and came up with the following statement:

Theorem 1.1 (Wigner semi-circle law). Let X = XN be a N × N symmetric matrix with
i.i.d entries upper diagonally - i.e. a Wigner matrix with eigenvalues λ1, . . . , λN . Moreover
assume that the entries have zero mean, unit variance and satisfy E|Xi,j|3 < ∞.

Then the empirical eigenvalue distribution µN := 1
N

∑N
i=1 δλi/

√
N of X/

√
N converges in

the sense of weak convergence of measures, in probability to the semi-circle law µsc with
density proportional to

√
4− x2.

We discussed the scaling: this can be seen from the fact that E(
∑N

i=1 λ
2
i ) = E

∑
X2

i,j = N
and saw that even the simpler problem, the convergence of the expected measures µ̃N := EµN

is non-trivial.
We spent also some time in trying to figure out how to address the convergence - which

observables to choose - and ended up going for the moment method, as we have that µn(x
k) =

1
N
Tr(Xk), which seems accessible.
And then we showed how to apply it to obtain a weak ex-changeability statement:

Lemma 1.2. Suppose the entries of two matrices X, Y are bounded. Then for every k ∈ N
we have that as N → ∞

|E 1

N
(Tr(Xk)− Tr(Y k))| → 0.

Today we will see how :

• similar calculations help us prove the Wigner semi-circle law first in expectation for
bounded entries.

• how to improve the convergence to that in probability

• how to remove the criteria on bounded entries

But first let’s do a correction.
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1.1 The operator norm of the matrix

Last time I was rushing a bit and said that the operator norm of XN should be bounded
when the entries are bounded.

This is not true: consider for example the matrix with all entries equal to 1.
However, it is morally true in the case of Wigner matrices, meaning that it is true with

overwhelmingly large probability:

Exercise 1.1. Let X be a Wigner N ×N matrix with mean-zero, uniformly bounded (wlog,
by one) entries, i.e., (Xij)i≤j≤N are independent with E[Xij] = 0 and |Xij| ≤ 1 almost surely
and Xji = X̄ij. Show that there exists C, c > 0 (absolute constants independent of N) such
that P[∥X∥op /

√
N ≥ t] ≤ e−cNt2 for all t ≥ C.

The proofs are not entirely straightforward in fact! A possible proof is sketched on the
example sheet, another one follows from concentration of measure results together with a
bound on the expectation. That in turn follows from our computations to follow.

2 Proof of the semi-circle law
Recall that

Tr(Xk) :=
∑

i1,i2,...,ik

Xi1i2 · · ·Xiki1

and that ETr(Xk) = 0 whenever some entry is used only once because of the i.i.d. condition.
Thus each entry Xij = Xji has to appear at least twice. Let us see that it has to appear

exactly twice.

Claim 2.1. The only terms in

E
1

N
Tr((X/

√
N)k) = N−1−k/2

∑
i1,i2,...,ik

E(Xi1i2 · · ·Xiki1)

that survive in the limit use exactly k/2 different entries, each with multiplicity two.
Moreover, we can assume that there are no diagonal terms.

Proof. Indeed, suppose we take l different entries. Let us calculate how many terms there
are of this type in the sum when entry multiplicities come with d1, . . . dl with

∑
di = k and

di ≥ 2, and in particular l ≤ k/2. As we have O(N2) choices for the first entry and O(N) for
each next new one, we see that there are at most Nk+1−

∑l
i=1(di−1) = N l+1 summands. But

this means that their contribution to E 1
N
Tr((X/

√
N)k) is O(N−1−k/2N l+1) and we conclude

that there have to be l = k/2 different terms, which means that each di = 2. Moreover,
we also see directly that k has to be even for the moment to survive in the limit - indeed
otherwise for any l the sum of the terms with l different entries is negligible as N → ∞ and
as l varies over 1 . . . k, this means that the whole sum is negligible.

Finally, to see the claim about diagonal terms notice that choosing at least one diagonal
term reduces the number of possible sums by a factor of N−1.

2



In particular as the variance of each entry is 1 by assumption , we have that

lim
N→∞

E
1

N
Tr((X/

√
N)k) = N−1−k/2#{summands with l = k/2}

. Thus we have reduced the problem to a counting question and we will next find a combi-
natorial representation of each term Xi1i2 · · ·Xiki1 to do this counting.

First notice that the number of possibilities for assigning to each index ij a number from
{1, . . . , N} is N(N − 1) · · · (N − m + 1), where m is the number of different indexes. For
the terms to survive, this has to be exactly equal to m = k/2 + 1 and then this number of
possibilities is exactly N(N − 1) . . . (N − k/2) so that N−1−k/2N(N − 1) . . . (N − k/2) → 1
as N → ∞.

Thus we only need to count the number of words i1i2i3 . . . ikik+1 with the constraints that

• ik+1 = i1

• For each j, there is some l such that {ij, ij+1} = {il, il+1}

• There are k/2 + 1 different indexes that we can take to be the set {1, 2, . . . , k/2 + 1}
in the order of appearance.

Lemma 2.2. The collection of words i1i2i3 . . . ikik+1 with the constraints above is in one-to-
one correspondence with pairs (T, P ) where T is a tree on the vertex set {1, 2, . . . , k/2 + 1},
P is a cycle on this graph such that it starts from the vertex 1, it traverses each edge twice
and each vertex i appears before i+ 1.

Proof. In one direction, we define the vertices of the graph by different indexes ij and the
edges by {ij, ij+1}. As there are k/2+ 1 vertices and k/2 edges, the graph is a tree. Further
the cycle is given by following the word i1i2 . . . ik and returning to i1.

In the other direction we let i1 . . . ikik+1 just be equal to the vertices visited along the
cycle.

Counting the pairs of trees and cycles with the conditions above is made simple by the
following observation:

Lemma 2.3. The pairs (T, P ) described in the previous lemma are in one-to-one correspon-
dence with walks of k steps starting and ending at 0, going either up or down by 1 at each
step and staying non-negative throughout.

Proof. Given the tree and the cycle, we observe that the distance from the vertex 1 through-
out the cycle gives such a walk.

In the other direction, given the walk we can define the tree geometrically: we draw the
graph of the walk, then put glue under the graph and smash it together. I leave it to you to
figure out the formal statement. ;)
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Naturally, one also set up this bijection directly with the words, but this bijection between
trees and paths is too nice to leave out. It now remains to count the number of such walks.

To do this we use the reflection principle. First, the number of the above-mentioned
paths is equal to the number of all paths starting from 0 and ending at 0 minus the number
of paths that start from 0, end at 0 and visit −1. But by reflection principle this latter is
equal to the number of paths starting from 0 and ending at −2.

Thus we obtain
(

k
k/2

)
−

(
k

k/2−1

)
, which equals to 1

k/2+1

(
k

k/2

)
for even k (recall that odd k

gave zero anyways).
This matches the moments of the semi-circle law (see exercise sheet) and hence we have

proved the convergence in expectation for matrices of bounded entries. Let us now discuss
how to enhance this to convergence in probability and to relax the boundedness assumption.

3 Extensions

3.1 Convergence in probability

To prove convergence in probability, it suffices to show that Var( 1
N
Tr((X/

√
N)k) goes to zero

as N → ∞. To do this we can apply Efron-Stein inequality together with the computations
of last time. This will be on the example sheet.

3.2 Removing the boundedness assumption

To remove the boundedness assumption, we use the Hofmann-Wielandt inequality (Exercise
3 on the sheet of this week).

Indeed, using this inequality we see that for any two symmetric matrices X, Y of the
same size and for all t > 0

|FµX
(t)− FµY

(t+ ϵ)| ≤ 1

Nϵ2
∥X − Y ∥2F

where FµX
denotes the cumulative distribution function of the corresponding eigenvalue

distribution. In particular supt∈R |FµX
(t)− FµY

(t+ ϵ)| ≤ 1
Nϵ2

∥X − Y ∥2F
But now by our assumption, for every δ > 0 we can choose C > 0 such that

E∥X −X1|Xi,j<C|∀i,j∥2F < δN2.

This means that if we denote by YN := XN1|Xi,j<C|∀i,j, we have that ∥YN/
√
N−XN/

√
N∥2F ≤

Nδ and thus for every ϵ > 0, we can choose δ > 0 (and thus C > 0 large enough) such that

E(sup
t∈R

|FµYN/
√

N
(t)− FµYN/

√
N
(t+ ϵ)|) ≤ ϵ.

But this means it suffices to study the case of bounded matrices as by increasing C we can
refind the original FµXN/

√
N
.
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