

TOPICS IN PROBABILITY. PART II: UNIVERSALITY

EXERCISE SHEET 8: UNIVERSALITY AND STRICTLY STABLE DISTRIBUTIONS

Exercise 1 (Characteristic functions of strictly stable laws).

Let $\phi_{\alpha,a}(t) = \exp(-a|t|^\alpha)$. Show that $\phi_{\alpha,a}$ is a characteristic function of a random variable iff $a > 0$, $\alpha \in (0, 2]$. Show that the latter ones are exactly characteristic functions of symmetric strictly stable α distributions.

Remark: Note that there are strictly stable distributions whose characteristic exponent is more complicated and involves imaginary terms, e.g. standard Lévy distribution or generalized Cauchy distribution (with non-zero location parameter).

Exercise 2 (Strictly stable distribution: equivalent definition).

1) Random variable X has a strictly stable distribution iff the following condition holds: if X_1, X_2 are independent variables, each with the same distribution as X and $a, b > 0$, then there exists a constant $c > 0$ such that $aX_1 + bX_2$ has the same distribution as cX .

Hint: for "only if" direction, find the explicit norming parameters using previous exercise, understand for which choices of a, b one could directly conclude and how to extend the result to all $a, b > 0$.

2) Prove that if X has a strictly stable distribution with norming constant c_n , then so is the law of $-X$. Conclude that if Y is independent of X with the same distribution, then the distribution of $X - Y$ is strictly stable with the same norming constant. Note that law of $X - Y$ is as well symmetric w.r.t. 0.

Exercise 3 (Heavy tailed CLT).

Consider a random variable X , whose law is symmetric around zero and that satisfies $\mathbb{P}[|X| > x] = x^{-\alpha}$ for $\alpha \in (0, 2)$ for all $x \geq 1$. Now let X_1, X_2, \dots be i.i.d. with the law of X . E.g. by using characteristic functions (or otherwise) prove that $\frac{1}{n^{1/\alpha}} \sum_{i=1}^n X_i$ converges to the symmetric α strictly stable law, i.e. the norming constant is $c_n = n^{1/\alpha}$ and the law is symmetric w.r.t. zero.

Exercise 4 ("Open question"). Find classes of functions $f_n : \mathbb{R}^n \rightarrow \mathbb{R}$ such that $f_n \in C^\infty$ and so that

$$\sup_x \left| \frac{\partial^3}{\partial x_i^3} f_n(x) \right| = o(n^{-1}) \quad \forall 1 \leq i \leq n,$$

for all n sufficiently large