
TOPICS IN PROBABILITY. PART I: CONCENTRATION

Exercise sheet 4: Concentration inequalities and their applications

Exercise 1 (Azuma-Hoeffding inequality and generalization). Let (Fn)n be a filtration,
(∆n)n be random variables satisfying

• (martingale difference property) ∆k is Fk-measurable and E[∆k|Fk−1] = 0 almost
surely;

• (predictable bounds) Ak, Bk are Fk−1-measurable and Ak ≤ ∆k ≤ Bk a.s.
Prove that

∑n
k=1 ∆k is subgaussian with variance proxy 1

4

∑n
k=1∥Bk − Ak∥2∞ and conclude

that

P
[∑

k≤n

∆k ≥ t
]
≤ exp

(
− 2t2∑n

k=1∥Bk − Ak∥2∞

)
.

In the case |Bk−Ak| is not uniformly bounded, this bound is useless. So, prove the following
more general form:

P
[∑

k≤n

∆k ≥ t,
∑
k≤n

(Bk − Ak)
2 ≤ c2

]
≤ e−2t2/c2 .

If you need a hint, see the footnote1.

Exercise 2. (Concentration of the norm of vector with bounded entries) Let Xi’s be i.i.d.
uniformly bounded random variables with E[X2

i ] = 1, and set X = (X1, . . . , Xn). Apply
McDiarmid’s theorem or Azuma-Hoeffding in the most natural way to find a bound for
P[∥X∥ − E[∥X∥] ≥ t] of the form e−t2/cn. What do you get for cn? Does it depend on
n?

Actually, it is possible (with what you’ve learnt so far) to get such a bound with an absolute
(independent of n) constant c by proceeding in a slightly different way. More precisely, prove
that there exists C > 0 (independent of n!) such that for all t ≥ 0,

P[∥X∥ −
√
n ≥ t] ≤ e−t2/C2

;

P[|∥X∥ −
√
n| ≥ t] ≤ 2e−t2/C2

.

Hint: First look at variables Yi = X2
i −E[X2

i ]) and find a suitable bound for P[ 1
n

∑
i≤n Yi ≥ t]

(similarly for the absolute value of the sum); use the fact that for z, δ ≥ 0, |z−1| ≥ δ implies
that |z2 − 1| ≥ max(δ, δ2) and conclude.

Show further that there exists an absolute constant K > 0 (independent of n) such that
0 ≤

√
n− E[∥X∥] ≤ K and conclude that for any t ≥ 2K,

P[|∥X∥ − E[∥X∥]| ≥ t] ≤ 2e−t2/(4C2).

1Consider λ
∑n

k=1 ∆k − λ2

8

∑n
k=1(Bk −Ak)

2.
1



Exercise 3 (Borell-TIS: concentration of supremum of Gaussian).
Let X ∈ Rn be a Gaussian vector. Let σ2 := supn

i=1Var[Xi]. Recall that then Z := supiXi

satisfies Var[Z] ≤ σ2 and prove that for some suitable c > 0 and all t > 0,

P[|Z − E[Z]| ≥ t] ≤ 2e−
t2

2cσ2 .

Remark: one could get the inequality with c = 1, but one would need a sharper Gaussian
concentration inequality than the one proven in the lecture.

Exercise 4 (Empirical frequencies). Let (Xi)i be i.i.d. random variables with distribution µ
on a measurable space E. Set Nn(C) := #{k ≤ n : Xk ∈ C}/n. By the law of large numbers,
Nn(C) ≈ µ(C) for n ≫ 1. We would like to control the deviation between the true probability
µ(C) and its empirical average Nn(C) uniformly over some countable class C of measurable
subsets of E. Thus, define Zn supC∈C |Nn(C)− µ(C)|. Prove that

P[Zn − E[Zn] ≥ t] ≤ e−2nt2 .

Exercise 5 (Maximal eigenvalue of symmetric matrix with Rademacher entries). Let M be
an n × n symmetric matrix with i.i.d. Rademacher entries (Mij)i≤j. We are interested in
the maximal eigenvalue of the matrix, λmax(M). Show that Var[λmax(M)] ≤ 16 and

P[λmax(M)− E[λmax(M)] ≥ t] ≤ e−t2/(4n(n+1)) ∧ 16

t2
.

Hint: recall that λmax(M) = supv∈Rn:|v|=1⟨v,Mv⟩, use this representation to find an esti-
mate on D−

ijf(M) with f(M) = λmax(M) for the variance bound, and on Dijf(M) for the
concentration bound.

Remark: It is actually possible (using the so-called Talagrand’s concentration inequality)
to show that λmax(M) is 16-subgaussian as you might expect from the variance bound.
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