

TOPICS IN PROBABILITY. PART I: CONCENTRATION

EXERCISE SHEET 2: VARIANCE BOUNDS

1. WARM UP

Exercise 1. Let X be any (possibly vector-valued) random variable, f be a measurable real-valued function on the state space of X . Show that

$$\text{Var}[f(X)] \leq \frac{1}{4}(\sup f - \inf f)^2 \quad \text{and} \quad \text{Var}[f(X)] \leq \mathbb{E}[(f(X) - \inf f)^2].$$

Exercise 2 (Square root of Chi-squared distribution).

Let Z be a non-negative random variable such that Z^2 is chi-squared distributed with D degrees of freedom. Prove that

$$\sqrt{D} - 1 \leq \mathbb{E}[Z] \leq \sqrt{D}.$$

Hint: Recall how chi-squared distributed random variable is related to a Gaussian vector.

2. AN ALTERNATIVE PROOF OF EFRON-STEIN INEQUALITY

Exercise 3 (Proof using martingales). Let X_1, \dots, X_n be independent, $f : \mathbb{R}^n \rightarrow \mathbb{R}$ such that $\mathbb{E}[f^2] < \infty$. Prove that

$$\text{Var}[f] \leq \sum_{i=1}^n \mathbb{E}[\text{Var}[f|(X_j)_{j \neq i}]]$$

proceeding as follows:

- (1) Consider $S_m = \mathbb{E}[f|X_1, \dots, X_m]$ for $m \geq 1$ and $S_0 = \mathbb{E}[f]$ and show that it is a martingale satisfying $S_n = f$;
- (2) Prove that for a square-integrable martingale S_n with $S_0 = \mathbb{E}[S_n]$,

$$\text{Var}[S_n] = \sum_{i=1}^n \mathbb{E}[(S_i - S_{i-1})^2];$$

- (3) Show that

$$S_i - S_{i-1} = \mathbb{E}[f - \mathbb{E}[f|(X_j)_{j \neq i}]]|X_1, \dots, X_i];$$

- (4) Conclude.

3. APPLICATIONS OF EFRON-STEIN INEQUALITY

Exercise 4 (Among Lipschitz functions the sum has the largest variance).

Consider the class \mathcal{F} of functions $f : \mathbb{R}^n \rightarrow \mathbb{R}$ that are Lipschitz w.r.t. ℓ^1 distance, i.e., if $x = (x_1, \dots, x_n) \in \mathbb{R}^n$ and $y = (y_1, \dots, y_n) \in \mathbb{R}^n$, then $|f(x) - f(y)| \leq \sum_{i=1}^n |x_i - y_i|$. Let $X = (X_1, \dots, X_n)$ be a vector of independent variables of finite variance. Use the Efron-Stein inequality to show that the maximal value of $\text{Var}[f(X)]$ over $f \in \mathcal{F}$ is attained by the function $f(x) = \sum_{i=1}^n x_i$.

Exercise 5 (Rademacher processes).

Let $\varepsilon_1, \dots, \varepsilon_n$ be independent Rademacher variables, i.e., Bernoulli random variables taking values ± 1 with probability $1/2$, let $T \subset \mathbb{R}^n$. First check the following easy identity:

$$\sup_{t \in T} \text{Var} \left[\sum_{k=1}^n \varepsilon_k t_k \right] = \sup_{t \in T} \sum_{k=1}^n t_k^2.$$

Now prove that

$$\text{Var} \left[\sup_{t \in T} \sum_{k=1}^n \varepsilon_k t_k \right] \leq 4 \sup_{t \in T} \sum_{k=1}^n t_k^2.$$

Thus, taking the supremum inside the variance costs at most a constant factor.

Remark: one can get constant 2 instead of 4 in the above inequality.

Exercise 6 (Triangles in Erdős-Rényi graph).

Let Z be the number of triangles in a random graph $G \sim \mathcal{G}(n, p)$, where $\mathcal{G}(n, p)$ denote the Erdős-Rényi model, which is constructed on a set of n vertices by connecting every pair of distinct vertices independently with probability p (or alternatively delete edges independently from the complete graph on n vertices with probability $1 - p$). A triangle is a complete three-vertex subgraph. Calculate the variance of Z and compare it with what you get by using the Efron-Stein inequality to estimate it.