
TOPICS IN PROBABILITY. PART I: CONCENTRATION

Exercise sheet 2: Variance bounds

1. Warm up

Exercise 1. Let X be any (possibly vector-valued) random variable, f be a measurable real-
valued function on the state space of X. Show that

Var[f(X)] ≤ 1

4
(sup f − inf f)2 and Var[f(X)] ≤ E[(f(X)− inf f)2].

Exercise 2 (Square root of Chi-squared distribution).
Let Z be a non-negative random variable such that Z2 is chi-squared distributed with D

degrees of freedom. Prove that
√
D − 1 ≤ E[Z] ≤

√
D.

Hint: Recall how chi-squared distributed random variable is related to a Gaussian vector.

2. An alternative proof of Efron-Stein inequality

Exercise 3 (Proof using martingales). Let X1, . . . , Xn be independent, f : Rn → R such
that E[f 2] < ∞. Prove that

Var[f ] ≤
n∑

i=1

E
[
Var[f |(Xj)j ̸=i]

]
proceeding as follows:

(1) Consider Sm = E[f |X1, . . . , Xm] for m ≥ 1 and S0 = E[f ] and show that it is a
martingale satisfying Sn = f ;

(2) Prove that for a square-integrable martingale Sn with S0 = E[Sn],

Var[Sn] =
n∑

i=1

E[(Si − Si−1)
2];

(3) Show that

Si − Si−1 = E
[
f − E[f |(Xj)j ̸=i]

∣∣X1, . . . , Xi

]
;

(4) Conclude.

3. Applications of Efron-Stein inequality

Exercise 4 (Among Lipschitz functions the sum has the largest variance).
Consider the class F of functions f : Rn → R that are Lipschitz w.r.t. ℓ1 distance, i.e., if

x = (x1, . . . , xn) ∈ Rn and y = (y1, . . . , yn) ∈ Rn, then |f(x) − f(y)| ≤
∑n

i=1 |xi − yi|. Let
X = (X1, . . . , Xn) be a vector of independent variables of finite variance. Use the Efron-
Stein inequality to show that the maximal value of Var[f(X)] over f ∈ F is attained by the
function f(x) =

∑n
i=1 xi.
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Exercise 5 (Rademacher processes).
Let ε1, . . . , εn be independent Rademacher variables, i.e., Bernoulli random variables taking

values ±1 with probability 1/2, let T ⊂ Rn. First check the following easy identity:

sup
t∈T

Var

[
n∑

k=1

εktk

]
= sup

t∈T

n∑
k=1

t2k.

Now prove that

Var

[
sup
t∈T

n∑
k=1

εktk

]
≤ 4 sup

t∈T

n∑
k=1

t2k.

Thus, taking the supremum inside the variance costs at most a constant factor.
Remark: one can get constant 2 instead of 4 in the above inequality.

Exercise 6 (Triangles in Erdös-Rényi graph).
Let Z be the number of triangles in a random graph G ∼ G(n, p), where G(n, p) denote the

Erdös-Rényi model, which is constructed on a set of n vertices by connecting every pair of
distinct vertices independently with probability p (or alternatively delete edges independently
from the complete graph on n vertices with probability 1− p). A triangle is a complete three-
vertex subgraph. Calculate the variance of Z and compare it with what you get by using the
Efron-Stein inequality to estimate it.
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