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Dataset

Each student has to use a specific dataset corresponding to their ID (see
last slide)

Datasets are available on the course Moodle webpage
(dataset_xx.Rdata).

Each dataset includes:

the calibration date range (dates.calib)
the testing date range (dates.test)
the portfolio weights (weights)
the price series of three assets (prices)
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Analysis: overview

The goal is to compute Value at Risk (VaR) estimates using a univariate
approach and assess its performance via backtesting

The Value at Risk can be viewed mathematically as an extreme
quantile of a distribution, i.e., it is the value 𝑣𝛼 such that

1 − 𝛼 = ̄𝐹 (𝑣𝛼), with 𝛼 a large quantile level

The portfolio consists of three stocks from the Dow Jones Industrial
Average index
The portfolio is rebalanced daily: weights 𝑤 = (𝑤1, 𝑤2, 𝑤3) are fixed
each day
The approach involves:

1 Model selection on the calibration period
2 Fitting and evaluating VaR predictions during the testing period
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Univariate modelling

Let 𝑃𝑡 denote the price of an asset at time 𝑡. Then, the logarithmic return
𝑟𝑡 and the logarithmic loss ℓ𝑡 of the asset at time 𝑡 are defined as:

𝑟𝑡 = log(𝑃𝑡) − log(𝑃𝑡−1), ℓ𝑡 = −𝑟𝑡 = log(𝑃𝑡−1) − log(𝑃𝑡)

The portfolio’s logarithmic loss ℓ𝑝,𝑡 at time 𝑡 can be approximated as the
weighted sum of the logarithmic losses of each asset:

ℓ𝑝,𝑡 ≈
𝑑

∑
𝑖=1

𝑤𝑖ℓ𝑖,𝑡

where 𝑤𝑖 and ℓ𝑖,𝑡 denote, respectively, the weight and logarithmic loss at
time 𝑡 of asset 𝑖
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Univariate modelling

In this approach, the log-losses of the rebalanced portfolio are modeled as
a univariate time series

The method focuses on filtered log-losses
VaR estimates are obtained via a semi-parametric approach involving
extreme value theory
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step A.1: exploratory analysis
Perform an exploratory analysis of the calibration-period log-losses:

Summary statistics
Correlograms
Portmanteau tests (e.g., Ljung–Box to test independence in time series)
Discussion of stylized facts of financial time series (returns show low serial
correlation and absolute returns high + volatility clustering)

Correlogram
Given time series data 𝑋1, … , 𝑋𝑛 we calculate the sample autocovariances

𝛾̂(ℎ) = 1
𝑛

𝑛−ℎ
∑
𝑡=1

(𝑋𝑡 − 𝑋̄) (𝑋𝑡+ℎ − 𝑋̄) where 𝑋̄ =
𝑛

∑
𝑡=1

𝑋𝑡/𝑛

The sample autocorrelations are given by

̂𝜌(ℎ) ∶= 𝛾̂(ℎ)/𝛾̂(0), ℎ = 0, 1, 2, … .

The correlogram is the plot {(ℎ, ̂𝜌(ℎ)), ℎ = 0, 1, 2, …}
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step A.2: model fitting
Financial time series usually exhibit heteroskedasticity (consequence of volatility
clustering)

An appropriate model for such settings is the 𝐴𝑅(𝑘)–𝐺𝐴𝑅𝐶𝐻(𝑝, 𝑞) model,
suitable for the logarithmic losses of the portfolio:

𝑋𝑡 = 𝜇𝑡 + 𝜎𝑡𝑍𝑡

𝜇𝑡 = 𝜇 +
𝑘

∑
𝑖=1

𝜙𝑖(𝑋𝑡−𝑖 − 𝜇)

𝜎2
𝑡 = 𝛼0 +

𝑝
∑
𝑖=1

𝛼𝑖(𝑋𝑡−𝑖 − 𝜇)2 +
𝑞

∑
𝑗=1

𝛽𝑗𝜎2
𝑡−𝑗

Here, (𝑍𝑡)𝑡∈ℤ is a white noise process with zero mean and unit variance, but its
distribution 𝐹 is unknown

Note: A white noise process is a time series process with no serial
autocorrelation, i.e., 𝜌(ℎ) = Cov(𝑍ℎ, 𝑍0)/Var(𝑍0) = 0, for ℎ ≠ 0 and 𝜌(0) = 1
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step A.2: model fitting

Based on results from A.1, fit a collection of univariate time series models
to the portfolio’s log-losses

Select the best model using model selection criteria (e.g., AIC)
Assess the quality of the fit

A tutorial on fitting such models can be found here
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step A.3: extreme value modeling

For the innovations of the selected model:

Choose a threshold 𝑢 using:
mean residual life plot
parameter stability plots

Fit a GPD to the excesses over 𝑢
A semiparametric approximation to the distribution 𝐹 of the innovations
combines the empirical distribution function below 𝑢 and a generalized
Pareto fit above it and is given by

̂𝐹𝑢(𝑥) =
⎧{
⎨{⎩

𝑛−1 ∑𝑛
𝑗=1 𝐼 (𝑥𝑗 ≤ 𝑥) , 𝑥 ≤ 𝑢

1 − 𝑛𝑢
𝑛 (1 + ̂𝜉 𝑥−𝑢

𝜎̂𝑢
)−1/ ̂𝜉

+
, 𝑥 > 𝑢,

where 𝑛𝑢 = #{𝑗 ∶ 𝑥𝑗 > 𝑢}
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step A.4: quantiles
Innovation quantiles

Compute the 𝛼 = 0.95, 0.99 quantiles of the innovations using the
estimate of 𝐹 given by ̂𝐹𝑢
If 𝛼 > 𝐹 −1(𝑢), then the VaR𝛼 = 𝑣𝛼 of the innovations is such that

1 − 𝛼 = ̄𝐹 (𝑣𝛼) = ̄𝐹 (𝑢) (1 + 𝜉 𝑣𝛼 − 𝑢
𝜎 )

−1/𝜉

so that

𝑣𝛼 = 𝑢 + 𝜎
𝜉 {(1 − 𝛼

̄𝐹 (𝑢) )
−𝜉

− 1}

In-sample VaR

Compute in-sample VaR0.95 and VaR0.99 for the losses (negative
log-returns) on the calibration period
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step A.6: VaR prediction for testing period

For each day 𝑡 in the testing period:
1 Fit the model from A.2 to the most recent 𝑛 days
2 Extract standardised innovations 𝑧𝑡−𝑛+1, … , 𝑧𝑡
3 Predict:

conditional mean 𝜇𝑡+1
conditional volatility 𝜎𝑡+1
0.95 and 0.99 quantiles of the innovations using semi-parametric
method from A.4

4 Compute VaR predictions for day 𝑡 + 1
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step A.7: backtesting

Assess the quality of the VaR predictions using a backtesting approach

Backtesting approach: binomial test

To evaluate the accuracy of the VaR predictions, we use the binomial test
to assess the number of VaR violations

For a given confidence level 𝛼 (e.g., 0.95 or 0.99), the expected
proportion of violations is 1 − 𝛼
Over a testing period of 𝑇 days, if 𝑥 violations are observed, we
model this as a binomial random variable:

𝑥 ∼ Binomial(𝑇 , 1 − 𝛼)
We thus test the null hypothesis: The observed violation rate equals
the expected rate (model is accurate)
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Assigned dataset

Name of student Assigned dataset

Ahou Samuel dataset_12.Rdata
Boissier Charles Louis Pierre Bogdan dataset_02.Rdata

Bouhadra Kalil Brahim dataset_05.Rdata
Caldarone Alex John dataset_21.Rdata
Carron Léo Jérémy dataset_01.Rdata

Chu Tianle dataset_10.Rdata
Do Alexis dataset_04.Rdata

Ferrera Alessandro dataset_16.Rdata
Frasa Nina dataset_14.Rdata

Garcia Averell Regina dataset_13.Rdata

Giuli Daniele dataset_07.Rdata
Hengl Stephan dataset_06.Rdata
Khella Georg dataset_03.Rdata
Kriem Zayed dataset_08.Rdata

Loukaidis Andronikos dataset_18.Rdata

Mailänder Lennart Wolfgang dataset_20.Rdata
Olaye Whaboaman Joel Thierry E dataset_15.Rdata

Pettersen Julie Sofie dataset_17.Rdata
Pfander Mila dataset_19.Rdata

Sigillo’ Massara Vincenzo dataset_09.Rdata

Zakharov Daniil dataset_11.Rdata
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