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Dataset

Each student has to use a specific dataset corresponding to their ID (see

last slide)

Datasets are available on the course Moodle webpage
(dataset_xx.Rdata).

Each dataset includes:

@ the calibration date range (dates.calib)
o the testing date range (dates.test)

@ the portfolio weights (weights)

@ the price series of three assets (prices)
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Analysis: overview

The goal is to compute Value at Risk (VaR) estimates using a univariate
approach and assess its performance via backtesting

@ The Value at Risk can be viewed mathematically as an extreme
quantile of a distribution, i.e., it is the value v, such that

1—a=F(v,), with « a large quantile level

@ The portfolio consists of three stocks from the Dow Jones Industrial
Average index

@ The portfolio is rebalanced daily: weights w = (w;, wy, w5) are fixed
each day

@ The approach involves:
@ Model selection on the calibration period
@ Fitting and evaluating VaR predictions during the testing period
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Univariate modelling

Let P, denote the price of an asset at time ¢. Then, the logarithmic return
r, and the logarithmic loss ¢, of the asset at time ¢ are defined as:

ry = log(P) —log(P,_y), ¢ = —ry =log(P,_;) —log(F})

The portfolio’s logarithmic loss ﬁpyt at time ¢ can be approximated as the
weighted sum of the logarithmic losses of each asset:
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where w; and /; , denote, respectively, the weight and logarithmic loss at
time t of asset ¢
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Univariate modelling

In this approach, the log-losses of the rebalanced portfolio are modeled as
a univariate time series

@ The method focuses on filtered log-losses
@ VaR estimates are obtained via a semi-parametric approach involving
extreme value theory

Linda Mhalla Project 5: Risk quantification in a low-dimens 2025-04-14 5/13



step A.1: exploratory analysis
Perform an exploratory analysis of the calibration-period log-losses:

@ Summary statistics

@ Correlograms

@ Portmanteau tests (e.g., Ljung—Box to test independence in time series)

@ Discussion of stylized facts of financial time series (returns show low serial
correlation and absolute returns high + volatility clustering)

Correlogram

Given time series data X, ..., X,, we calculate the sample autocovariances
1 n—h B B B n
(h) = — (X, —X) (Xyin—X) where X=> X,/n
t=1 t=1

@ The sample autocorrelations are given by

A(h) = A(R)/3(0),h = 0,1,2, ...
@ The correlogram is the plot {(h, p(h)),h =0,1,2,...}
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step A.2: model fitting

Financial time series usually exhibit heteroskedasticity (consequence of volatility
clustering)

An appropriate model for such settings is the AR(k)-GARCH (p,q) model,
suitable for the logarithmic losses of the portfolio:

Xy = py + 0,2,

k
My = pb+ Z(ﬁi(thi — W)
im1
P q
of = ag+ Z o (X —p)? + Z 807
=1 =1

Here, (Z,),c7 is a white noise process with zero mean and unit variance, but its
distribution F' is unknown

Note: A white noise process is a time series process with no serial
autocorrelation, i.e., p(h) = Cov(Z,, Z,)/Var(Z,) = 0, for h # 0 and p(0) = 1
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step A.2: model fitting

Based on results from A.1, fit a collection of univariate time series models
to the portfolio's log-losses

@ Select the best model using model selection criteria (e.g., AlC)
@ Assess the quality of the fit

A tutorial on fitting such models can be found here
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https://lbelzile.github.io/timeseRies/generalized-autoregressive-conditional-heteroskedasticity-garch-models-and-extensions.html

step A.3: extreme value modeling

For the innovations of the selected model:

@ Choose a threshold w using:
e mean residual life plot
e parameter stability plots
@ Fit a GPD to the excesses over u

A semiparametric approximation to the distribution F' of the innovations
combines the empirical distribution function below w and a generalized
Pareto fit above it and is given by

nilzyzll(xjgx), z<u

F(x) =

n - ~1/¢
o (agz) ™ as,
W/
where n,, = #{j : v; > u}
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step A.4: quantiles

Innovation quantiles

Compute the a = 0.95,0.99 quantiles of the innovations using the
estimate of F' given by F},
If & > F~1(u), then the VaR,, = v,, of the innovations is such that

1—a=F(v,)=F(u) (1+§

v, —u\ "¢
)
so that

In-sample VaR

e Compute in-sample VaR g5 and VaR o9 for the losses (negative
log-returns) on the calibration period
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step A.6: VaR prediction for testing period

For each day t in the testing period:

@ Fit the model from A.2 to the most recent n days
@ Extract standardised innovations z;_,,, 1,...,2;
© Predict:

e conditional mean ;¢
o conditional volatility o;_4

e 0.95 and 0.99 quantiles of the innovations using semi-parametric
method from A.4

@ Compute VaR predictions for day t + 1
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step A.7: backtesting

@ Assess the quality of the VaR predictions using a backtesting approach

Backtesting approach: binomial test

To evaluate the accuracy of the VaR predictions, we use the binomial test
to assess the number of VaR violations
e For a given confidence level « (e.g., 0.95 or 0.99), the expected
proportion of violations is 1 — «
@ Over a testing period of T' days, if = violations are observed, we
model this as a binomial random variable:

x ~ Binomial(T',1 — «)

@ We thus test the null hypothesis: The observed violation rate equals
the expected rate (model is accurate)
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Assigned dataset

Name of student Assigned dataset
Ahou Samuel dataset__12.Rdata
Boissier Charles Louis Pierre Bogdan dataset_02.Rdata
Bouhadra Kalil Brahim dataset_05.Rdata
Caldarone Alex John dataset_21.Rdata
Carron Léo Jérémy dataset_01.Rdata
Chu Tianle dataset__10.Rdata

Do Alexis dataset_04.Rdata

Ferrera Alessandro dataset__16.Rdata
Frasa Nina dataset_14.Rdata

Garcia Averell Regina dataset__13.Rdata
Giuli Daniele dataset_07.Rdata

Hengl Stephan dataset_06.Rdata
Khella Georg dataset_03.Rdata

Kriem Zayed dataset_08.Rdata
Loukaidis Andronikos dataset_18.Rdata
Mailander Lennart Wolfgang dataset__20.Rdata
Olaye Whaboaman Joel Thierry E dataset__15.Rdata
Pettersen Julie Sofie dataset_17.Rdata
Pfander Mila dataset_19.Rdata

Sigillo’ Massara Vincenzo dataset_09.Rdata
Zakharov Daniil dataset_11.Rdata
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