

Project 2: Tips in trips in the city of Chicago

MATH-516 Applied Statistics

Linda Mhalla

2025-03-03

1 Data

Transportation Network Providers (TNPs) such as Uber and Lyft operate in Chicago. As part of its licensing process, Chicago requires the companies to report on their activities monthly

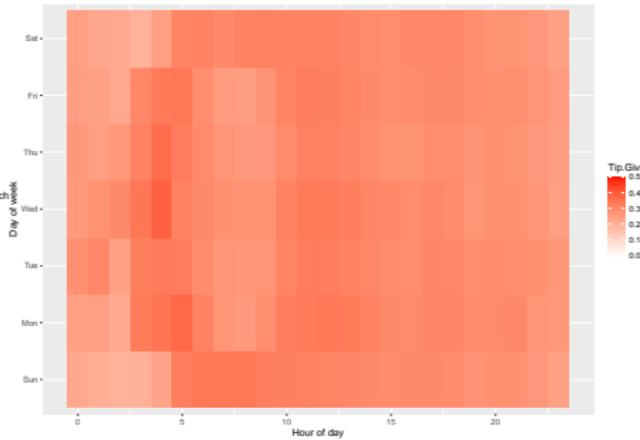
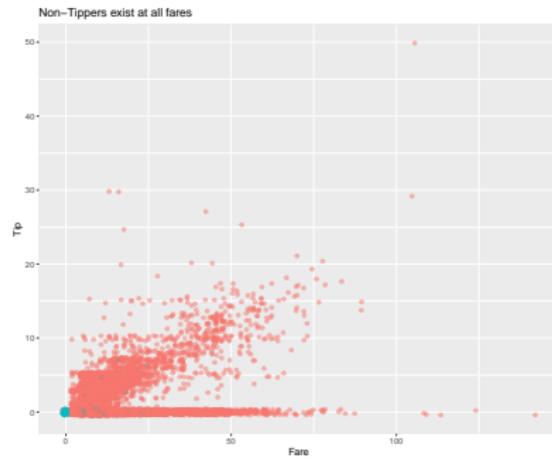
- The dataset provides detailed trip-level information on reported trips
- This dataset covers trips during **October 2024**
- Source: City of Chicago Open Data Portal
- Key features:
 - Temporal trends
 - Spatial patterns
 - Fare and cost analysis
 - Shared ride behaviour

2 Data: Trip information

- trip_id: unique identifier for each trip
- trip_start_timestamp: timestamp when the trip started
- trip_end_timestamp: timestamp when the trip ended
- trip_seconds: total duration of the trip in seconds
- trip_miles: Total distance of the trip in miles
- fare: base fare of the trip
- tip: amount tipped by the passenger
- additional_charges: extra fees (e.g., service fees)
- trip_total: total cost of the trip (sum of fare, tip, and additional charges)
- shared_tripAuthorized: whether the passenger opted for a shared ride
- shared_tripMatch: whether the ride was actually matched with another passenger
- trips_pooled: number of passengers pooled in a shared trip

Note: times are rounded to the nearest 15 minutes, fares are rounded to the nearest 2.50, and tips are rounded to the nearest 1.00

3 The Goal



The dataset provides valuable insights into:

- temporal trends (peak ride-sharing hours and seasonal variations)
- spatial mobility (pickup/dropoff areas)
- fare & cost analysis (fare structures, tip patterns, and additional charges)
- ride-sharing trends (e.g., how many trips were pooled vs. individual rides)

We will focus on one specific aspect: **the tipping behaviour**

→ Understanding tipping patterns can help companies adjust pricing models or **researchers study socio-economic factors influencing tips**

4 The Goal

5 The research question: To tip or not to tip?

- Why do some passengers tip, while others don't tip at all?
- What factors influence tipping in ride-sharing services?
- Can we build predictive models to understand tipping behavior?

5.1 Key questions

- ① How often do passengers tip in Chicago TNP rides?
- ② Do trip duration, distance, fare, or time of day affect tipping?
- ③ Are certain pickup or drop-off locations associated with a higher probability of tipping?
- ④ Are certain time of the day or weekdays associated with a higher probability of tipping?
- ⑤ Do shared rides affect tipping behaviour?

6 Goals

- Understand the meaning of the different predictors
- Explore the data to understand the propensity to tip
- Build a logistic regression model
 - Should you include all predictors? Use LRTs to decide
 - How can you interpret the impact of the different predictors on the propensity to tip?
 - What type of predictors are the most relevant? Spatial, temporal?
- Evaluate prediction performance of your model, in terms of AUC, by cross-validation
- Use a different classification method and compare with logistic regression in terms of prediction

7 Cross-Validated AUC

```
library(pROC)
AUC_eval <- function(gmodel, Data, folds=5){
  set.seed(516)
  Folds <- matrix(sample(1:dim(Data)[1]), ncol=folds) # is this wise?
  AUC <- rep(0,folds)
  for(k in 1: folds){
    train <- Data[-Folds[,k],]
    test <- Data[Folds[,k],]
    my_gm <- glm(gmodel$formula, family="binomial", data=train)
    test_pred <- predict(my_gm, newdata = test, type="response")
    AUC[k]      <- auc(test$y,test_pred)
  }
  return(mean(AUC))
}
```