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Section 1

Introduction
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Motivation for modelling extreme events

Modelling extremes in environmental sciences

Temperatures → heat waves (Europe, 2003 → 40’000 deaths and
€13.1 billion of crop damages)
Water heights → floods (hurricane Harvey, 2017 → 107 deaths and
$125 billion in damages)
Concentrations of air pollutants → health problems

Linda Mhalla Week 9: Extreme Value Theory 2025-04-14 3 / 47



Motivation for modelling extreme events

Modelling extremes in finance

Growing areas of application include: insurance, athletic records, networks
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Basic problem

Let 𝑋 be a random variable of interest with cdf 𝐹
We are interested in cases where 𝑋 is “extremely” large or
“extremely” low, i.e.,

Pr(𝑋 > 𝑥) when 𝑥 is large, or Pr(𝑋 < 𝑥) when 𝑥 is low

Therefore, we require accurate inference on the tails of 𝐹 . But…

There are very few observations in the tails of the distribution →
standard techniques can result in severely biased estimates
We often require estimates that are beyond the observed values

→ Rely on the extreme value paradigm: base tail models on
asymptotically-motivated distributions!
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How bad does it get?

We want to study the worst case scenario

Two classical approaches

Block-maxima: max(𝑋1, … , 𝑋𝑛) (maximum over, e.g., a year)
Peaks over threshold: 𝑋|𝑋 > 𝑢 for a large threshold 𝑢

Linda Mhalla Week 9: Extreme Value Theory 2025-04-14 6 / 47



References
Books

Resnick (1987): Extreme Values, Regular Variation, and Point
Processes, Springer
de Haan and Ferreira (2006): Extreme Value Theory: An Introduction,
Springer
Embrechts, Klüppelberg and Mikosch (1997): Modelling Extreme
Events for Insurance and Finance, Springer
Coles (2001): An Introduction to Statistical Modeling of Extreme
Values, Springer
Beirlant, Goegebeur, Segers, and Teugels (2004): Statistics of
Extremes: Theory and Applications, Wiley
Finkenstädt and Rootzén (2004): Extreme Values in Finance,
Telecommunications and the Environment, CRC
Embrechts, Hofert, and Chavez-Demoulin (2024): Risk revealed,
Cambridge University Press

R Packages
evd, evdbayes, evir, extRemes, fExtremes, POT, SpatialExtremes

Journal: Extremes (published by Springer)
Linda Mhalla Week 9: Extreme Value Theory 2025-04-14 7 / 47



Section 2

Block-maxima Approach
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Notations

Let 𝑋1, 𝑋2, … be iid random variables with distribution function 𝐹
We seek approximations to the distribution of the maximum of the 𝑋𝑖

Let 𝑀𝑛 = max(𝑋1, … , 𝑋𝑛) be the worst-case value in a sample of 𝑛 values.
Clearly

ℙ(𝑀𝑛 ≤ 𝑥) = ℙ(𝑋1 ≤ 𝑥, … , 𝑋𝑛 ≤ 𝑥) = 𝐹 𝑛(𝑥)

𝐹 is unknown, so approximate 𝐹 𝑛 by some limit distribution, but as 𝑛 → ∞,

𝐹(𝑥)𝑛 → {0, 𝐹(𝑥) < 1,
1, 𝐹(𝑥) = 1,

so 𝑀𝑛
𝑑→ 𝑥∗, where 𝑥∗ = sup{𝑥 ∶ 𝐹(𝑥) < 1} is the upper end point of 𝐹

This is not useful, because the distribution is concentrated at 𝑥𝐹

But what about normalized maxima?
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Limiting Behaviour of Sums or Averages

We are familiar with the central limit theorem

Let 𝑋1, 𝑋2, … be iid with finite mean 𝜇 and finite variance 𝜎2. Let
𝑆𝑛 = 𝑋1 + … + 𝑋𝑛. Then

ℙ (𝑆𝑛 − 𝑛𝜇√𝑛𝜎 ≤ 𝑥) 𝑛→∞−−−→ Φ(𝑥)

where Φ is the cdf of the standard normal distribution

Φ(𝑥) = 1√
2𝜋 ∫

𝑥

−∞
𝑒−𝑢2/2𝑑𝑢

More generally, the limiting distributions for appropriately normalized
sample sums are the class of 𝛼-stable distributions; Gaussian
distribution is a special case
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Limiting Behaviour of Sample Maxima

Let 𝑋1, 𝑋2, … be iid from 𝐹 and let 𝑀𝑛 = max(𝑋1, … , 𝑋𝑛)

Extremal types theorem
Suppose we can find sequences of real numbers 𝑎𝑛 > 0 and 𝑏𝑛 such that
(𝑀𝑛 − 𝑏𝑛)/𝑎𝑛, the sequence of normalized maxima, converges in distribution, i.e.,

ℙ (𝑀𝑛 − 𝑏𝑛
𝑎𝑛

≤ 𝑥) = 𝐹 𝑛(𝑎𝑛𝑥 + 𝑏𝑛) 𝑛→∞−−−→ 𝐺(𝑥)

for some non-degenerate df 𝐺(𝑥). Then, this must be the generalized
extreme-value distribution (GEV)

𝐺𝜉,𝜇,𝜎(𝑥) = {exp [− {1 + 𝜉(𝑥 − 𝜇)/𝜎}−1/𝜉
+ ] , 𝜉 ≠ 0,

exp [− exp {−(𝑥 − 𝜇)/𝜎}] , 𝜉 = 0,
𝑥 ∈ ℝ,

where 𝑎+ = max(𝑎, 0) for any real 𝑎, and with 𝜉, 𝜇 ∈ ℝ and 𝜎 > 0. Put another
way, (𝑀𝑛 − 𝑏𝑛)/𝑎𝑛

𝑑→ 𝑍 as 𝑛 → ∞, where 𝑍 has distribution function 𝐺
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Block maxima
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es

⇝ generalized extreme value limit distribution for rescaled maxima
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Generalized Extreme Value Distribution
The parametrization is continuous in the shape parameter 𝜉 which determines the
rate of tail decay. For

𝜉 > 0: the heavy-tailed Fréchet (Type II) (dotted line)
𝜉 = 0: the light-tailed Gumbel, Type I, with support on ℝ (solid line)
𝜉 < 0: the short-tailed (reverse) Weibull, Type III (dashed line)
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Examples: Rainfall or financial data (usually 𝜉 > 0), temperature data (usually
𝜉 < 0), and Gaussian data (𝜉 = 0)
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Generalized Extreme Value Distribution

If ETT applies, we say that 𝐹 is in the maximum domain of
attraction of 𝐺, abbreviated 𝐹 ∈ 𝑀𝐷𝐴(𝐺)
𝜇 and 𝜎 are location and scale parameters: not crucial as they can be
absorbed by the normalizing sequences, i.e., 𝐺𝜉,𝜇,𝜎(𝑥) ∶= 𝐺𝜉 (𝑥−𝜇

𝜎 ).
Thus, we can always choose normalizing sequences 𝑎𝑛 and 𝑏𝑛 so that
the limit law 𝐺𝜉 appears in standard form (without relocation or
rescaling)

The 𝑟th moment of the GEV exists only if 𝜉 < 1/𝑟, so the mean
exists only if 𝜉 < 1, the variance only if 𝜉 < 1/2, etc. In applications
(particularly in finance) some moments may not exist

Essentially, all commonly encountered continuous distributions are in
the maximum domain of attraction of an extreme value distribution
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ETT - Fisher–Tippett Theorem (1928): Examples

Recall: 𝐹 ∈ MDA(𝐺𝜉), iff there are sequences 𝑎𝑛 and 𝑏𝑛 with

ℙ {(𝑀𝑛 − 𝑏𝑛) /𝑎𝑛 ≤ 𝑥} = 𝐹 𝑛 (𝑎𝑛𝑥 + 𝑏𝑛) 𝑛→∞⟶ 𝐺(𝑥)

The exponential distribution

𝐹(𝑥) = 1 − 𝑒−𝜆𝑥, 𝜆 > 0, 𝑥 ≥ 0

is in MDA(𝐺0) (Gumbel). Take 𝑎𝑛 = 1/𝜆, 𝑏𝑛 = (log 𝑛)/𝜆
The Pareto distribution

𝐹(𝑥) = 1 − ( 𝜅
𝜅 + 𝑥)

𝛼
, 𝛼, 𝜅 > 0, 𝑥 ≥ 0,

is in MDA(𝐺1/𝛼) (Fréchet). Take 𝑎𝑛 = 𝜅𝑛1/𝛼/𝛼, 𝑏𝑛 = 𝜅𝑛1/𝛼 − 𝜅
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When does 𝐹 ∈ MDA(𝐺𝜉) hold?

Fréchet case: (𝜉 > 0)

Gnedenko (1943) showed that for 𝜉 > 0

𝐹 ∈ MDA(𝐺𝜉) ⟺ 1 − 𝐹(𝑥) = 𝑥−1/𝜉𝐿(𝑥)
for some slowly varying function 𝐿(𝑥)

A function 𝐿 on (0, ∞) is slowly varying if

lim
𝑥→∞

𝐿(𝑡𝑥)
𝐿(𝑥) = 1, 𝑡 > 0

Summary: If the tail of the distribution function 𝐹 decays like a power
function, then the distribution is in MDA(𝐺𝜉) for 𝜉 > 0
Examples: Heavy-tailed distributions such as Pareto, Burr, log-gamma,
Cauchy, and 𝑡-distributions as well as various mixture models. Not all
moments are finite
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When does 𝐹 ∈ MDA(𝐺𝜉) hold?

Gumbel case: 𝐹 ∈ MDA(𝐺0)
The characterization of this class is more complicated. Essentially, it
contains distributions whose tails decay roughly exponentially and we
call these distributions light-tailed. All moments exist for distributions
in the Gumbel class
Examples are the normal, log-normal, exponential, and gamma
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Using Fisher–Tippett on data: Block Maxima Method

If you are given 𝑛 values, use the limiting distribution to model 𝑀𝑛:

ℙ (𝑀𝑛 − 𝑏𝑛
𝑎𝑛

≤ 𝑥) ≈ 𝐺𝜉,0,1(𝑥)

or
ℙ(𝑀𝑛 ≤ 𝑦) = 𝐺𝜉,𝑏𝑛,𝑎𝑛

(𝑦)

All that’s left is to estimate three parameters: 𝜉, 𝑏𝑛, and 𝑎𝑛
Need repeated values of 𝑀𝑛 ⇒ required data is a multiple of 𝑛

The values 𝑏𝑛 and 𝑎𝑛 are equivalent to the parameters 𝜇 and 𝜎 in the
formula, respectively
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ML Inference for Maxima

We have block maxima data y = (𝑀 (1)
𝑛 , … , 𝑀 (𝑚)

𝑛 )
⊤

from 𝑚 blocks of
size 𝑛 → want to estimate 𝜃 = (𝜉, 𝜇, 𝜎)⊤

We construct a log-likelihood by assuming we have independent
observations from a GEV with density 𝑔𝜃,

𝑙(𝜃; y) = log {
𝑚

∏
𝑖=1

𝑔𝜃 (𝑀 (𝑖)
𝑛 ) 1{1+𝜉(𝑀(𝑖)

𝑛 −𝜇)/𝜎>0}}

and (numerically) maximize this w.r.t. 𝜃 to obtain the MLE ̂𝜃 = ( ̂𝜉, ̂𝜇, 𝜎̂)⊤
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ML Inference for Maxima

When 𝜉 > −0.5, maximum likelihood estimator obeys the standard
theory. In particular

standard errors can be computed from inverse of the observed
information matrix
likelihood ratio test applies to nested models
profile log-likelihood preferred to construct CIs and perform tests for
quantiles

If 𝜉 ≤ −0.5, Bayesian methods may be preferable (this is very rare in
practice!)

Clearly, when defining blocks, bias and variance must be traded off

we reduce bias by increasing the block size 𝑛
we reduce variance by increasing the number of blocks 𝑚
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Risk Measures

We have a time series of daily values 𝑋1, 𝑋2, …, assumed to be
independent and identically distributed from 𝐹
We aim to estimate some measure of risk of high (or low) values of 𝑋
Common risk measures:

Probability: Pr(𝑋 > 𝑣) = 1 − 𝐹(𝑣) for some high threshold 𝑣
High quantile: 𝑥1−𝑝 corresponding to some small 𝑝, i.e.,
𝑥1−𝑝 = 𝐹 −1(1 − 𝑝)
Value-at-Risk (VaR1−𝑝): high quantile 𝑥1−𝑝 used for financial losses

where 𝑋 denotes 1-day or 10-day losses (negative returns) and typically
𝑝 = 0.01 or 0.05

Expected Shortfall (ES1−𝑝): 𝔼(𝑋 ∣ 𝑋 > 𝑥1−𝑝)

Linda Mhalla Week 9: Extreme Value Theory 2025-04-14 21 / 47



Return Levels

Aim: What is the 40-year return level 𝑅365,40?
We define a rare stress 𝑅𝑛,𝑘, the 𝑘 𝑛-block return level, as

ℙ(𝑀𝑛 > 𝑅𝑛,𝑘) = 1
𝑘

i.e., it is the level that is exceeded in one out of every 𝑘 𝑛-blocks, on average

In extreme value terminology, 𝑅𝑛,𝑘 is the return level associated with return
period 1/𝑘 (small as 𝑘 is typically large)

If 𝑀𝑛 are yearly maxima, then 𝑅𝑛,𝑘 represents the level that is expected to be
exceeded once every 𝑘 years

We use the approximation

𝑅𝑛,𝑘 ≈ 𝐺−1
𝜉,𝜇,𝜎 (1 − 1

𝑘) = 𝜇 + 𝜎
𝜉 [ {− log(1 − 1

𝑘)}
−𝜉

− 1]

The interest is then in estimating this functional of the unknown parameters of
our GEV model for maxima of 𝑛-blocks
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GEV in practice: Daily rainfall in south-west England
library(ismev)
library(extRemes)

data(rain) #from ismev
years <- rep(1:48, rep(c(365,365,366,365), times = 12))[-17532] #period 1914 to 1962
rain.ann.max <- unlist(lapply(X = split(rain,years), FUN = max)) # annual maxima

mod <- fevd(rain.ann.max, type="GEV", time.units="years")
plot(mod)
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fevd(x = rain.ann.max, type = "GEV", time.units = "years")
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GEV in practice: Daily rainfall in south-west England
mod $results$par #gives parameters of the GEV

location scale shape
40.7830335 9.7284060 0.1072355
# suggests heavy-tailed model here, but only point estimates
# What about building confidence intervals?
ci.fevd(mod, alpha=0.05, type="parameter")

fevd(x = rain.ann.max, type = "GEV", time.units = "years")

[1] "Normal Approx."

95% lower CI Estimate 95% upper CI
location 37.6941916 40.7830335 43.8718754
scale 7.3991505 9.7284060 12.0576614
shape -0.1055497 0.1072355 0.3200207
# the CI includes 0, so not sure we're that heavy-tailed
gev.rl <- return.level(x = mod, return.period = c(10,100,1000),

do.ci = TRUE, alpha = 0.05)
gev.rl

fevd(x = rain.ann.max, type = "GEV", time.units = "years")

[1] "Normal Approx."

95% lower CI Estimate 95% upper CI
10-year return level 56.67333 65.54301 74.41268
100-year return level 66.85346 98.63615 130.41884
1000-year return level 58.37286 140.34002 222.30718
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GEV in practice: Daily rainfall in south-west England

What is the 10–period return level 𝑅365,10? i.e., the level that is
exceeded once every 10 years, on average

𝑅̂365,10 ≈ ̂𝐺−1
̂𝜉,𝜇̂,𝜎̂(1 − 1/𝑘) = 40.78 + 9.73

[{− log(1 − 1/10)}−0.11 − 1]
0.11

≈ 65.62 mm is the estimated value of daily rainfall that can be exceeded
once every 10 years

Confidence intervals:

Rely on the normal approximation of the distribution of MLE + Delta
method (or profile likelihood)
Rely on parametric or non-parametric bootstrap
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Section 3

Threshold Exceedances
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Exceedance Theorem

Theorem (Exceedance)

Let 𝑋 be a random variable having distribution function 𝐹 , and suppose
that a function 𝑐(𝑢) can be chosen so that the limiting distribution of
(𝑋 − 𝑢)/𝑐(𝑢), conditional on 𝑋 > 𝑢, is non-degenerate as 𝑢 approaches
the upper support value 𝑥∗ = sup{𝑥 ∶ 𝐹(𝑥) < 1} of 𝑋.
If such a limiting distribution exists, it must be of generalized Pareto form,
i.e.,

𝐻(𝑥) = {1 − (1 + 𝜉𝑥/𝜎)−1/𝜉
+ if 𝜉 ≠ 0,

1 − exp (−𝑥/𝜎) if 𝜉 = 0,
𝑥 > 0,

where 𝜉 ∈ ℝ and 𝜎 > 0. This is known as the generalized Pareto
distribution (GPD)
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Threshold exceedances
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⇝ generalized Pareto distribution for rescaled exceedances
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Remarks on the Exceedance Theorem

There is a close connection with the Extremal Types Theorem
(ETT), which applies for maxima under the same conditions as the
Exceedance Theorem (ET) applies for exceedances, and with the
same 𝜉 and 𝜎 = 𝜎𝐺𝐸𝑉 + 𝜉(𝑢 − 𝜇)
The GPD is a natural model for exceedances over high thresholds
(and under low ones, using 1 − 𝐻(−𝑥))
The GPD is the only threshold-stable distribution, satisfying

1 − 𝐻(𝑥 + 𝑢)
1 − 𝐻(𝑢) = 1 − 𝐻(𝑥/𝜎𝑢), 0 < 𝑢 < 𝑢 + 𝑥 < 𝑥𝐻,

for some function 𝜎𝑢 > 0, where 𝑥𝐻 is the upper support point of the
density of 𝐻
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Threshold choice
The GPD approach requires a threshold 𝑢 to be chosen

Choosing 𝑢 too low leads to bias (model inappropriate), while too high a 𝑢
increases variance (too few exceedances)

If 𝑋 ∼ GPD(𝜎, 𝜉), then the conditional distribution satisfies
𝑋 − 𝑢 ∣ 𝑋 > 𝑢 ∼ GPD(𝜎 + 𝜉𝑢, 𝜉),
which implies:

𝔼(𝑋 − 𝑢 ∣ 𝑋 > 𝑢) = 𝜎 + 𝜉𝑢
1 − 𝜉 , 𝜉 < 1,

so a mean excess plot (or mean residual life plot) of
∑𝑗(𝑥𝑗 − 𝑢)𝕀(𝑥𝑗 > 𝑢)

∑𝑗 𝕀(𝑥𝑗 > 𝑢) against 𝑢

should be approximately straight with slope 𝜉/(1 − 𝜉) above 𝑢min

You can also test for equal shape parameters above 𝑢 using the
Northrop–Coleman test
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Daily rainfall: Threshold analysis
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Figure 1: Threshold selection plots
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Daily rainfall: GPD fit

fit.gpd <- fpot(rain, threshold= 4) #likelihood-based estimation
fit.gpd

Call: fpot(x = rain, threshold = 4)
Deviance: 27950.18

Threshold: 4
Number Above: 4681
Proportion Above: 0.267

Estimates
scale shape

6.70792 0.08208

Standard Errors
scale shape

0.14735 0.01644

Optimization Information
Convergence: successful
Function Evaluations: 21
Gradient Evaluations: 6

Linda Mhalla Week 9: Extreme Value Theory 2025-04-14 32 / 47



Daily rainfall: GPD fit

par(mfrow = c(2,2))
plot(fit.gpd)
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Section 4

Non-stationary Extremes
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Modelling Issues

Extreme value data usually show:

Short term dependence (storms for example); clustering effect and
extremal index → not covered in this short course about EVT
Seasonality (due to annual cycles in meteorology)
Long-term trends (due to gradual climatic change)
Dependence on covariate effects
Other forms of non-stationarity

For (short-term) temporal dependence, there is a sufficiently wide-ranging
theory which can be invoked (requires some sort of mixing conditions at
extreme levels of a stationary series). Other aspects have to be handled at
the modelling stage
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Non-stationarity Example: Daily mean temperature in
Lausanne
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Figure 2: Daily mean temperature in Lausanne
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Non-stationarity Example: Dailymean temperature during
summer
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Figure 3: Daily mean temperature during Summer
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Non-stationarity

Model trends, seasonality and covariate effects by parametric or
nonparametric models for the usual extreme value model parameters

Some possibilities for parametric modelling:

𝜇(𝑡) = 𝛼 + 𝛽𝑡
𝜎(𝑡) = exp(𝛼 + 𝛽𝑡)

𝜉(𝑡) = {𝜉1, 𝑡 ≤ 𝑡0
𝜉2, 𝑡 > 𝑡0

𝜇(𝑡) = 𝛼 + 𝛽𝑦(𝑡)
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Parameter Estimation

Model specification (example):

𝑍𝑡 ∼ GEV{𝜇(𝑡), 𝜎(𝑡), 𝜉(𝑡)}

Likelihood (for complete parameter set 𝛽):

𝐿(𝛽) =
𝑚

∏
𝑡=1

𝑔{𝑧𝑡; 𝜇(𝑡), 𝜎(𝑡), 𝜉(𝑡)},

where ℎ is GEV model density

Maximization of 𝐿 yields maximum likelihood estimates

Standard likelihood techniques also yield standard errors, confidence
intervals, etc
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Model Reduction

For nested models ℳ0 ⊂ ℳ1, the deviance statistic is:

𝐷 = 2{ℓ1(ℳ1) − ℓ0(ℳ0)}

Based on asymptotic likelihood theory, ℳ0 is rejected by a test at the
𝛼-level of significance if 𝐷 > 𝑐𝛼, where 𝑐𝛼 is the (1 − 𝛼) quantile of
the 𝜒2

𝑘 distribution, and 𝑘 is the difference in the dimensionality of
ℳ1 and ℳ0
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Example: Race times1
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Figure 4: Annual fastest race times for women’s 1500m event, with an obvious
time trend

1From the excellent introductory book: Coles, 2001
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Example: Race times

Model
Log-
likelihood 𝛽̂ 𝜎̂ ̂𝜉

Constant -54.5 239.3 (0.9) 3.63 (0.64) -0.469
(0.141)

Linear -51.8 (242.9, −0.311)
(1.4, 0.101)

2.72 (0.49) -0.201
(0.172)

Quadratic -48.4 (247.0, −1.395, 0.049)
(2.3, 0.420, 0.018)

2.28 (0.45) -0.182
(0.232)

Quadratic model appears preferable
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Example: Race times
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Figure 5: Fitted models for location parameter in women’s 1500 metre race times.
Note quadratic model would lead to slower races in recent and future events
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Example: Race times
Alternative exponential model

̃𝜇(𝑡) = 𝛽0 + 𝛽1𝑒−𝛽2𝑡

has log-likelihood −49.5. Not as good as the quadratic model, though
comparison via likelihood ratio test is invalid as models are not nested. Better
behaviour for large 𝑡 suggests a preferable model though
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Example: Spatial modelling of rainfall extremes

library(evgam)
library(knitr)

data("COprcp", package = "evgam")
COprcp <- cbind(COprcp, COprcp_meta[COprcp$meta_row, ])
COprcp$year <- format(COprcp$date, "%Y")
COprcp_gev <- aggregate(prcp ~ year + meta_row, COprcp, max)
COprcp_gev <- cbind(COprcp_gev, COprcp_meta[COprcp_gev$meta_row, ])

head(COprcp_gev)

year meta_row prcp id name lon lat elev
1 1990 1 43.2 USC00050263 ANTERO RSVR -105.8919 38.9933 2718.8
1.1 1991 1 14.7 USC00050263 ANTERO RSVR -105.8919 38.9933 2718.8
1.2 1992 1 44.7 USC00050263 ANTERO RSVR -105.8919 38.9933 2718.8
1.3 1993 1 11.2 USC00050263 ANTERO RSVR -105.8919 38.9933 2718.8
1.4 1994 1 30.5 USC00050263 ANTERO RSVR -105.8919 38.9933 2718.8
1.5 1995 1 26.7 USC00050263 ANTERO RSVR -105.8919 38.9933 2718.8
tail(COprcp_gev)

year meta_row prcp id name lon lat elev
64.24 2014 64 21.6 USW00093058 PUEBLO MEM AP -104.4983 38.29 1438.7
64.25 2015 64 41.9 USW00093058 PUEBLO MEM AP -104.4983 38.29 1438.7
64.26 2016 64 27.7 USW00093058 PUEBLO MEM AP -104.4983 38.29 1438.7
64.27 2017 64 38.4 USW00093058 PUEBLO MEM AP -104.4983 38.29 1438.7
64.28 2018 64 16.8 USW00093058 PUEBLO MEM AP -104.4983 38.29 1438.7
64.29 2019 64 42.4 USW00093058 PUEBLO MEM AP -104.4983 38.29 1438.7
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Example: Spatial modelling of rainfall extremes
library(evgam)

fmla_gev <- list(prcp ~ s(lon, lat, k = 30) + s(elev, bs = "cr"),
~ s(lon, lat, k = 20), ~ 1) #formula for each GEV parameter

m_gev <- evgam(fmla_gev, COprcp_gev, family = "gev") #fit the model
summary(m_gev)

** Parametric terms **

location
Estimate Std. Error t value Pr(>|t|)

(Intercept) 28.56 0.26 111.89 <2e-16

logscale
Estimate Std. Error t value Pr(>|t|)

(Intercept) 2.24 0.02 118.07 <2e-16

shape
Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.08 0.02 5.08 1.92e-07

** Smooth terms **

location
edf max.df Chi.sq Pr(>|t|)

s(lon,lat) 19.27 29 178.23 <2e-16
s(elev) 5.19 9 19.39 0.00139

logscale
edf max.df Chi.sq Pr(>|t|)

s(lon,lat) 13.94 19 211.15 <2e-16
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Example: Spatial modelling of rainfall extremes
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