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Section 1



Motivation for modelling extreme events

Modelling extremes in environmental sciences

e Temperatures — heat waves (Europe, 2003 — 40’000 deaths and
€13.1 billion of crop damages)

e Water heights — floods (hurricane Harvey, 2017 — 107 deaths and
$125 billion in damages)

o Concentrations of air pollutants — health problems
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Motivation for modelling extreme events

Modelling extremes in finance
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Growing areas of application include: insurance, athletic records, networks
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Basic problem

@ Let X be a random variable of interest with cdf F’
@ We are interested in cases where X is “extremely” large or
“extremely” low, i.e.,

Pr(X > x) when z is large, or Pr(X < x) when z is low

Therefore, we require accurate inference on the tails of F'. But..

@ There are very few observations in the tails of the distribution —
standard techniques can result in severely biased estimates
@ We often require estimates that are beyond the observed values

— Rely on the extreme value paradigm: base tail models on
asymptotically-motivated distributions!
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How bad does it get?

We want to study the worst case scenario
Two classical approaches

@ Block-maxima: max(Xy,..., X,,) (maximum over, e.g., a year)
@ Peaks over threshold: X|X > u for a large threshold u
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Section 2




Notations

Let X, X,, ... be iid random variables with distribution function F’

We seek approximations to the distribution of the maximum of the X,

Let M,, = max(X,, ..., X,,) be the worst-case value in a sample of n values.
Clearly

P(M, <2) =P(X, <z,..,X, <) = F"(z)

F'is unknown, so approximate F™ by some limit distribution, but as n — oo,

Fla)" — {O, F(x) <

L,
1, F(z)=1,

d
so M, — x*, where 2* = sup{z : F(x) < 1} is the upper end point of F
@ This is not useful, because the distribution is concentrated at =
@ But what about normalized maxima?
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Limiting Behaviour of Sums or Averages

@ We are familiar with the central limit theorem

e Let X, X,,... be iid with finite mean x and finite variance o2. Let
STL - Xl + ces + XTL Then

P (W Sx) 7 ()

where ® is the cdf of the standard normal distribution

1 x
O(z) = \/ﬂ/ e 2y,

@ More generally, the limiting distributions for appropriately normalized
sample sums are the class of a-stable distributions; Gaussian
distribution is a special case
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Limiting Behaviour of Sample Maxima

o Let Xy, X,,... beiid from F' and let M,, = max(X,..., X))

Extremal types theorem

Suppose we can find sequences of real numbers a,, > 0 and b,, such that

(M, —b,,)/a,, the sequence of normalized maxima, converges in distribution, i.e.,

anp,

P (an_bn < :E) = F"(a,x +b,) LGN G(x)

for some non-degenerate df G(x). Then, this must be the generalized
extreme-value distribution (GEV)

—1/¢
Ggu(,(m):{GXP[—“%@—M)/UL | e#0 g
M exp [—exp {—(z — p)/0}], £=0,

where a, = max(a,0) for any real a, and with &, x € R and ¢ > 0. Put another

d
way, (M, —b,,)/a, — Z as n — oo, where Z has distribution function G
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Block maxima

values

~ generalized extreme value limit distribution for rescaled maxima
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Generalized Extreme Value Distribution

The parametrization is continuous in the shape parameter £ which determines the
rate of tail decay. For

@ £ > 0: the heavy-tailed Fréchet (Type Il) (dotted line)
@ ¢ = 0: the light-tailed Gumbel, Type I, with support on R (solid line)
@ £ < 0: the short-tailed (reverse) Weibull, Type Il (dashed line)

he9
o

Examples: Rainfall or financial data (usually £ > 0), temperature data (usually
&€ < 0), and Gaussian data (£ = 0)
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Generalized Extreme Value Distribution

o If ETT applies, we say that F'is in the maximum domain of
attraction of G, abbreviated F' € M DA(G)

@ 1 and o are location and scale parameters: not crucial as they can be
absorbed by the normalizing sequences, i.e., G , , () := G¢ (F).
Thus, we can always choose normalizing sequences a,, and b,, so that
the limit law G appears in standard form (without relocation or
rescaling)

@ The rth moment of the GEV exists only if £ < 1/r, so the mean
exists only if £ < 1, the variance only if £ < 1/2, etc. In applications
(particularly in finance) some moments may not exist

@ Essentially, all commonly encountered continuous distributions are in
the maximum domain of attraction of an extreme value distribution
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ETT - Fisher—Tippett Theorem (1928): Examples

Recall: ' € MDA(G,), iff there are sequences a,, and b,, with

n—oo

P{(M, —b,)/a, <zx}=F"(a,xz+b,) — G(x)

@ The exponential distribution
Flz)=1—e?* X>0,2>0
is in MDA(G) (Gumbel). Take a,, = 1/A, b, = (logn)/A
@ The Pareto distribution

K

«
) , a,k>0, x>0,

F(x)zl—(

K+ x

is in MDA(G' /) (Fréchet). Take a,, = knt//a, b, = kn'/* — K
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When does F' € MDA(GY) hold?

Fréchet case: (£ > 0)

o Gnedenko (1943) showed that for £ > 0

F € MDA(G,) < 1— F(z)=2""¢L(x)

for some slowly varying function L(z)
@ A function L on (0,00) is slowly varying if

lim L(ta)
L—500 L(:lj)

Summary: If the tail of the distribution function F' decays like a power
function, then the distribution is in MDA(GY) for £ > 0

Examples: Heavy-tailed distributions such as Pareto, Burr, log-gamma,
Cauchy, and t-distributions as well as various mixture models. Not all
moments are finite

=1, t>0
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When does F' € MDA(GY) hold?

Gumbel case: F' € MDA(G,)

@ The characterization of this class is more complicated. Essentially, it
contains distributions whose tails decay roughly exponentially and we
call these distributions light-tailed. All moments exist for distributions
in the Gumbel class

@ Examples are the normal, log-normal, exponential, and gamma
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Using Fisher—Tippett on data: Block Maxima Method

If you are given n values, use the limiting distribution to model M :

Mn — bn
P ( < m) ~ Geoq(T)

ap,

or
P(M, <y)=Gep o (Y)

@ All that's left is to estimate three parameters: ¢, b,,, and a,,
@ Need repeated values of M, = required data is a multiple of n

The values b,, and a,, are equivalent to the parameters 11 and o in the
formula, respectively
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ML Inference for Maxima

-
We have block maxima data y = (Mfll), ,Mém)) from m blocks of
size n — want to estimate 0 = (&, ju,0) "

We construct a log-likelihood by assuming we have independent
observations from a GEV with density gy,

[(0;y) = log {ng (M) 1{1+£(J\~'/,fu>/0>0}}

and (numerically) maximize this w.r.t. @ to obtain the MLE 6 = (£,/1,5)"
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ML Inference for Maxima

® When £ > —0.5, maximum likelihood estimator obeys the standard
theory. In particular

e standard errors can be computed from inverse of the observed
information matrix

o likelihood ratio test applies to nested models

e profile log-likelihood preferred to construct Cls and perform tests for
quantiles

e If £ < —0.5, Bayesian methods may be preferable (this is very rare in
practice!)

Clearly, when defining blocks, bias and variance must be traded off

@ we reduce bias by increasing the block size n
@ we reduce variance by increasing the number of blocks m
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Risk Measures

@ We have a time series of daily values X, X,, ..., assumed to be
independent and identically distributed from F'
@ We aim to estimate some measure of risk of high (or low) values of X
@ Common risk measures:
o Probability: Pr(X > v) =1 — F(v) for some high threshold v
o High quantile: z,_, corresponding to some small p, i.e.,
$17p = F71(1 7p)
o Value-at-Risk (VaR,_,): high quantile z;_, used for financial losses
@ where X denotes 1-day or 10-day losses (negative returns) and typically

p =0.01 or 0.05
o Expected Shortfall (ES; ): E(X | X > z;_,)
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Return Levels

@ Aim: What is the 40-year return level Rgg5 407
@ We define a rare stress R, ;, the k n-block return level, as
1
[P(Mn > Rn,k) = %
i.e., it is the level that is exceeded in one out of every k n-blocks, on average
In extreme value terminology, R, ; is the return level associated with return
period 1/k (small as k is typically large)

If M, are yearly maxima, then R,, , represents the level that is expected to be
exceeded once every k years

@ We use the approximation

1 o 17
Rn,k%Gg,L,a <1—k>=u+€[{—log(1—k)} —1]

The interest is then in estimating this functional of the unknown parameters of

our GEV model for maxima of n-blocks
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GEV in practice: Daily rainfall in south-west England
library(ismev)

library(extRemes)

data(rain) #from ismev

years <- rep(1:48, rep(c(365,365,366,365), times = 12)) [-17532] #period 1914 to 1962

rain.ann.max <- unlist(lapply(X = split(rain,years), FUN = max)) # annual maxima

mod <- fevd(rain.ann.max, type="GEV", time.units="years")
plot (mod)

fevd(x = rain.ann.max, type = "GEV", time.units = "years")
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GEV in practice: Daily rainfall in south-west England

mod $results$par #gives parameters of the GEV

location scale shape
40.7830335 9.7284060 0.1072355
# suggests heavy-tailed model here, but only point estimates
# What about building confidence intervals?
ci.fevd(mod, alpha=0.05, type="parameter")

fevd(x = rain.ann.max, type = "GEV", time.units = "years")
[1] "Normal Approx."

95% lower CI  Estimate 95% upper CI
location  37.6941916 40.7830335 43.8718754
scale 7.3991505 9.7284060 12.0576614
shape -0.1055497 0.1072355 0.3200207
# the CI includes O, so not sure we're that heavy-tailed
gev.rl <- return.level(x = mod, return.period = c(10,100,1000),
do.ci = TRUE, alpha = 0.05)
gev.rl

fevd(x = rain.ann.max, type = "GEV", time.units = "years")
[1] "Normal Approx."

95% lower CI Estimate 95% upper CI

10-year return level 56.67333 65.54301 74.41268
100-year return level 66.85346 98.63615 130.41884
1000-year return level 58.37286 140.34002 222.30718
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GEV in practice: Daily rainfall in south-west England

What is the 10-period return level R4 147 i.e., the level that is
exceeded once every 10 years, on average

[{—log(1 —1/10)} " —1]
0.11

é365,10 ~ égz&(l —1/k)=40.78 +9.73

~ 65.62 mm is the estimated value of daily rainfall that can be exceeded
once every 10 years

Confidence intervals:

@ Rely on the normal approximation of the distribution of MLE + Delta
method (or profile likelihood)
@ Rely on parametric or non-parametric bootstrap
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Exceedance Theorem

Theorem (Exceedance)

Let X be a random variable having distribution function F', and suppose
that a function ¢(u) can be chosen so that the limiting distribution of

(X —u)/c(u), conditional on X > u, is non-degenerate as u approaches
the upper support value z* = sup{z : F(z) < 1} of X.

If such a limiting distribution exists, it must be of generalized Pareto form,
ie.,

-1/t .
1—(1 f
H(x): ( +£x/0->+ ! 57&07 $>0,
1—exp(—z/0) if £ =0,
where £ € R and o > 0. This is known as the generalized Pareto
distribution (GPD)
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Threshold exceedances

sanjen

~~ generalized Pareto distribution for rescaled exceedances

28 /47
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Remarks on the Exceedance Theorem

@ There is a close connection with the Extremal Types Theorem
(ETT), which applies for maxima under the same conditions as the
Exceedance Theorem (ET) applies for exceedances, and with the
same € and 0 = oy + E(u — )

@ The GPD is a natural model for exceedances over high thresholds
(and under low ones, using 1 — H(—x))

@ The GPD is the only threshold-stable distribution, satisfying

1—H(x+u)

T H(u) =1—H(z/o,), 0<u<u-+z<uxgy,

for some function o, > 0, where z; is the upper support point of the
density of H
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Threshold choice
The GPD approach requires a threshold u to be chosen

@ Choosing u too low leads to bias (model inappropriate), while too high a u
increases variance (too few exceedances)

If X ~ GPD(0,¢), then the conditional distribution satisfies

X —ul| X >u~GPD(o+ &u,§),

which implies:

o+ &u

1—¢7

so a mean excess plot (or mean residual life plot) of
Zj(:rj —u)l(z; > u)

against
Zj I(z; > u)

should be approximately straight with slope £/(1 — &) above u

EX—u|X>u) = £<1,

min

@ You can also test for equal shape parameters above u using the
Northrop—Coleman test
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Daily rainfall: Threshold analysis
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Figure 1. Threshold selection plots
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Daily rainfall: GPD fit

fit.gpd <- fpot(rain, threshold= 4) #likelihood-based estimation
fit.gpd

Call: fpot(x = rain, threshold = 4)
Deviance: 27950.18

Threshold: 4
Number Above: 4681
Proportion Above: 0.267

Estimates
scale shape
6.70792 0.08208

Standard Errors
scale shape
0.14735 0.01644

Optimization Information
Convergence: successful
Function Evaluations: 21
Gradient Evaluations: 6
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Daily rainfall: GPD fit

par(mfrow = c(2,2))
plot(fit.gpd)
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Linda Mhalla Week 9: Extreme Value Theory 2025-04-14 33 /47



Section 4




Modelling Issues

Extreme value data usually show:

@ Short term dependence (storms for example); clustering effect and
extremal index — not covered in this short course about EVT

@ Seasonality (due to annual cycles in meteorology)

@ Long-term trends (due to gradual climatic change)

@ Dependence on covariate effects

@ Other forms of non-stationarity

For (short-term) temporal dependence, there is a sufficiently wide-ranging
theory which can be invoked (requires some sort of mixing conditions at
extreme levels of a stationary series). Other aspects have to be handled at
the modelling stage
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Non-stationarity Example: Dailymean temperature during
summer
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Figure 3: Daily mean temperature during Summer
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Non-stationarity

Model trends, seasonality and covariate effects by parametric or
nonparametric models for the usual extreme value model parameters

Some possibilities for parametric modelling:
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Parameter Estimation

e Model specification (example):
Zt ~ GEV{/L@)? U(t)7 g(t>}

o Likelihood (for complete parameter set [3):

L(B) = [[ 9{z: n(®), 0 (1), £()},

where h is GEV model density
@ Maximization of L yields maximum likelihood estimates

@ Standard likelihood techniques also yield standard errors, confidence
intervals, etc
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Model Reduction

@ For nested models M C M, the deviance statistic is:

D = 2{51(M1> - EO(MO)}

@ Based on asymptotic likelihood theory, M, is rejected by a test at the
a-level of significance if D > ¢, where ¢, is the (1 — «) quantile of
the X% distribution, and k is the difference in the dimensionality of

M, and M,
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Example: Race times!

Race Time (secs.)
236 238 240 242 244 246
1 ! ! ! ! !

L]
L]

234
L

232

T
1975

Figure 4: Annual fastest race times for women's 1500m event, with an obvious

time trend
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Year

1From the excellent introductory book: Coles, 2001
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https://link.springer.com/book/10.1007/978-1-4471-3675-0

Example: Race times

Log- ~ R

Model likelihood 8 o £
Constant -54.5 239.3 (0.9) 3.63 (0.64) -0.469
(0.141)
Linear -51.8 (242.9, —0.311) 2.72 (0.49) -0.201
(1.4, 0.101) (0.172)
Quadratic -48.4 (247.0, —1.395, 0.049) 2.28 (0.45) -0.182
(2.3, 0.420, 0.018) (0.232)

Quadratic model appears preferable
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Example: Race times
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Figure 5: Fitted models for location parameter in women's 1500 metre race times.
Note quadratic model would lead to slower races in recent and future events
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Example: Race times

Alternative exponential model

fi(t) = By + Bre P2t

has log-likelihood —49.5. Not as good as the quadratic model, though
comparison via likelihood ratio test is invalid as models are not nested. Better
behaviour for large t suggests a preferable model though
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Example: Spatial modelling of rainfall extremes

library(evgam)
library (knitr)

data("COprcp", package = "evgam")

COprcp <- cbind(COprcp, COprcp_meta[COprcp$meta_row, 1)
COprcp$year <- format(COprcp$date, "%Y")

COprcp_gev <- aggregate(prcp ~ year + meta_row, COprcp, max)
COprcp_gev <- cbind(COprcp_gev, COprcp_meta[COprcp_gev$meta_row, 1)

head (COprcp_gev)

year meta_row prcp id name lon lat elev
1 1990 1 43.2 USC00050263 ANTERO RSVR -105.8919 38.9933 2718.8
1.1 1991 1 14.7 USC00050263 ANTERO RSVR -105.8919 38.9933 2718.8
1.2 1992 1 44.7 USC00050263 ANTERO RSVR -105.8919 38.9933 2718.8
1.3 1993 1 11.2 USC00050263 ANTERO RSVR -105.8919 38.9933 2718.8
1.4 1994 1 30.5 USC00050263 ANTERO RSVR -105.8919 38.9933 2718.8
1.5 1995 1 26.7 USC00050263 ANTERO RSVR -105.8919 38.9933 2718.8
tail(COprcp_gev)
year meta_row prcp id name lon lat elev
64.24 2014 64 21.6 USWO0093058 PUEBLO MEM AP -104.4983 38.29 1438.7
64.25 2015 64 41.9 USWO00093058 PUEBLO MEM AP -104.4983 38.29 1438.7
64.26 2016 64 27.7 USWO0093058 PUEBLO MEM AP -104.4983 38.29 1438.7
64.27 2017 64 38.4 USW00093058 PUEBLO MEM AP -104.4983 38.29 1438.7
64.28 2018 64 16.8 USW00093058 PUEBLO MEM AP -104.4983 38.29 1438.7
64.29 2019 64 42.4 USW00093058 PUEBLO MEM AP -104.4983 38.29 1438.7
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Example: Spatial modelling of rainfall extremes

library(evgam)

fmla_gev <- list(prcp ~ s(lon, lat, k = 30) + s(elev, bs = "cr"),

~ s(lon, lat, k = 20), ~ 1) #formula for each GEV parameter
m_gev <- evgam(fmla_gev, COprcp_gev, family = "gev") #fit the model
summary (m_gev)

** Parametric terms **

location
Estimate Std. Error t value Pr(>|tl)
(Intercept) 28.56 0.26 111.89 <2e-16

logscale
Estimate Std. Error t value Pr(>|tl)
(Intercept) 2.24 0.02 118.07 <2e-16

shape
Estimate Std. Error t value Pr(>|tl)
(Intercept) 0.08 0.02 5.08 1.92e-07

** Smooth terms *x*

location

edf max.df Chi.sq Pr(>|tl)
s(lon,lat) 19.27 29 178.23 <2e-16
s(elev) 5.19 9 19.39 0.00139

logscale
edf max.df Chi.sq Pr(>ltl)
s(lon,lat) 13.94 19 211.15  <2e-16
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Example: Spatial modelling of rainfall extremes
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