Hands on with Manopt

A toolbox for optimization on manifolds

Nicolas Boumal - OPTIM
Chair of Continuous Optimization
Institute of Mathematics, EPFL

Manopt is a toolbox to solve:
min f (x)
where f: M — Ris defined on a smooth manifold M.

This presentation is about the version.

Latest code on GitHub: github.com/NicolasBoumal /manopt.

Website with numbered releases, tutorial, , contributors list: manopt.org.

In particular, see the : manopt.org/tutorial.html.

There are also and versions led by other teams. Find them at manopt.org.

https://github.com/NicolasBoumal/manopt
https://www.manopt.org/
https://www.manopt.org/tutorial.html
https://www.manopt.org/

[f you want to play along:

Get Manopt:
https://www.manopt.org/downloads.html (unzip somewhere) or
https://github.com/NicolasBoumal/manopt (clone somewhere).

In Matlab, go to the code folder and run importmanopt.
You can savepath so you don’t need to import in future Matlab sessions.

Goto /checkinstall (maybein /auxiliaries) and run
baslicexample.m.

Let me know if errors.

https://www.manopt.org/downloads.html
https://github.com/NicolasBoumal/manopt

What kind of cost functions?

The toolbox handles cost functions best.

For nonsmooth f, smooth approximations are often a good option:

~ \/xz + 62, =~ El()g(ex/e + ey/e)’ ~ Elog(l + ex/e)

The toolbox can accommodate nonsmooth solvers, but we do not have a
good general purpose nonsmooth solver yet. Contributors welcome.

What kinds of manifolds?

endowed with a structure.

Needs to be explicit enough that we know how to:

* Numerically on the manifold
* Numerically on the manifold
. the manifold following tangent vectors (retraction)

* Use the Riemannian structure to compute) e
This is all encoded in a created by a

Examples to follow; handle of manifolds with:

productmanifoldand powermanifold.

General principle of the toolbox

To specify an optimization problem rrelg\r/} f(x)”, you need to
X

1. (with a Riemannian structure) using a ,

2. and (ideally) its derivatives using
This description of the problem is stored in a

That structure is fed to a (an optimization algorithm).

E.g.: steepestdescent, conjugategradient, trustregions, arc,
barzilaiborweln, rlbfgs, stochasticgradient, pso, neldermead.

What kinds of manifolds?

Smooth manifolds endowed with a Riemannian structure. E.g.:
(matrix spaces, both real and complex)

Euclidean R™xm Cmxn euclideanfactory({m, n)

space euclideancomplexfactory(m, n)
(complex)

Symmetric {X cR™™: X = X'T}k symmetricfactory(n, k)
matrices

Skew- {X cR»™ . X+ XT = O}k skewsymmetricfactory(n, k)
symmetric

matrices

Centered {XeR™": X1, =0,} centeredmatrixfactory(m, n)
matrices

Linear {z € E: z = proj(z)} where F is a linear space and proj is an euclideansubspacefactory(E, proj, dim)
subspaces orthogonal projector to a subspace

of linear

spaces

What kinds of manifolds?

Smooth manifolds endowed with a Riemannian structure. E.g.:

(unit-norm constraints over vectors, matrices)

Sphere {X c R*m . ||XHF = 1} spherefactory(n, m)

Symmetric {X c RV : ||}(||]_:1 =1,X= XT} spheresymmetricfactory(n)

sphere

Complex {X eCrm. HXHF = 1} spherecomplexfactory(n, m)

sphere

Oblique {X e R ||X1|| =coo = ||Xm|| = 1} obliquefactory(n, m) (To work with X € R"™*"
manifold with mm unit-norm rows instead of columns:

obliqueftactory(n, m, true) J)

Complex {(XeC™: | X4l =- = || Xl =1} obliquecomplexfactory(n, m) (To work with unit-
oblique norm rows instead of columns:

manifold obliquecomplexfactory(n, m, true) .)

Complex {z e C": |2:1| = oo = |Zn| = 1} complexcirclefactory(n)

circle

Phases of {zeC": |z = 1, 21 4mod(k;n) = Z1+mod(n—k;n) Vk} realphasefactory(n)

real DFT

What kinds of manifolds?

Smooth manifolds endowed with a Riemannian structure. E.g.:
(orthonormal bases, linear subspaces)

Stiefel {X eRYP . XTX = Ip}k stiefelfactory(n, p, k)
manifold

Complex {X e X*X = Ip}k stiefelcomplexfactory(n, p, k)
Stiefel
manifold

Generalized {X eRYP . XTBX — Ip} for some B = 0 stiefelgeneralizedfactory(n, p, B)
Stiefel
manifold

Stiefel {X e Rmd’Xk : (XXT)T'T' = Id} stiefelstackedfactory(m, d, k)
manifold,
stacked

Grassmann {span(X} : X e R”XP,XTX = Ip}k grassmannfactory(n, p, k)
manifold

Complex {span(X) X e C?MP,XTX = Ip}k’ grassmanncomplexfactory(n, p, k)
Grassmann
manifold

Generalized {span(X) X e R”XP,XTBX = Ip} for some B = 0 grassmannfactory(n, p, B)
Grassmann
manifold

What kinds of manifolds?

Smooth manifolds endowed with a Riemannian structure. E.g.:
(and other CV manifolds)

Rotation {R c RV . RTR — I, det(R} = l}k rotationsfactory(n, k)

group

Special {(R, f;) e RY™ x R" : RTR = Imdet(R) = l}k specialeuclideanfactory(n, k)
Euclidean

group

Unitary {U cCv" . U*U = In}k unitaryfactory(n, k)

matrices

Essential Epipolar constraint between projected points in two perspective views, essentialfactory(k, '(un)signed")

manifold see Roberto Tron's page

What kinds of manifolds?

Smooth manifolds endowed with a Riemannian structure. E.g.:

Hyperbolic {z € R™H1 . mg — w% 4422 4 1} with Minkowski metric hyperbolicfactory(n, m)
manifold

What kinds of manifolds?

Smooth manifolds endowed with a Riemannian structure. E.g.:

Fixed-rank {X € R™" : rank(X) = k} fixedrankembeddedfactory(m, n, k) (ref)
fixedrankfactory 2factors(m, n, k) (doc)
fixedrankfactory 2factors preconditioned(m, n,
k) (ref)
fixedrankfactory 2factors subspace projection(m,
n, k) (ref)
fixedrankfactory 3factors(m, n, k) (ref)
fixedrankMnquotientfactory(m, n, k) (ref)

Fixed-rank Tensors of fixed multilinear rank in Tucker format fixedranktensorembeddedfactory (ref)

tensor, fixedrankfactory tucker_preconditioned (ref)
Tucker

What kinds of manifolds?

Smooth manifolds endowed with a Riemannian structure. E.g.:

Symmetric
positive
semidefinite,
fixed-rank
(complex)

Symmetric
positive
semidefinite,
fixed-rank
with unit
diagonal

Symmetric
positive
semidefinite,
fixed-rank
with unit
trace

{X E Rnxn

{X E Rnxn

{X c Rnxn

: X = XT > 0,rank(X) = k}

: X = XT = 0,rank(X) = k, diag(X) = 1}

: X = XT = 0,rank(X) = k, trace(X)

symfixedrankyYyfactory(n, k)

symfixedrankyycomplexfactory(n, k)

elliptopefactory(n, k)

spectrahedronfactory(n, k)

What kinds of manifolds?

Smooth manifolds endowed with a Riemannian structure. E.g.:

Matrices {X € R™™ . Xij >0 Vz,j} positivefactory(m, n)
with strictly
positive
entries
Symmetric, (X eRY™: X = XT, X = []}k sympositivedefinitefactory(n)
positive
. Multinomial {X € R™™ : X;; > 0Vi,jand X71,, = 1,}
definite manifold !
matrices (strict
simplex
elements)

Multinomial ~ {X € R™" : X;; > 0V, jand X1, = 1,,XT1, =1,}
doubly

stochastic

manifold

Multinomial {X € R™" : X;; > 0¥, jand X1, = 1,,, X = XT}
symmetric

and

stochastic

manifold

Positive {(Xy,.. ., X)) € @™k X, - 0Veand X) +--- + X = I, }
definite
simplex

Positive {(X1. 0, Xp) € (C™)F: X, - 0Viand X) + - + X = I, }
definite

simplex,

complex

multinomialfactory(n, m)

multinomialdoublystochasticfactory(n)

multinomialsymmetricfactory(n)

sympositivedefinitesimplexfactory(n, k)

sympositivedefinitesimplexcomplexfactory(n, k)

What's in a factory-produced manifold?

Example: stripped down and simplified spherefactory

M.exp = (@exponential;
function M = spherefactory(n)
M.retr = @(x, u) (x+u)/norm(x+u);
M.name = @ () sprintf ('Sphere S7%d', n-1);))
M.invretr = (@inverse retraction;
M.dim = @ () n-1; .
M.log = @logarithm;
M.inner = @(x, u, v) u'*v;
M.hash = @(x) ['z' hashmd5 (x)];
M.norm = @(x, u) norm(u);
(x, u) (u) M.rand = Q() ...;
M.dist = @(x, y) real(2*asin(.5*norm(x - y)));
M.randvec = @(x) ...;
M.typicaldist = @ i;
yP O p M.zerovec = @ (x) zeros(n, 1);
M.proj = @(x, u) u - x*(x'*u);
ProJ (x/) () M.lincomb = @matrixlincomb;
M.tangent = M.proj; .
d pred M.transp = @(x, y, u) M.proj(y, u);
M.tangentZ2ambient is identity = true; ,
- = M.isotransp = @(x, vy, u) ...;
M.tangentZ2ambient = @(x, u) u; ,
M.pairmean = (@pairmean;
M.egrad2rgrad = M.proj;
J J pre) M.vec = @(x, u mat) u mat;
M.ehess2rhess = @ (x, egrad, ehess, u)
M.mat = @(x, u_vec) reshape (u vec,
M.proj (x, ehess - (x'*egrad) *u);
proj (=, (dg)) M.vecmatareisometries = @ () true;

end

First example: let’s dive right in

Given a symmetric A € R™*", we want: n = 20;
A = randn (n) ;
T .

max x ' Ax subjectto ||x|| =1 _ -

mast] ||| A = A+A"';
The manifold is the sphere: problem.M = spherefactory(n);

M =5"""={xeR"|x|l =1} problem.cost = @(x) -x'*A*x;
The cost function to minimize is: x = steepestdescent (problem) ;

f(x) = —x"Ax

x'*A*x, max(el1g(A))

= 20
A = randn(n); A = A+A';
problem.M = spherefactory(n);

Run steepest descent Sy o i S

X = steepestdescent (problem) ;
x'*A*x, max(eig(A))

It may be necessary to increase options.tolgradnorm.
To disable this warning: warning('off', 'manopt:getGradient:approx’)

iter cost val grad. norm
0 -6.8964471239672420e-01 1.11661942e+01
1 -=-7.2433166754551808e+00 .93446878e+00
2 -8.8747349682088839e+00 1.07491407e+01

(O

63 -1.3416668060076006e+01 7.17861797e-06

64 -1.3416668060076006e+01 7.17861797e-06
Last stepsize smaller than minimum allowed; options.minstepsize = 1le-10.
Total time i1is 0.206028 [s] (excludes statsfun)

ans = 13.41067
ans = 13.41067

Provide Euclidean gradient

iter cost wval
0 +3.6273059865027202e-01
1 -4.5684590336508029e+00
2 -=4.5851972109302022e+00
64 -1.2223151484178318e+01
65 -1.2223151484178524e+01

Gradient norm tolerance reached;

grad. norm

.25950958e+01
.28195678e+00
.51110110e+01

.47433851e-06
.38151399%e-07

Total time is 0.043975 [s] (excludes statsfun)

ans = 12.2232
ans = 12.2232

= 20
A = randn(n); A = A+A';
problem.M = spherefactory(n);

problem.cost = @ (x) -x'*A*x;
problem.egrad = @(x) —-2*A*x;
X = steepestdescent (problem) ;

x'*A*x, max(eig(A))

options.tolgradnorm = 1le-06.

Run trust-regions

To disable this warning:
> In trustregions
In TutorialOl rayleigh

acc TR+
acc
acc
acc
acc
acc
acc

k
k:
k:
k
k
k

k:

o U W N

7

Gradient norm tolerance reached;

Total time is 0.042530

ans
ans

10.6357
10.6357

(line 14)

f: -1.359943e+00
num_inner: 1 f: -5.988531e+00
num_inner: 1 f: -9.152545e+00
num_inner: 3 f: -1.037445e+01
num_inner: 4 f: -1.063347e+01
num_inner: 5 f: -1.063569e+01
num_inner: 7 f: -1.063570e+01
num_inner: 12 f: -1.063570e+01

options.tolgradnorm = 1le-06.
[s] (excludes statsfun)

warning ('off',
(line 325)

'manopt:getHessian:approx')

|lgrad]| :
lgrad]| :
lgrad]| :
lgrad]| :
|lgrad] :
lgrad] :
lgrad] :
lgrad] :

O R RFP NN,

n
A

= 20¢
randn(n),; A =

problem.M =

problem.cost =
problem.egrad =

spherefactory (n)
—}{'.*ZX*}if

@ (x)
@ (x)

X:

x'*A*x, max(eig(A))
.344318e+01
.079847e+01 negative curvature
.683919%e+00 exceeded trust region
.611111e+00 exceeded trust region
.183730e-01 reached target residual-kappa
.377073e-02 reached target residual-kappa
.112603e-04 reached target residual-theta
.671030e-09 reached target residual-theta

A+A"';

.
14

trustregions (problem) ;

linear)
linear)
superlinear)
superlinear)

(
(
(
(

n = 20;
A = randn(n); A = A+A';
problem.M = spherefactory(n);

Run tFUSt'regionS problem.cost = @(x) -x'*A*x;

problem.egrad = @(x) —-2*A*x;

X = trustregions (problem);
x'*A*x, max(eig(A))

To disable this warning: warning('off', 'manopt:getHessian:approx')
> In trustregions (line 325)
In TutorialOl rayleigh (line 14)

f: -1.359943e+00 lgrad|: 1.344318e+01
acc TR+ k: 1 num inner: 1 f: =-5.988531e+00 lgrad|: 1.079847e+01
acc k: 2 num inner: 1 f: -9.152545e+00 |lgrad|: 6.683919e+00
acc k: 3 num inner: 3 f: -1.037445e+01 lgrad|: 2.611111e+00
acc k: 4 num inner: 4 f: -1.063347e+01 lgrad|: 2.183730e-01
acc k: 5 num inner: 5 f: -1.063569e+01 lgrad|: 1.377073e-02
acc k: 6 num_inner: 7 f: -1.063570e+01 lgrad|: 1.112603e-04
acc k: 7 num inner: 12 f: -1.063570e+01 lgrad|: 9.671030e-09
Gradient norm tolerance reached; options.tolgradnorm = 1le-06.

Total time is 0.042530 [s] (excludes statsfun)

ans = 10.6357
ans = 10.6357

Provide Euclidean Hessian

acc TR+
acc
acc
acc
acc
acc
acc
acc
acc

k:

AA AN AN AN A AN AN

O J oy U b Ww N

9

Gradient norm tolerance reached;

Total time is 0.015170

n = 20;

A = randn(n); A = A+A'";
problem.M = spherefactory(n);
problem.cost = @ (x) -x'*A*x;
problem.egrad = (@(x) -2*A*x;
problem.ehess = (@ (x, u) —-2*A*u;

x =
x'"*A*x,

f: +1.085417e+00 |lgrad] :
num_ inner: 1 f: -2.028789e+00 |lgrad] :
num inner: 1 f: -6.919949e+00 |lgrad] :
num inner: 1 f: -9.440813e+00 |lgrad] :
num inner: 2 f: -1.052834e+01 |grad] :
num inner: 8 f: =-1.104792e+01 |grad]| :
num inner: 7 f: -1.114649%9e+01 lgrad] :
num inner: 7 f: -1.114702e+01 lgrad] :
num inner: 10 f: -1.114702e+01 |grad]| :
num inner: 15 f: -1.114702e+01 lgrad] :

options.tolgradnorm = le-06.
[s] (excludes statsfun)

Want solvers to be quieter? Set options.verbosity = 0; (orl,?2,3,..)

D 2 W oy O W oYy 1 O WO

.168780e+00
.556623e+00
.271589e+00
.269407e+00
.971600e+00
.459219%e-01
.471174e-02
.446551e-03
.036685e-05
.357143e-11

trustregions (problem) ;
max (eig (A))

n = 20;
A =
problem
problem.cost
problem
problem

Check the gradient

>> checkgradient (problem)

The slope should be 2. It appears to be: 2.00003.

If 1t 1s far from 2, then directional derivatives might be erroneous.
2.80318e-16.

randn (n) ;
.M = spherefactory(n);
_XV*A*X;
_Z*A*X;

The residual should be 0, or very close. Residual:
If it 1s far from 0, then the gradient is not 1n the tangent space.

In certain cases (e.g., hyperbolicfactory), the test is inconclusive.

Manopt generates arandom x € M andu € T, M,
then checks that the error term in

f(Ry(tw)) = f(x) + t{gradf (x), u), + 0(t?)
is indeed O (t?).

Approximation error

The slope of the continuous line should match that of the dashed
(reference) line over at least a few orders of magnitude for h.

A = A+A';

= @ (x)

.egrad = @ (x)

.ehess = (@ (x,

u) —-2*A*u;

Gradient check.

10°

n = 20;
A = randn(n); A = A+A'";
. problem.M = spherefactory(n);
Check the HeSSlan problem.cost = @ (x) -x'*A*x;
problem.egrad = (@(x) -2*A*x;
problem.ehess = (@ (x, u) —-2*A*u;

>> checkhessian (problem)

The slope should be 3. It appears to be: 3.00074.

If i1t 1s far from 3, then directional derivatives,

the gradient or the Hessian might be erroneous.

Tangency residual should be zero, or very close; residual: 9.1425e-16.
If 1t 1s far from 0O, then the Hessian i1s not 1n the tangent space.

| |la*H[d1l] + b*H[d2] - H[a*dl+b*d2]|| should be zero, or very close.

Value: 2.20443e-15 (norm of H[a*dl+b*d2]: 8.96316)
I f i t i S f ar f rom O ’ t h en t h = H €SS i an i S no t l inear : The slope of the contin oHZin:aensilhoeﬁ:match that of the dashed
<dl, H[d2]> - <H[dl], d2> should be zero, or very close. ‘m;mm“£$%”$@$mmmm“

Value: 0.172729 - 0.172729 = -4.44089%e-16.
If it 1s far from 0O, then the Hessian is not symmetric.

Approximation error

Same principle, checking for 0(t3) error term.
This only works if the retraction is second-order and/or if gradf (x) = 0.

Calling solvers: general pattern

[x, cost, 1info, options] = myfavoritesolver (problem, x0, options)

Inputs:
- A problem structure

- Optional: initial point (by default: M. rand () to generate random x,)

- Optional: a structure to specify options (stopping criteria, verbosity, ...)

Outputs:

- Best computed point

- Cost function value at returned point

- Information struct-array (time/function value/gradient norm/... at each iter.)

- Options structure (so you know which default values were used)

Things you find in the info struct-array

[x, cost, 1info, options] = myfavoritesolver (problem, x0, options)

[t varies from solver to solver: see help mysolver.

Typical stuff: iter, cost, time, gradnorm. Try:

plot ([info.iter], [info.cost], '.-");

semilogy([info.time], [info.gradnorm] , '.-");

You can also record fancy original things using options.statsfun:

options.statsfun = @mystatsfun;
function stats = mystatsfun (problem, x, stats)
stats.current point = x;

end

_X'*A*X;

problem.cost = @ (x)
@(x) —-2*A*x;

problem.egrad =

Ways to define the cost and gradient

x
(

f = problem.cost (x) f(x)
g = problem.grad (x) grad f(x) (Riemannian gradient)
[f, g] = problem.costgrad(x) bothtogether

Why define cost and gradient together? Reduce

problem.costgrad = @ (x) mycostgrad (A, Xx);
function [f, g] = mycostgrad (A, x)

Ax = A*x;

f = -x"*Ax;

g = —2*AX;

g =9 - (x'*g)*x;

end

problem.cost = @ (x) -x'*A*x;
problem.egrad = @(x) —-2*A*x;

Ways to define the cost and gradient (2)

f = problem.cost (x) f(x)

g = problem.grad (x) grad f(x) (Riemannian gradient)

[f, g] = problem.costgrad(x) bothtogether

If M is , f can be smoothly extended to f around M.

The toolbox can convert Euclidean gradients to Riemannian gradients automatically:
eg = problem.egrad (x) grad f(x) (Euclidean gradient)
Under the hood, Manoptcallsg = M.egrad2rgrad(x, eg) toconvert.

There is no “problem.costegrad” Just use cost+egrad, or call M. egrad2rgrad manually,
or use manual which is recommended anyway if you're going to use the Hessian.

problem.cost = @ (x) -x'*A*x;
problem.egrad = @(x) —-2*A*x;
. . problem.ehess = (@ (x, u) —-2*A*u;
Ways to define the Hessian
h = problem.hess (x, u) Hessf (x)[u] (Riemannian Hessian as operator)
If M is , f can be smoothly extended to f around M.

The toolbox can convert Euclidean gradient+Hessian to Riemannian Hessian:
eh = problem.ehess (x, u) Hessf (x)[u] (Euclidean Hessian)
Under the hood, Manoptcallsh = M.ehess2rhess (x, eg, eh, u) toconvert.

Note: u and h are tangent vectors whereas eg and eh are vectors in the ambient space.

Manual caching: store structures

Manopt does a fair amount of caching under the hood, but it can’t be as efficient
as you telling it which intermediate results to store and how to use them.

Each new point an algorithm visits gets its own

function store = prepare(x, store)

1f ~isfield(store, 'Ax'")
store.Ax = A*x;

end

end

function [g, store] = egrad/(x,
store = prepare(x, store);
Ax = store.Ax;
g = -2*AXx;

end

store)

function [f, store] = cost(x, store)
store = prepare(x, store);
Ax = store.AXx;
f = —x"*Ax;

end

function [h, store] = ehess(x, u, store)
h = -2*A*u;

end

Moreover, store. shared contains memory shared by all x.

Counters: fancy ways to keep track

See /examples/using counters.m

https://github.com/NicolasBoumal/manopt/blob/master/examples/using counters.m

Counters allow you to keep track of events inside your code for f, gradf, Hessf.
Convenient to compare algorithms; can also serve in stopping criterion.

Code extracts:

stats = statscounters({'costcalls', 'gradcalls', 'hesscalls',
'"Aproducts', 'functiontime'});
options.statsfun = statsfunhelper (stats);

store = incrementcounter (store, 'Aproducts’); % In cost, grad etc.

store = incrementcounter (store, 'functiontime', toc(t));

https://github.com/NicolasBoumal/manopt/blob/master/examples/using_counters.m

What happens if | omit the gradient?

Manopt automatically uses finite difference approximations and issues a warning.

You can silence the warning.

and reduce your final accuracy.

It's only good for . (PS: check automatic differentiation, manoptAD.)

How? getGradientFD generates a random orthonormal basis uq, ..., uyz of T, M’ with

tangentorthobasis (not free!) and uses the formula gradf (x) = 3%, a;u; with

a; = (gradf(x),ui)x — Df(X) [ui] ~ f(Rx(tulz) — f(x)

using a small value of t, specifically, 2723, Requires d calls to f and the retraction!

What happens if I omit the Hessian?

Manopt automatically uses finite difference approximations and issues a warning.

You can silence the warning.

FD approximations of the Hessian are

They're often the same price as getting the true Hessian, and hardly hurt convergence.

How? getHessianFD uses vector transport T, from T, M to T, M withy = R, (tu)
(for example, Proj, is fine for Riemannian submanifolds of Euclidean space) and

Hessf (x)[u] = Txey(gradf (}’t)) — gradf (x)

setting t = 27/||u]|,. Requires one call to gradf, one retraction and one transport.

When do solvers terminate?

There are a few standard stopping criteria controlled by options:

maxiter, maxtime, tolcost, tolgradnorm

You can also define your own (evaluated after the standard ones). E.g.,
options.stopfun = (dmystopfun;
function stopnow = mystopfun (problem, x, info, last)
stopnow = (last >= 3 && 1nfo(last-2).cost - 1nfo(last) .cost < 1le-3);

end

Interactive stopping criteria (these allow you to force the solver to terminate from outside the code):
options.stopfun = @stopifclosedfigure;

options.stopfun = stopifdeletedfile();

More things we didn’t discuss

You can use a with problem.precon, problem.sgrtprecon.
You can define “ ” (for SGD) and “ ” (for nonsmooth f).
There are many (select with options.linesearch); you can define

your own; you can provide hints to line-search algorithms (through problem.linesearch).

There are many that can make your life easier: see the tutorial.

Hessian stuff: hessianspectrum, hessianextreme, hessianmatrix
More diagnostics tools: checkretraction (M), checkmanifold (M)
Plotting: plotprofile, surfprofile

Also: criticalpointfinder, tangentspherefactory, tangentspacefactory,
orthogonalize, tangentorthobasis, smallestinconvexhull, operatorZmatrix,

Contributors welcome!

You can write your own solvers, manifold factories, examples, tools.

Questions / discussions welcome on the forum:
https://groups.google.com/g/manopttoolbox

Can also post bug reports / pull requests / raise issues on GitHub:
https://github.com/NicolasBoumal/manopt

https://groups.google.com/g/manopttoolbox
https://github.com/NicolasBoumal/manopt/

	Hands on with Manopt�A toolbox for optimization on manifolds
	Manopt is a toolbox to solve:
	If you want to play along:
	What kind of cost functions?
	What kinds of manifolds?
	General principle of the toolbox
	What kinds of manifolds?
	What kinds of manifolds?
	What kinds of manifolds?
	What kinds of manifolds?
	What kinds of manifolds?
	What kinds of manifolds?
	What kinds of manifolds?
	What kinds of manifolds?
	What’s in a factory-produced manifold?�Example: stripped down and simplified spherefactory
	First example: let’s dive right in
	Run steepest descent
	Provide Euclidean gradient
	Run trust-regions
	Run trust-regions
	Provide Euclidean Hessian
	Check the gradient
	Check the Hessian
	Calling solvers: general pattern�[x, cost, info, options] = myfavoritesolver(problem, x0, options)
	Things you find in the info struct-array�[x, cost, info, options] = myfavoritesolver(problem, x0, options)
	Ways to define the cost and gradient
	Ways to define the cost and gradient (2)
	Ways to define the Hessian
	Manual caching: store structures
	Counters: fancy ways to keep track
	What happens if I omit the gradient?
	What happens if I omit the Hessian?
	When do solvers terminate?
	More things we didn’t discuss
	Contributors welcome!

