
Hands on with Manopt
A toolbox for optimization on manifolds

Nicolas Boumal – OPTIM
Chair of Continuous Optimization
Institute of Mathematics, EPFL

Manopt is a toolbox to solve:
min
𝑥𝑥∈ℳ

𝑓𝑓 𝑥𝑥

where 𝑓𝑓:ℳ → 𝐑𝐑 is defined on a smooth manifold ℳ.

This presentation is about the Matlab version.
Latest code on GitHub: github.com/NicolasBoumal/manopt.
Website with numbered releases, tutorial, forum, contributors list: manopt.org.
In particular, see the tutorial: manopt.org/tutorial.html.
There are also Python and Julia versions led by other teams. Find them at manopt.org.

https://github.com/NicolasBoumal/manopt
https://www.manopt.org/
https://www.manopt.org/tutorial.html
https://www.manopt.org/

If you want to play along:
Get Manopt:
https://www.manopt.org/downloads.html (unzip somewhere) or
https://github.com/NicolasBoumal/manopt (clone somewhere).

In Matlab, go to the code folder and run importmanopt.
You can savepath so you don’t need to import in future Matlab sessions.

Go to /checkinstall (may be in /auxiliaries) and run
basicexample.m.
Let me know if errors.

https://www.manopt.org/downloads.html
https://github.com/NicolasBoumal/manopt

What kind of cost functions?

The toolbox handles differentiable cost functions best.

For nonsmooth 𝑓𝑓, smooth approximations are often a good option:

𝑥𝑥 ≈ 𝑥𝑥2 + 𝜖𝜖2, max 𝑥𝑥,𝑦𝑦 ≈ 𝜖𝜖 log 𝑒𝑒𝑥𝑥/𝜖𝜖 + 𝑒𝑒𝑦𝑦/𝜖𝜖 , max 0, 𝑥𝑥 ≈ 𝜖𝜖 log 1 + 𝑒𝑒𝑥𝑥/𝜖𝜖

The toolbox can accommodate nonsmooth solvers, but we do not have a
good general purpose nonsmooth solver yet. Contributors welcome.

What kinds of manifolds?
Smooth manifolds endowed with a Riemannian structure.

Needs to be explicit enough that we know how to:
• Numerically represent points on the manifold
• Numerically represent tangent vectors on the manifold
• Move around the manifold following tangent vectors (retraction)
• Use the Riemannian structure to compute gradients, Hessians, ...

This is all encoded in a manifold structure created by a factory.

Examples to follow; handle products of manifolds with:
productmanifold and powermanifold.

General principle of the toolbox
To specify an optimization problem “min

𝑥𝑥∈ℳ
𝑓𝑓 𝑥𝑥 ”, you need to

1. Pick a manifold ℳ (with a Riemannian structure) using a factory,
2. Describe the cost 𝑓𝑓 and (ideally) its derivatives using function handles.

This description of the problem is stored in a problem structure.

That structure is fed to a solver (an optimization algorithm).
E.g.: steepestdescent, conjugategradient, trustregions, arc,
barzilaiborwein, rlbfgs, stochasticgradient, pso, neldermead.

What kinds of manifolds?

Smooth manifolds endowed with a Riemannian structure. E.g.:
Euclidean spaces (matrix spaces, both real and complex)

What kinds of manifolds?

Smooth manifolds endowed with a Riemannian structure. E.g.:
Spheres, phases (unit-norm constraints over vectors, matrices)

What kinds of manifolds?

Smooth manifolds endowed with a Riemannian structure. E.g.:
Stiefel, Grassmann (orthonormal bases, linear subspaces)

What kinds of manifolds?

Smooth manifolds endowed with a Riemannian structure. E.g.:
Orthogonal group, rotations, rigid motions (and other CV manifolds)

What kinds of manifolds?

Smooth manifolds endowed with a Riemannian structure. E.g.:
Hyperbolic space

What kinds of manifolds?

Smooth manifolds endowed with a Riemannian structure. E.g.:
Fixed-rank matrices and tensors

What kinds of manifolds?

Smooth manifolds endowed with a Riemannian structure. E.g.:
Fixed-rank matrices, positive semidefinite

What kinds of manifolds?

Smooth manifolds endowed with a Riemannian structure. E.g.:
Positive definite matrices, matrices with positive entries

What’s in a factory-produced manifold?
Example: stripped down and simplified spherefactory

function M = spherefactory(n)

M.name = @() sprintf('Sphere S^%d', n-1);

M.dim = @() n-1;

M.inner = @(x, u, v) u'*v;

M.norm = @(x, u) norm(u);

M.dist = @(x, y) real(2*asin(.5*norm(x - y)));

M.typicaldist = @() pi;

M.proj = @(x, u) u - x*(x'*u);

M.tangent = M.proj;

M.tangent2ambient_is_identity = true;

M.tangent2ambient = @(x, u) u;

M.egrad2rgrad = M.proj;

M.ehess2rhess = @(x, egrad, ehess, u) ...

M.proj(x, ehess - (x'*egrad)*u);

M.exp = @exponential;

M.retr = @(x, u) (x+u)/norm(x+u);

M.invretr = @inverse_retraction;

M.log = @logarithm;

M.hash = @(x) ['z' hashmd5(x)];

M.rand = @() ...;

M.randvec = @(x) ...;

M.zerovec = @(x) zeros(n, 1);

M.lincomb = @matrixlincomb;

M.transp = @(x, y, u) M.proj(y, u);

M.isotransp = @(x, y, u) ...;

M.pairmean = @pairmean;

M.vec = @(x, u_mat) u_mat;

M.mat = @(x, u_vec) reshape(u_vec, [n, 1]);

M.vecmatareisometries = @() true;

end

First example: let’s dive right in
Given a symmetric 𝐴𝐴 ∈ 𝐑𝐑𝑛𝑛×𝑛𝑛, we want:

max
𝑥𝑥∈𝐑𝐑𝑛𝑛

𝑥𝑥⊤𝐴𝐴𝐴𝐴 subject to 𝑥𝑥 = 1

The manifold is the sphere:

ℳ = 𝑆𝑆𝑛𝑛−1 = 𝑥𝑥 ∈ 𝐑𝐑𝑛𝑛: 𝑥𝑥 = 1

The cost function to minimize is:

𝑓𝑓 𝑥𝑥 = −𝑥𝑥⊤𝐴𝐴𝐴𝐴

n = 20;
A = randn(n);
A = A+A';

problem.M = spherefactory(n);

problem.cost = @(x) -x'*A*x;

x = steepestdescent(problem);

x'*A*x, max(eig(A)) % compare

Run steepest descent

n = 20;
A = randn(n); A = A+A';
problem.M = spherefactory(n);
problem.cost = @(x) -x'*A*x;

x = steepestdescent(problem);
x'*A*x, max(eig(A)) % compare

Warning: No gradient provided. Using an FD approximation (slow).
It may be necessary to increase options.tolgradnorm.
To disable this warning: warning('off','manopt:getGradient:approx’)

iter cost val grad. norm
0 -6.8964471239672420e-01 1.11661942e+01
1 -7.2433166754551808e+00 6.93446878e+00
2 -8.8747349682088839e+00 1.07491407e+01

...................
63 -1.3416668060076006e+01 7.17861797e-06
64 -1.3416668060076006e+01 7.17861797e-06

Last stepsize smaller than minimum allowed; options.minstepsize = 1e-10.
Total time is 0.206028 [s] (excludes statsfun)

ans = 13.4167 % x'*A*x
ans = 13.4167 % max(eig(A))

Provide Euclidean gradient

n = 20;
A = randn(n); A = A+A';
problem.M = spherefactory(n);
problem.cost = @(x) -x'*A*x;
problem.egrad = @(x) -2*A*x;
x = steepestdescent(problem);
x'*A*x, max(eig(A)) % compare

iter cost val grad. norm
0 +3.6273059865027202e-01 1.25950958e+01
1 -4.5684590336508029e+00 8.28195678e+00
2 -4.5851972109302022e+00 1.51110110e+01

…………………………
64 -1.2223151484178318e+01 4.47433851e-06
65 -1.2223151484178524e+01 9.38151399e-07

Gradient norm tolerance reached; options.tolgradnorm = 1e-06.
Total time is 0.043975 [s] (excludes statsfun)

ans = 12.2232 % x'*A*x
ans = 12.2232 % max(eig(A))

Run trust-regions

n = 20;
A = randn(n); A = A+A';
problem.M = spherefactory(n);
problem.cost = @(x) -x'*A*x;
problem.egrad = @(x) -2*A*x;

x = trustregions(problem);
x'*A*x, max(eig(A)) % compare

Warning: No Hessian provided. Using an FD approximation instead.
To disable this warning: warning('off', 'manopt:getHessian:approx')
> In trustregions (line 325)
In Tutorial01_rayleigh (line 14)

f: -1.359943e+00 |grad|: 1.344318e+01
acc TR+ k: 1 num_inner: 1 f: -5.988531e+00 |grad|: 1.079847e+01 negative curvature
acc k: 2 num_inner: 1 f: -9.152545e+00 |grad|: 6.683919e+00 exceeded trust region
acc k: 3 num_inner: 3 f: -1.037445e+01 |grad|: 2.611111e+00 exceeded trust region
acc k: 4 num_inner: 4 f: -1.063347e+01 |grad|: 2.183730e-01 reached target residual-kappa (linear)
acc k: 5 num_inner: 5 f: -1.063569e+01 |grad|: 1.377073e-02 reached target residual-kappa (linear)
acc k: 6 num_inner: 7 f: -1.063570e+01 |grad|: 1.112603e-04 reached target residual-theta (superlinear)
acc k: 7 num_inner: 12 f: -1.063570e+01 |grad|: 9.671030e-09 reached target residual-theta (superlinear)
Gradient norm tolerance reached; options.tolgradnorm = 1e-06.
Total time is 0.042530 [s] (excludes statsfun)

ans = 10.6357 % x'*A*x
ans = 10.6357 % max(eig(A))

Run trust-regions

n = 20;
A = randn(n); A = A+A';
problem.M = spherefactory(n);
problem.cost = @(x) -x'*A*x;
problem.egrad = @(x) -2*A*x;

x = trustregions(problem);
x'*A*x, max(eig(A)) % compare

Warning: No Hessian provided. Using an FD approximation instead.
To disable this warning: warning('off', 'manopt:getHessian:approx')
> In trustregions (line 325)
In Tutorial01_rayleigh (line 14)

f: -1.359943e+00 |grad|: 1.344318e+01
acc TR+ k: 1 num_inner: 1 f: -5.988531e+00 |grad|: 1.079847e+01
acc k: 2 num_inner: 1 f: -9.152545e+00 |grad|: 6.683919e+00
acc k: 3 num_inner: 3 f: -1.037445e+01 |grad|: 2.611111e+00
acc k: 4 num_inner: 4 f: -1.063347e+01 |grad|: 2.183730e-01
acc k: 5 num_inner: 5 f: -1.063569e+01 |grad|: 1.377073e-02
acc k: 6 num_inner: 7 f: -1.063570e+01 |grad|: 1.112603e-04
acc k: 7 num_inner: 12 f: -1.063570e+01 |grad|: 9.671030e-09
Gradient norm tolerance reached; options.tolgradnorm = 1e-06.
Total time is 0.042530 [s] (excludes statsfun)

ans = 10.6357 % x'*A*x
ans = 10.6357 % max(eig(A))

Provide Euclidean Hessian

n = 20;
A = randn(n); A = A+A';
problem.M = spherefactory(n);
problem.cost = @(x) -x'*A*x;
problem.egrad = @(x) -2*A*x;
problem.ehess = @(x, u) -2*A*u;
x = trustregions(problem);
x'*A*x, max(eig(A)) % compare

f: +1.085417e+00 |grad|: 9.168786e+00
acc TR+ k: 1 num_inner: 1 f: -2.028789e+00 |grad|: 8.556623e+00
acc k: 2 num_inner: 1 f: -6.919949e+00 |grad|: 7.271589e+00
acc k: 3 num_inner: 1 f: -9.440813e+00 |grad|: 6.269407e+00
acc k: 4 num_inner: 2 f: -1.052834e+01 |grad|: 3.971600e+00
acc k: 5 num_inner: 8 f: -1.104792e+01 |grad|: 8.459219e-01
acc k: 6 num_inner: 7 f: -1.114649e+01 |grad|: 6.471174e-02
acc k: 7 num_inner: 7 f: -1.114702e+01 |grad|: 3.446551e-03
acc k: 8 num_inner: 10 f: -1.114702e+01 |grad|: 1.036685e-05
acc k: 9 num_inner: 15 f: -1.114702e+01 |grad|: 4.357143e-11
Gradient norm tolerance reached; options.tolgradnorm = 1e-06.
Total time is 0.015170 [s] (excludes statsfun)

Want solvers to be quieter? Set options.verbosity = 0; (or 1, 2, 3, ...)

Check the gradient

n = 20;
A = randn(n); A = A+A';
problem.M = spherefactory(n);
problem.cost = @(x) -x'*A*x;
problem.egrad = @(x) -2*A*x;
problem.ehess = @(x, u) -2*A*u;

>> checkgradient(problem)

The slope should be 2. It appears to be: 2.00003.
If it is far from 2, then directional derivatives might be erroneous.
The residual should be 0, or very close. Residual: 2.80318e-16.
If it is far from 0, then the gradient is not in the tangent space.
In certain cases (e.g., hyperbolicfactory), the test is inconclusive.

How? Manopt generates a random 𝑥𝑥 ∈ ℳ and 𝑢𝑢 ∈ T𝑥𝑥ℳ,
then checks that the error term in

𝑓𝑓 R𝑥𝑥 𝑡𝑡𝑡𝑡 = 𝑓𝑓 𝑥𝑥 + 𝑡𝑡 grad𝑓𝑓 𝑥𝑥 ,𝑢𝑢 𝑥𝑥 + 𝑂𝑂 𝑡𝑡2

is indeed 𝑂𝑂 𝑡𝑡2 .

Check the Hessian

n = 20;
A = randn(n); A = A+A';
problem.M = spherefactory(n);
problem.cost = @(x) -x'*A*x;
problem.egrad = @(x) -2*A*x;
problem.ehess = @(x, u) -2*A*u;

>> checkhessian(problem)

The slope should be 3. It appears to be: 3.00074.
If it is far from 3, then directional derivatives,
the gradient or the Hessian might be erroneous.
Tangency residual should be zero, or very close; residual: 9.1425e-16.
If it is far from 0, then the Hessian is not in the tangent space.
||a*H[d1] + b*H[d2] - H[a*d1+b*d2]|| should be zero, or very close.

Value: 2.20443e-15 (norm of H[a*d1+b*d2]: 8.96316)
If it is far from 0, then the Hessian is not linear.
<d1, H[d2]> - <H[d1], d2> should be zero, or very close.

Value: 0.172729 - 0.172729 = -4.44089e-16.
If it is far from 0, then the Hessian is not symmetric.

How? Same principle, checking for 𝑂𝑂 𝑡𝑡3 error term.
This only works if the retraction is second-order and/or if grad𝑓𝑓 𝑥𝑥 = 0.

Calling solvers: general pattern
[x, cost, info, options] = myfavoritesolver(problem, x0, options)

Inputs:
- A problem structure
- Optional: initial point (by default: M.rand() to generate random 𝑥𝑥0)
- Optional: a structure to specify options (stopping criteria, verbosity, ...)

Outputs:
- Best computed point
- Cost function value at returned point
- Information struct-array (time/function value/gradient norm/... at each iter.)
- Options structure (so you know which default values were used)

Things you find in the info struct-array
[x, cost, info, options] = myfavoritesolver(problem, x0, options)

It varies from solver to solver: see help mysolver.
Typical stuff: iter, cost, time, gradnorm. Try:

plot([info.iter], [info.cost], '.-’);

semilogy([info.time], [info.gradnorm] , '.-');

You can also record fancy original things using options.statsfun:
options.statsfun = @mystatsfun;

function stats = mystatsfun(problem, x, stats)

stats.current_point = x;

end

% Results are stored in info(k).current_point for k = 0, 1, ...

Ways to define the cost and gradient
f = problem.cost(x) 𝑓𝑓(𝑥𝑥)
g = problem.grad(x) grad 𝑓𝑓 𝑥𝑥 (Riemannian gradient)
[f, g] = problem.costgrad(x) both together

Why define cost and gradient together? Reduce redundant computation:
problem.costgrad = @(x) mycostgrad(A, x);

function [f, g] = mycostgrad(A, x)

Ax = A*x; % Compute A*x once: O(n²) operations.

f = -x'*Ax;

g = -2*Ax; % Compute Euclidean gradient, re-using Ax.

g = g – (x'*g)*x; % Convert to Riemannian gradient; see M.egrad2rgrad.

end

problem.cost = @(x) -x'*A*x;
problem.egrad = @(x) -2*A*x;

Ways to define the cost and gradient (2)
f = problem.cost(x) 𝑓𝑓(𝑥𝑥)
g = problem.grad(x) grad 𝑓𝑓 𝑥𝑥 (Riemannian gradient)
[f, g] = problem.costgrad(x) both together

If ℳ is embedded in a Euclidean space, 𝑓𝑓 can be smoothly extended to ̅𝑓𝑓 around ℳ.
The toolbox can convert Euclidean gradients to Riemannian gradients automatically:

eg = problem.egrad(x) grad ̅𝑓𝑓 𝑥𝑥 (Euclidean gradient)

Under the hood, Manopt calls g = M.egrad2rgrad(x, eg) to convert.

There is no “problem.costegrad”. Just use cost+egrad, or call M.egrad2rgrad manually,
or use manual caching which is recommended anyway if you’re going to use the Hessian.

problem.cost = @(x) -x'*A*x;
problem.egrad = @(x) -2*A*x;

Ways to define the Hessian
h = problem.hess(x, u) Hess𝑓𝑓 𝑥𝑥 𝑢𝑢 (Riemannian Hessian as operator)

If ℳ is embedded in a Euclidean space, 𝑓𝑓 can be smoothly extended to ̅𝑓𝑓 around ℳ.
The toolbox can convert Euclidean gradient+Hessian to Riemannian Hessian:

eh = problem.ehess(x, u) Hess ̅𝑓𝑓 𝑥𝑥 𝑢𝑢 (Euclidean Hessian)

Under the hood, Manopt calls h = M.ehess2rhess(x, eg, eh, u) to convert.

Note: u and h are tangent vectors whereas eg and eh are vectors in the ambient space.

problem.cost = @(x) -x'*A*x;
problem.egrad = @(x) -2*A*x;
problem.ehess = @(x, u) -2*A*u;

Manual caching: store structures
Manopt does a fair amount of caching under the hood, but it can’t be as efficient
as you telling it which intermediate results to store and how to use them.
Each new point an algorithm visits gets its own store structure.

Moreover, store.shared contains memory shared by all 𝑥𝑥.

function store = prepare(x, store)
if ~isfield(store, 'Ax')

store.Ax = A*x;
end

end

function [f, store] = cost(x, store)
store = prepare(x, store);
Ax = store.Ax;
f = -x'*Ax;

end

function [g, store] = egrad(x, store)
store = prepare(x, store);
Ax = store.Ax;
g = -2*Ax;

end

function [h, store] = ehess(x, u, store)
% store = prepare(x, store);
% Not needed in this simple example.
% Would be useful too in general.
h = -2*A*u;

end

Counters: fancy ways to keep track
See /examples/using_counters.m
https://github.com/NicolasBoumal/manopt/blob/master/examples/using_counters.m

Counters allow you to keep track of events inside your code for 𝑓𝑓, grad𝑓𝑓, Hess𝑓𝑓.

Convenient to compare algorithms; can also serve in stopping criterion.

Code extracts:
stats = statscounters({'costcalls', 'gradcalls', 'hesscalls', ...

'Aproducts', 'functiontime'});

options.statsfun = statsfunhelper(stats);

store = incrementcounter(store, 'Aproducts’); % In cost, grad etc.

store = incrementcounter(store, 'functiontime', toc(t));

https://github.com/NicolasBoumal/manopt/blob/master/examples/using_counters.m

What happens if I omit the gradient?

Manopt automatically uses finite difference approximations and issues a warning.
You can silence the warning.

FD approximations of the gradient are expensive and reduce your final accuracy.
It’s only good for quick prototyping. (PS: check automatic differentiation, manoptAD.)

How? getGradientFD generates a random orthonormal basis 𝑢𝑢1, … ,𝑢𝑢𝑑𝑑 of T𝑥𝑥ℳ with
tangentorthobasis (not free!) and uses the formula grad𝑓𝑓 𝑥𝑥 = ∑𝑖𝑖=1𝑑𝑑 𝛼𝛼𝑖𝑖𝑢𝑢𝑖𝑖 with

𝛼𝛼𝑖𝑖 = grad𝑓𝑓 𝑥𝑥 ,𝑢𝑢𝑖𝑖 𝑥𝑥 = D𝑓𝑓 𝑥𝑥 𝑢𝑢𝑖𝑖 ≈
𝑓𝑓 R𝑥𝑥 𝑡𝑡𝑢𝑢𝑖𝑖 − 𝑓𝑓 𝑥𝑥

𝑡𝑡
using a small value of 𝑡𝑡, specifically, 2−23. Requires 𝑑𝑑 calls to 𝑓𝑓 and the retraction!

What happens if I omit the Hessian?

Manopt automatically uses finite difference approximations and issues a warning.
You can silence the warning.

FD approximations of the Hessian are mostly harmless.
They’re often the same price as getting the true Hessian, and hardly hurt convergence.

How? getHessianFD uses vector transport T𝑥𝑥←𝑦𝑦 from T𝑦𝑦ℳ to T𝑥𝑥ℳ with 𝑦𝑦 = R𝑥𝑥 𝑡𝑡𝑡𝑡
(for example, Proj𝑥𝑥 is fine for Riemannian submanifolds of Euclidean space) and

Hess𝑓𝑓 𝑥𝑥 𝑢𝑢 ≈
T𝑥𝑥←𝑦𝑦 grad𝑓𝑓 𝑦𝑦 − grad𝑓𝑓 𝑥𝑥

𝑡𝑡
setting 𝑡𝑡 = 2−14/ 𝑢𝑢 𝑥𝑥. Requires one call to grad𝑓𝑓, one retraction and one transport.

When do solvers terminate?
There are a few standard stopping criteria controlled by options:
maxiter, maxtime, tolcost, tolgradnorm

You can also define your own (evaluated after the standard ones). E.g.,
options.stopfun = @mystopfun;

function stopnow = mystopfun(problem, x, info, last)

stopnow = (last >= 3 && info(last-2).cost - info(last).cost < 1e-3);

end

Interactive stopping criteria (these allow you to force the solver to terminate from outside the code):
options.stopfun = @stopifclosedfigure;

options.stopfun = stopifdeletedfile();

More things we didn’t discuss
You can use a preconditioner with problem.precon, problem.sqrtprecon.

You can define “partial gradients” (for SGD) and “subgradients” (for nonsmooth 𝑓𝑓).

There are many line-search algorithms (select with options.linesearch); you can define
your own; you can provide hints to line-search algorithms (through problem.linesearch).

There are many tools that can make your life easier: see the tutorial.
Hessian stuff: hessianspectrum, hessianextreme, hessianmatrix
More diagnostics tools: checkretraction(M), checkmanifold(M)
Plotting: plotprofile, surfprofile
Also: criticalpointfinder, tangentspherefactory, tangentspacefactory,
orthogonalize, tangentorthobasis, smallestinconvexhull, operator2matrix, ...

Contributors welcome!

You can write your own solvers, manifold factories, examples, tools.

Questions / discussions welcome on the forum:
https://groups.google.com/g/manopttoolbox

Can also post bug reports / pull requests / raise issues on GitHub:
https://github.com/NicolasBoumal/manopt

https://groups.google.com/g/manopttoolbox
https://github.com/NicolasBoumal/manopt/

	Hands on with Manopt�A toolbox for optimization on manifolds
	Manopt is a toolbox to solve:
	If you want to play along:
	What kind of cost functions?
	What kinds of manifolds?
	General principle of the toolbox
	What kinds of manifolds?
	What kinds of manifolds?
	What kinds of manifolds?
	What kinds of manifolds?
	What kinds of manifolds?
	What kinds of manifolds?
	What kinds of manifolds?
	What kinds of manifolds?
	What’s in a factory-produced manifold?�Example: stripped down and simplified spherefactory
	First example: let’s dive right in
	Run steepest descent
	Provide Euclidean gradient
	Run trust-regions
	Run trust-regions
	Provide Euclidean Hessian
	Check the gradient
	Check the Hessian
	Calling solvers: general pattern�[x, cost, info, options] = myfavoritesolver(problem, x0, options)
	Things you find in the info struct-array�[x, cost, info, options] = myfavoritesolver(problem, x0, options)
	Ways to define the cost and gradient
	Ways to define the cost and gradient (2)
	Ways to define the Hessian
	Manual caching: store structures
	Counters: fancy ways to keep track
	What happens if I omit the gradient?
	What happens if I omit the Hessian?
	When do solvers terminate?
	More things we didn’t discuss
	Contributors welcome!

