
Modular forms and applications

Eta, theta,
and partitions



Partitions

A partition of a positive integer n, also called an integer partition, is a way of writing n
as a sum of positive integers. Two sums that differ only in the order of their
summands are considered the same partition.

The partition function p(n) represents the number of possible partitions of a natural
number n.

Example

5 = 4 + 1 = 3 + 2 = 3 + 1 + 1 = 2 + 2 + 1 = 2 + 1 + 1 + 1 = 1 + 1 + 1 + 1 + 1
p(5) = 7



Lemma
The generating function for p(n) is given by

∞∑
n=0

p(n) xn =
∞∏
k=1

(1 + xk + x2k + . . .) =
∞∏
k=1

(1− xk)−1.

Definition
For a positive integer n we denote by pe(n) the number of partitions of n into an even
number of different parts, analogously, we denote by po(n) the number of partitions of
n into an odd number of different parts.

Lemma
We have

∞∏
k=1

(1− xk) =
∞∑
s=0

∑
k1<k2<···<ks

(−1)s xk1+k2+...+ks =
∞∑
n=0

cn xn

where c0 = 1 and for n ≥ 1 and cn = pe(n)− po(n).



Let us do an experiment

We compute
∏20

i=1(1− x i ) + o(x20).
The answer is 1− x − x2 + x5 + x7 − x12 − x15 + O

(
x20
)
.

n po(n) pe(n)
1 1 1 0
2 2 1 0
3 3 = 2 + 1 1 1
4 4 = 3 + 1 1 1
5 5 = 4 + 1 = 3 + 2 1 2
6 6 = 5 + 1 = 4 + 2 = 3 + 2 + 1 2 2
7 7 = 6 + 1 = 5 + 2 = 4 + 3 = 4 + 2 + 1 2 3



Pentagonal number theorem

Theorem(Euler)

∞∏
i=1

(1− x i ) = 1 +
∞∑
k=1

(−1)k (x (3k2−k)/2 + x (3k2+k)/2) =
∑
k∈Z

(−1)k x (3k2−k)/2.

Pentagonal numbers

k -3 -2 -1 0 1 2 3
3k2−k

2 15 7 2 0 1 5 12



Proof

Consider a diagram of a partition of n into different parts.
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Proof

Consider a diagram of a partition of n into different parts.
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We define the following two operations on the diagrams and denote them α and β.

α:
If |b| ≤ |s| and if b and s have no common point, or if |b| ≤ |s| − 1
Then we move b up and turn its points into new slope.

β:

If |b| > |s| and if b and s have no common point, or if |b| ≥ |s|+ 2
Then we move the slope down and turn its points into the new base.

If b and s have a common point and |b| = |s| or |b| = |s|+ 1 then neither α no β can
be applied.



α

β



To each diagram D we can apply at most one of the operations α or β.

If α can be applied to D then β can be applied to α(D).

If β can be applied to D then α can be applied to β(D).



Thus we have a 1:1 correspondence

{
odd partitions

into distinct parts
s. t. α or β can be applied

}
↔

{
even partitions

into distinct parts
s. t. α or β can be applied

}



When can neither α nor β be applied?

I b and s have a common point and |b| = |s| = k

n = k + (k + 1) + . . .+ (2k − 1) =
3k2 − k

2
.

I b and s have a common point and |b| − 1 = |s| = k

n = (k + 1) + . . .+ 2k =
3k2 + k

2
.

Therefore:

pe(n)− po(n) = cn =

{
(−1)k , if n = 3k2±k

2

0, otherwise.

This finishes the proof.



Jacobi triple product

Theorem
For all z 6= 0 and q with |q| < 1:

∞∏
k=1

(1− q2k) (1− q2k−1 z2) (1− q2k−1 z−2) =
∞∑

k=−∞
(−1)k z2k qk2

.



Proof
Set φn(z , q) :=

∏n
k=1(1− q2k−1 z2) (1− q2k−1 z−2). We have

φn(qz , q) = φn(z , q)
(1− q2n+1 z2) (1− q−1z−2)

(1− qz2) (1− q2n−1z−2)
= φn(z , q)

1− q2n+1 z2

−qz2 + q2n
. (1)

We consider the following expansion

φn(z , q) =
n∑

k=−n
An,k(q) z2k , (2)

where An,k(q) is a polynomial in q. We have a symmetry An,k(q) = An,−k(q). We find

An,n(q) = q1+3+5+...+(2n−1) = qn2
. (3)

We substitute (2) into (1) and obtain

An,k(q) = An,k−1(q) q2k−1 1− q2n−2k+2

1− q2n+2k
. (4)



From (3) and (4) we find

An,k =
qk2

(1− q2) · · · (1− q2n)

n∏
s=n−k+1

(1− q2s)
2n∏

s=n+k+1

(1− q2s). (5)

From (5) we obtain

n∏
k=1

(1− q2k) (1− q2k−1 z2) (1− q2k−1 z−2) =
n∑

k=−n
(−1)kz2k qk2

Bn,k(q).

where

Bn,k(q) =
n∏

s=n−k+1

(1− q2s)
2n∏

s=n+k+1

(1− q2s).

We have Bn,k = 1 + O(qn−k+1). We take the limit n→∞ and finish the proof.



Question:
Can we deduce pentagonal number theorem from the Jacobi triple product theorem?

Yes

Exercise
Find the necessary substitution.
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Dedekind eta function

Let

η(z) := q
1

24

∞∏
n=1

(1− qn), q = e2πiz .

We have

η(z) = q
1

24

∑
k∈Z

(−1)k q
3k2+k

2 =
∑
k∈Z

(−1)k q
3
2

(k+ 1
6

)2
=
∞∑
n=1

χ(n) e
1

12
πin2z ,

where χ(n) is the Dirichlet character modulo 12 with χ(±1) = 1, χ(±5) = −1.

Dedekind eta function is a modular form of weight 1/2.



Transformation properties of η

η(τ + 1) =eπi/12 η(τ)

η

(
−1

τ

)
=
√
−iτ η(τ)

Exercise
Show that the Ramanujan delta function ∆ := η24 belongs to M12(Γ1).
Show that ∆ = 1

1728 (E 3
4 − E 2

6 ).

Exercise
Using the fact that E2(z) = 1

2πi
∆′(z)
∆(z) show that for all

(
a b
c d

)
∈ SL2(Z) we have

E2

(
az + b

cz + d

)
= (cz + d)2 E2(z)− πic(cz + d).





A weakly-holomorphic modular form of weight k and congruence subgroup Γ is a
holomorphic function f : H→ C such that:

1. f
(
az+b
cz+d

)
= (cz + d)k f (z) for all

(
a b
c d

)
∈ Γ

2. for each
(
a b
c d

)
∈ Γ1 (cz + d)−k f

(
az+b
cz+d

)
has the Fourier expansion

(cz + d)−k f
(
az+b
cz+d

)
=
∑∞

n�−∞ cα(n) e2πi n
h
z for some h ∈ N.

We denote the space of weakly-holomorphic modular forms of weight k and group Γ by
M !

k(Γ). The spaces M !
k(Γ) are infinite dimensional.



Hardy-Ramanujan asymptotic formula

An asymptotic expression for p(n) is given by

p(n) ∼ 1

4n
√

3
exp

(
π

√
2n

3

)
as n→∞.

Convergent series expansion for partition function

p(n) =
1

π
√

2

∞∑
k=1

√
k Ak(n)

d

dn

 1√
n − 1

24

sinh

[
π

k

√
2

3

(
n − 1

24

)] .
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