Modular forms and applications

Eta, theta,

and partitions



Partitions

A partition of a positive integer n, also called an integer partition, is a way of writing n
as a sum of positive integers. Two sums that differ only in the order of their
summands are considered the same partition.

The partition function p(n) represents the number of possible partitions of a natural
number n.

Example
5=441=3+42=34141=2424+1=2414+1+4+1=1+1+1+1+1
p(5) =7



Lemma
The generating function for p(n) is given by

ip(n)x" = ﬁ(l +xkpx )= ﬁ(l —xK)7L
n=0 k=1 k=1

Definition

For a positive integer n we denote by pe(n) the number of partitions of n into an even
number of different parts, analogously, we denote by p,(n) the number of partitions of
n into an odd number of different parts.

Lemma
We have

lo_o[ 1-— X Z Z (_1)5 Xk1+k2+~~+ks _ i cp X"
k=1 —0

s=0 ki<kp<---<ks

where ¢ =1 and for n > 1 and ¢, = pe(n) — po(n).



Let us do an experiment

20 -
We compute [[72;(1 — x) + o(x?°).
The answer is 1 — x — x2 + x° + x" — x}2 — x> + 0 (x?) .

n Po(n)
1)1 1
2|2 1
313=2+1 1
4 14=3+1 1
5|/5=4+4+1=3+2 1
6| 6=54+1=4+2=3+2+1 2
7| 7T=64+1=542=4+3=4+2+1 2
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Pentagonal number theorem

Theorem(Euler)
H(l —Xi) -1+ Z(_l)k (X(3k2—k)/2 +X(3k2+k)/2) _ Z(_l)k X(3k2_k)/2.
i=1 k=1 keZ

Pentagonal numbers

31-21-1]0(1[2] 3
712101512




Proof

Consider a diagram of a partition of n into different parts.
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Proof

Consider a diagram of a partition of n into different parts.

17
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5 O O base



We define the following two operations on the diagrams and denote them « and £.

1%
If |b| < |s| and if b and s have no common point, or if |b| < |s| — 1
Then we move b up and turn its points into new slope.

G-
If |b| > |s| and if b and s have no common point, or if |b| > |s| + 2
Then we move the slope down and turn its points into the new base.

If b and s have a common point and |b| = |s| or |b| = |s| + 1 then neither a no 3 can
be applied.
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To each diagram D we can apply at most one of the operations « or 3.

If a can be applied to D then § can be applied to a(D).

If B can be applied to D then « can be applied to 5(D).



Thus we have a 1:1 correspondence

odd partitions even partitions
into distinct parts > into distinct parts

s. t. a or 8 can be applied s. t. « or g8 can be applied



When can neither o nor 8 be applied?

» b and s have a common point and |b| = |s| = k

3k% — k
n=k+(k+1)+...+(2k-1)= S
» b and s have a common point and |b| — 1 = |s| = k
3k* + k
n=(k+1)+...+2k= B

Therefore: ,
k o 3Kk2+tk
(=1)%, if n=> 5=

0, otherwise.

pe(n) — po(n) = cn = {

This finishes the proof.



Jacobi triple product

Theorem
For all z# 0 and g with |g| < 1:

o0

H(l _ 2k 1 2) (1— q2k—1 2_2) _ Z (_1)kzzk qk2'

k=—o00



Proof
Set ¢n(z,q) := [Ti_1(L — ¢*12%) (1 — ¢?)~1 z72). We have

(1 o q2n+1 22) (1 . q—lz—2) 1— q2n+1 Z2
¢n(qza q) = ¢n(z7 q) (1 — qz2) (1 — q2n_12_2) = ¢n(za q) W (1)
We consider the following expansion
n
¢n(2,9) = > Ankl(q) 2%, (2)

k=—n
where A, «(q) is a polynomial in g. We have a symmetry A, «(q) = A, _«(q). We find

(3)

_ 2
An,n(q) — q1+3+5+...+(2n 1) _ qn )

We substitute (2) into (1) and obtain

g1 q2n—2k+2
Ank(@) = Ank1(9) 6" 5 s (4)



From (3) and (4) we find

k2 n 2n

A = 9 [T a-¢ ] a-)

—g2)...(1 — g2
(1 q ) (1 q n)s:n_k+1 s=n+k+1

From (5) we obtain

n n

[Ta-a- 72— 2% = 3 (-1)"2* ¢ Byu(a)-

k=1 k=—n
where
n 2n
Boi(a)= J[ (1-¢*) ] (1-4¢*).
s=n—k+1 s=n+k+1

We have B, x = 1+ O(q""%*1). We take the limit n — oo and finish the proof.



Question:
Can we deduce pentagonal number theorem from the Jacobi triple product theorem?



Question:
Can we deduce pentagonal number theorem from the Jacobi triple product theorem?

Yes

Exercise
Find the necessary substitution.



Dedekind eta function

Let

1 e .

77(2) = q2 H(l — q"), q= e2miz.
n=1

We have

2

n(z)=q% > (~)kg* 7 = (~1)kqitkte) = ZX ) elemin'z
kGZ keZ

where x(n) is the Dirichlet character modulo 12 with x(£1) =1, x(£5) = —1.

Dedekind eta function is a modular form of weight 1/2.



Transformation properties of 7

n(r +1) =™ p(7)

1 <_Tl> =V/—irn(r)

Exercise
Show that the Ramanujan delta function A := n®* belongs to Mi(I'1).
Show that A = 37 (E3 — E2).

Exercise

Using the fact that Ex(z) = %AA/((ZZ)) show that for all (25) € SLy(Z) we have

az+b 2 .
E = (cz + -~ +d).
2 <cz d) (cz+ d)° Ex(z) — mic(cz + d)






A weakly-holomorphic modular form of weight k and congruence subgroup I is a
holomorphic function f : H — C such that:

Lf(25) = (cz+d)<f(z) forall (25) €T

cz+d
(cz+d)kf <izz—j:2> =D 0300 Cal(n) e®™5Z for some h € N.

We denote the space of weakly-holomorphic modular forms of weight k and group I by
M, (T). The spaces M, (I) are infinite dimensional.

2. foreach (25) el (cz+d)*f (az—”) has the Fourier expansion



Hardy-Ramanujan asymptotic formula

An asymptotic expression for p(n) is given by

(n) 1 e 2 as n —
~ xp | T/ = 00.
P 4n\/3 P 3

Convergent series expansion for partition function
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