

Modular forms and applications

Eta, theta, and partitions

Partitions

A *partition* of a positive integer n , also called an integer partition, is a way of writing n as a sum of positive integers. Two sums that differ only in the order of their summands are considered the same partition.

The *partition function* $p(n)$ represents the number of possible partitions of a natural number n .

Example

$$\begin{aligned} 5 &= 4+1 = 3+2 = 3+1+1 = 2+2+1 = 2+1+1+1 = 1+1+1+1+1 \\ p(5) &= 7 \end{aligned}$$

Lemma

The generating function for $p(n)$ is given by

$$\sum_{n=0}^{\infty} p(n) x^n = \prod_{k=1}^{\infty} (1 + x^k + x^{2k} + \dots) = \prod_{k=1}^{\infty} (1 - x^k)^{-1}.$$

Definition

For a positive integer n we denote by $p_e(n)$ the number of partitions of n into an even number of *different* parts, analogously, we denote by $p_o(n)$ the number of partitions of n into an odd number of *different* parts.

Lemma

We have

$$\prod_{k=1}^{\infty} (1 - x^k) = \sum_{s=0}^{\infty} \sum_{k_1 < k_2 < \dots < k_s} (-1)^s x^{k_1 + k_2 + \dots + k_s} = \sum_{n=0}^{\infty} c_n x^n$$

where $c_0 = 1$ and for $n \geq 1$ and $c_n = p_e(n) - p_o(n)$.

Let us do an experiment

We compute $\prod_{i=1}^{20} (1 - x^i) + o(x^{20})$.

The answer is $1 - x - x^2 + x^5 + x^7 - x^{12} - x^{15} + O(x^{20})$.

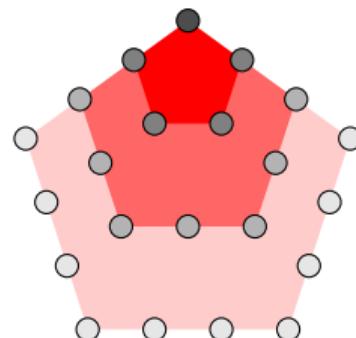
n		$p_o(n)$	$p_e(n)$
1	1	1	0
2	2	1	0
3	$3 = 2 + 1$	1	1
4	$4 = 3 + 1$	1	1
5	$5 = 4 + 1 = 3 + 2$	1	2
6	$6 = 5 + 1 = 4 + 2 = 3 + 2 + 1$	2	2
7	$7 = 6 + 1 = 5 + 2 = 4 + 3 = 4 + 2 + 1$	2	3

Pentagonal number theorem

Theorem(Euler)

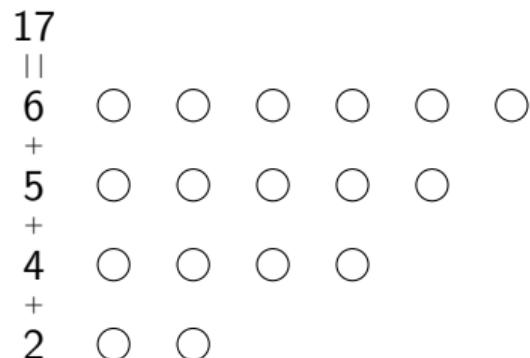
$$\prod_{i=1}^{\infty} (1 - x^i) = 1 + \sum_{k=1}^{\infty} (-1)^k (x^{(3k^2-k)/2} + x^{(3k^2+k)/2}) = \sum_{k \in \mathbb{Z}} (-1)^k x^{(3k^2-k)/2}.$$

Pentagonal numbers



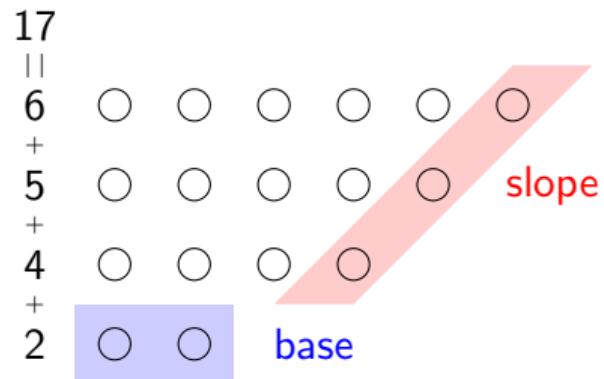
Proof

Consider a diagram of a partition of n into different parts.



Proof

Consider a diagram of a partition of n into different parts.



We define the following two operations on the diagrams and denote them α and β .

α :

If $|b| \leq |s|$ and if b and s have no common point, or if $|b| \leq |s| - 1$

Then we move b up and turn its points into new slope.

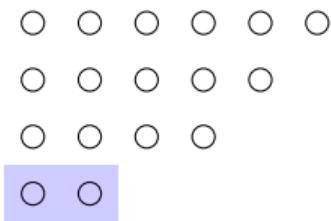
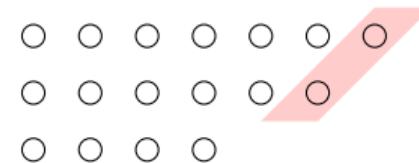
β :

If $|b| > |s|$ and if b and s have no common point, or if $|b| \geq |s| + 2$

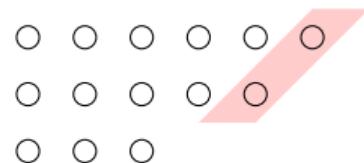
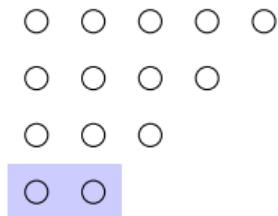
Then we move the slope down and turn its points into the new base.

If b and s have a common point and $|b| = |s|$ or $|b| = |s| + 1$ then neither α no β can be applied.

α



β



To each diagram D we can apply at most one of the operations α or β .

If α can be applied to D then β can be applied to $\alpha(D)$.

If β can be applied to D then α can be applied to $\beta(D)$.

Thus we have a 1:1 correspondence

$$\left\{ \begin{array}{l} \text{odd partitions} \\ \text{into distinct parts} \\ \text{s. t. } \alpha \text{ or } \beta \text{ can be applied} \end{array} \right\} \leftrightarrow \left\{ \begin{array}{l} \text{even partitions} \\ \text{into distinct parts} \\ \text{s. t. } \alpha \text{ or } \beta \text{ can be applied} \end{array} \right\}$$

When can neither α nor β be applied?

- ▶ b and s have a common point and $|b| = |s| = k$

$$n = k + (k + 1) + \dots + (2k - 1) = \frac{3k^2 - k}{2}.$$

- ▶ b and s have a common point and $|b| - 1 = |s| = k$

$$n = (k + 1) + \dots + 2k = \frac{3k^2 + k}{2}.$$

Therefore:

$$p_e(n) - p_o(n) = c_n = \begin{cases} (-1)^k, & \text{if } n = \frac{3k^2 \pm k}{2} \\ 0, & \text{otherwise.} \end{cases}$$

This finishes the proof.

Jacobi triple product

Theorem

For all $z \neq 0$ and q with $|q| < 1$:

$$\prod_{k=1}^{\infty} (1 - q^{2k}) (1 - q^{2k-1} z^2) (1 - q^{2k-1} z^{-2}) = \sum_{k=-\infty}^{\infty} (-1)^k z^{2k} q^{k^2}.$$

Proof

Set $\phi_n(z, q) := \prod_{k=1}^n (1 - q^{2k-1} z^2) (1 - q^{2k-1} z^{-2})$. We have

$$\phi_n(qz, q) = \phi_n(z, q) \frac{(1 - q^{2n+1} z^2)(1 - q^{-1} z^{-2})}{(1 - qz^2)(1 - q^{2n-1} z^{-2})} = \phi_n(z, q) \frac{1 - q^{2n+1} z^2}{-qz^2 + q^{2n}}. \quad (1)$$

We consider the following expansion

$$\phi_n(z, q) = \sum_{k=-n}^n A_{n,k}(q) z^{2k}, \quad (2)$$

where $A_{n,k}(q)$ is a polynomial in q . We have a symmetry $A_{n,k}(q) = A_{n,-k}(q)$. We find

$$A_{n,n}(q) = q^{1+3+5+\dots+(2n-1)} = q^{n^2}. \quad (3)$$

We substitute (2) into (1) and obtain

$$A_{n,k}(q) = A_{n,k-1}(q) q^{2k-1} \frac{1 - q^{2n-2k+2}}{1 - q^{2n+2k}}. \quad (4)$$

From (3) and (4) we find

$$A_{n,k} = \frac{q^{k^2}}{(1-q^2) \cdots (1-q^{2n})} \prod_{s=n-k+1}^n (1-q^{2s}) \prod_{s=n+k+1}^{2n} (1-q^{2s}). \quad (5)$$

From (5) we obtain

$$\prod_{k=1}^n (1-q^{2k}) (1-q^{2k-1} z^2) (1-q^{2k-1} z^{-2}) = \sum_{k=-n}^n (-1)^k z^{2k} q^{k^2} B_{n,k}(q).$$

where

$$B_{n,k}(q) = \prod_{s=n-k+1}^n (1-q^{2s}) \prod_{s=n+k+1}^{2n} (1-q^{2s}).$$

We have $B_{n,k} = 1 + O(q^{n-k+1})$. We take the limit $n \rightarrow \infty$ and finish the proof.

Question:

Can we deduce pentagonal number theorem from the Jacobi triple product theorem?

Question:

Can we deduce pentagonal number theorem from the Jacobi triple product theorem?

Yes

Exercise

Find the necessary substitution.

Dedekind eta function

Let

$$\eta(z) := q^{\frac{1}{24}} \prod_{n=1}^{\infty} (1 - q^n), \quad q = e^{2\pi iz}.$$

We have

$$\eta(z) = q^{\frac{1}{24}} \sum_{k \in \mathbb{Z}} (-1)^k q^{\frac{3k^2+k}{2}} = \sum_{k \in \mathbb{Z}} (-1)^k q^{\frac{3}{2}(k+\frac{1}{6})^2} = \sum_{n=1}^{\infty} \chi(n) e^{\frac{1}{12}\pi i n^2 z},$$

where $\chi(n)$ is the Dirichlet character modulo 12 with $\chi(\pm 1) = 1$, $\chi(\pm 5) = -1$.

Dedekind eta function is a modular form of weight 1/2.

Transformation properties of η

$$\eta(\tau + 1) = e^{\pi i/12} \eta(\tau)$$

$$\eta\left(\frac{-1}{\tau}\right) = \sqrt{-i\tau} \eta(\tau)$$

Exercise

Show that the *Ramanujan delta function* $\Delta := \eta^{24}$ belongs to $M_{12}(\Gamma_1)$.

Show that $\Delta = \frac{1}{1728}(E_4^3 - E_6^2)$.

Exercise

Using the fact that $E_2(z) = \frac{1}{2\pi i} \frac{\Delta'(z)}{\Delta(z)}$ show that for all $\begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \mathrm{SL}_2(\mathbb{Z})$ we have

$$E_2\left(\frac{az + b}{cz + d}\right) = (cz + d)^2 E_2(z) - \pi i c(cz + d).$$

A *weakly-holomorphic modular form* of weight k and congruence subgroup Γ is a holomorphic function $f : \mathbb{H} \rightarrow \mathbb{C}$ such that:

1. $f\left(\frac{az+b}{cz+d}\right) = (cz+d)^k f(z)$ for all $\begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \Gamma$
2. for each $\begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \Gamma_1$ $(cz+d)^{-k} f\left(\frac{az+b}{cz+d}\right)$ has the Fourier expansion $(cz+d)^{-k} f\left(\frac{az+b}{cz+d}\right) = \sum_{n=-\infty}^{\infty} c_{\alpha}(n) e^{2\pi i \frac{n}{h} z}$ for some $h \in \mathbb{N}$.

We denote the space of weakly-holomorphic modular forms of weight k and group Γ by $M_k^!(\Gamma)$. The spaces $M_k^!(\Gamma)$ are infinite dimensional.

Hardy-Ramanujan asymptotic formula

An asymptotic expression for $p(n)$ is given by

$$p(n) \sim \frac{1}{4n\sqrt{3}} \exp\left(\pi\sqrt{\frac{2n}{3}}\right) \text{ as } n \rightarrow \infty.$$

Convergent series expansion for partition function

$$p(n) = \frac{1}{\pi\sqrt{2}} \sum_{k=1}^{\infty} \sqrt{k} A_k(n) \frac{d}{dn} \left(\frac{1}{\sqrt{n - \frac{1}{24}}} \sinh \left[\frac{\pi}{k} \sqrt{\frac{2}{3} \left(n - \frac{1}{24} \right)} \right] \right).$$