Modular forms and applications
Exercise Sheet 1

In this exercise sheet we introduce the hyperbolic plane
H:= {z € C,Im(z) > 0}
and discuss basic properties we will need during the course.

Exercise 1 (Automorphisms of the upper half plane, graded). Given a nonempty open subset Q2 C C, we
denote by Aut(2) the group of holomorphic automorphims of €.

The goal of this exercise is to establish an explicit isomorphism between the groups Aut(H) and PSLy(R).
You may deduce this from parts (a) to (f) below.

(a) Show that the map ¥ : SLy(R) — Aut(H), g — ¥, given by

az+b
cz+d

U,(z) = for g= (‘CL Z) € SLy(R) and z € H

is a well-defined morphism of groups and find its kernel.

(b) Part (a) defines a group action of SLy(R) on H. Show that it is transitive by showing that the orbit of
the point ¢ is all of H.

(¢c) Let D = {w € C : |w| < 1} denote the open unit disc. Let 7 € H be a point. Consider the fractional
linear transformation d,(z) = 2=Z. Show that J, defines a holomorphic isomorphism 6, : H — D.

2—=T

(d) Given any ¢ € Aut(H), construct a suitable ¢ € Aut(D) such that ¢(0) = 0.

(e) Generally, given two non-empty open subsets Q1,2 C C and a holomorphic isomorphism ¢ : 1 — Qo,
find an isomorphism of groups Aut(€;) = Aut(Q23) depending upon 4.

Recall the Schwarz Lemma from complex analysis. Let f : D — ID be a holomorphic function satisfying
f(0) = 0. Then we have |f(z)| < |z| for all z € D. Moreover, the following are equivalent:

e |f| has a further fixed point, that is, there is zp € D\ {0} such that |f(z0)| = |20].
e f is a rotation around 0, that is, there is § € R such that f(z) = ?z for all z € D.
(f) Deduce from the previous parts that the map in part (a) induces the desired isomorphism.

Solution. (a) First notice that SLy(R) acts on P(C) via linear maps (classical matrix multiplication).
Moreover SLy(R) acts on the subset {[z : 1],z € C} C P}(C) and under the identification C <+ {[z :
1],z € C} this is exactly the ¥ action. It remains to argue that the map ¥(g) is indeed holomorphic
(over H) and that it maps H C C to itself. It is holomorphic because products of holomorphic maps



are holomorphic (notice cz + d # 0 for all z € H). For the group actions it remains to show that
Im(¥y(z)) >0 for all z € H. Let g = (2Y) € SL2(R) and z € H, then

Im(W, (2)) = I (az + b>

cz+d
— Tm ((az +b)(cz + d)>
lez + d|?
(ad — be) Im(2)
- lez + dJ?
~ Im(z)
ez +dJ?

> 0.

Let g = (2¢54) € SLa(R) be so that ¥, acts trivially on H. The equations ®,4(i) = ZZIZ = 4 implies

a =dand b= —c From U,(2i) = Z((QQ;))IZ = 2¢ we see that b = —4c and so combining the two we

deduce b = ¢ = 0. From the determinant condition we see that a = d = a~!. Hence g € {£I5}.

Let z=z+iy e H, xz,y € R, y > 0. Then

<\/g x\/ry_ll) i N

= =z +1y.
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It is clear that 6, is holomorphic. We first show that it takes values in D. Let z € H, then since
Im(z),Im(7) > 0 it holds that

(Im(z) — Im(7))? = Im(2)? — 2Im(2) Im(7) + 1
< Im(z)? + 2Im(2) Im(7) + Im(7)?
= (Im(z) + Im(7))?.

and in particular we deduce that |z — 7| < |z — 7|. Next we construct an inverse of J,. One way to
deduce it is to use the action on P1(C). §, can be seen as the restriction to H C C C P*(C) of the linear

map
1 -7
1 -7

acting on P*(C). In particular the inverse must be represented by the linear map

s (1 1)

T—TZ2

and restricting to D we get:

Do H 2z —

j— Z :
Let ¢ € Aut(H) let 7 = p(i). Let ¢ = d, o pod; ', then it is in Aut(D) and B(0) = 0.
Conjugation by ¢ does the job.

Let ¢ € Aut(H). After, if necessary, compose by ¥, for some g € SLy(R) we may assume that ¢(i) = 1.
Let ¢ € Aut(D) as in point (d) so that ¢(0) = 0. Then by Schwartz’ Lemma we have for any z € D:

|2l = 1671 (@(2))] < 12(2)] < 2]



and so, always by Schwartz’ Lemma, there exists § € R so that for all z € D we have ¢(2) = €2, In

particular we have for all z € H:

o(z) = 5;1 0P o du(2)

: - 10 z2—1
B 1+ 1e P
- i z—i
1 e z41
619/2_"_6719/2 ei0/2_—i6/2
_ 2 + 2i
e—i0/2 _oi0/2 e—i0/24¢%0/2
21 + 2
= Wy/2)(2),

where k(0/2) = (f(;i(l%?%) z;r;(((;g)) ) In particular we get the desired Isomorphism.

Exercise 2 (Factor of automorphy). For each g = (¢ Y) € SLz(R) we define a function
jl@) :H—C* by jg)(z):=4(g,2) :=cz+d for z € H.
(a) Verify that for all g1, g2 € SL2(R) we have

i(g192) = (G(g1) © ¥y,) - j(g2)-
(Here, ¥, is as in Exercise 1)

(b) Verify that for all g € SLo(R) we have (V,) = j(g)~2 . How is part (a) related to the chain-rule in
complex analysis?

(¢c) For every integer k € Z, every function F': H — C and every g € SLy(R) we define a new function
Flrg:H—=C by Flug:=j(9) " (Fo¥y),

called “F slash g”. Show that this defines an action of SLy(R) on the space of all functions F': H — C
(a right group action by linear maps). We call it the “slash-action (in weight k)”.

Solution. (a) Write
gi=(%5) eSLy(R),i=1,2.

Ci

Then
j(glgg)(z) = (Cla2 + dlcQ)Z + ¢1bg + dida

On the other hand

(02) By 3(02))(2) = (02 2202

= (Clag -+ dlcg)z + (Clbg + dldg)

) + dl)(CQZ + d2)

(b) For g = (2%) € SLy(R) we have

a(cz +d) — c(az +b) 1

v (2) = CEw = G =j(9)*(2)




1

Fli(g192)(2) = m

“Fo \I/glgz (z)
_ 1

(i(g1) 0 Ty, (2))R((g2)(2))*
= (j(g1) " F o Wy))|r(92)(2) = (Fli(g1))lk(g2(2)

(F °© \1191 (\Ijgzz)))

Exercise 3 (The hyperbolic metric). The hyperbolic length of a piece-wise Cl-path p : [0,1] — H is defined
by
P’ (1))

1
Lp) = /O o (0.1)

(a) Show that for all g € SLy(R) and all p : [0,1] — H as above, we have L(¥, o p) = L(p). Here, we view
g as an automorphism of H in the usual way (as in Exercise 1).

(b) The hyperbolic metric p : H x H — [0, +00) is defined by

p(z1,22) = inf {L(p) |p € Cpy ([0, 1], H), p(0) = 21, p(1) = 22}
Check that it is indeed a metric and that it is SLo(R)-invariant.
(¢) Show that p(i,iy) = log(y) for all y > 1.
(d) Show that for all 21, ze € H there is g € SLo(R) such that gz; = i, Re(gz2) = 0 and Im(gzs) > 1.

(e) Let (21, 22), (2], 25) € H x H be such that p(z1,22) = p(z}, 25). Show that there is g € SLo(R) such that
(921, 922) = (21, 22).

(f) Show that for all 21, zo € H we have

cosh (p(z1,22)) =1+ M
’ 2Tm(z1) Im(22)

Hint: Use invariance under the diagonal action of SLy(R) of both sides to check the identity only for
an easy set.

(g) Show that the topology on H induced by the hyperbolic metric is equal to the subspace topology (of H
as an open subset of C).

Solution. (a) Let p: [0,1] — H be any piecewise C!'-path and g = (‘g g) € SLo(R). Then

[(Tgop) ()] _ [Pelp(®)ll' ()]

|
Im (% 0 p)(t)) ),
_ @
Im(p(t)

Already the integrand is g-invariant and so also the integral.

(b) The map is clearly well defined. It is easy to see that it is symmetric and the triangle inequality is
satisfied. The delicate bit is to show that the metric is positive definite, i.e. that if z; # 2o € H, then
p(z1,22) > 0. This follows e.g. from points (c),(d) and g-invariance of p. We can also prove it directly:



Let consider z; # 23 € H and p: [0,1] — H be a piecewise Cl-path between z; and zp. Consider the
euclidean open ball B, (z1) = {z € H, |z — 21| < r} with 0 < r < $ min(Im(z1),|22 — 21]). Notice that
for every z € B,.(z1) we have

In(=)] < 3 [Tm(zy)|

Let to = inf{t € [0,1],p(¢) ¢ B-(z1)}. By continuity of p the set is non-empty, to > 0 and |p(to) — 21| >

r. In particular we have
t() /
p(T
sz [ O
o Im(p(t

)
2 o,
e G

2

~ 3Im(z)
Being r and Im(z1) independent of p we see by taking the infimum that p(z1, z2) > 0.

(c) Consider the path p: t € [0,1] — iyt + (1 — t)i. Then

1 y—1
1= | 5t ¢
= /1y %du = log(y).

On the other hand for any path p connecting i and iy we have

" I (p'(t)]
02 | T

> log(Im(p(1))) — log(Im(p(0)) = log(y).

(d) We first apply Exercise 1 to find a g € SLy(R) so that gz; = i. Hence it suffices find h € Stabgr,, ) ()
so that hzg = iy for some y > 1. From exercise 1 we (basically) know that

Stabs,z) (i) = {( cos SM) 0 R} — SO(2)(R).

—sinf cosf

It is easy to compute, for k(0) = ( cos 0 Sine), that

—sin 6 cos 6

Re(22)(cos? 6 — sin? @) — cos(f) sin(6)|z2|?
|cos® — sin O2z5|?

Re(k(0) - z2) =

We have then Re(k(0)z2) = Re(z2) and Re(k(7w/2)z2) = —PT‘ZET?. The map 0 — k(0)zy is clearly
continuous and hence there exists a ' statisfing Re(k(6p)z2)) = 0. If k(0g)z2 = iy for some 0 < y < 1

we can apply k(m/2) to iy to obtain iy~!.

(e) Find g,¢’" € SLa(R) so that gz1 =i = ¢'z] and gzo = iy, ¢'z5 = iy’ € iR>;. By comparing the distances
we deduce log(y) = log(y’). Hence y = 3. In particular it follows that ¢'~1g - (21, 22) = (21, 2})

1This is a bit lazy, 6y can actually be computed.



(f) We check that the right hand side is invariant under the diagonal action of g € SLa(R):

2 |(a21+b)j(9)(22) = (az2+b)j(9)(21) [*
lgz1 — gzl 5(9) G103 (9) (z2) 2

2Im(g21) Im(g22) T enrTa e

where as in the previous exercise j(g)(z) = ¢z + d. Moreover we have

(az1 +b)(cza +d) — (aza + b)(cz1 + d) = z1(ad — be) — z2(ad — be) = z1 — 29.
In particular it suffices to show the equality for z; = ¢ and zo = iy for y > 1 and indeed:

cosh(p(i,iy)) = cosh(log(y))

Cytyt

2
(y—1)?
2y '

(g) Let d : H x H — Rxq, d(z,2') = |z — 2/| denote the Euclidean metric . For all z € H and r > 0 we
define the open balls with center z and radius, with respect to d and p repetitively, by

Bl(z):={w e H : d(z,w) <7}, B(2):={wcH: p(z,w) <r}
Fix zg and r > 0. We must show that:

(i) The set Bf(zp) is open in the Euclidean topology,
(ii) The set B(zg) is open in the topology induced by p.

To prove (ii), consider a point wg € Bf(z9). Write p(zg,wg) = r — 6 where ¢ € (0,r]. We want to find
€ > 0 such that for all z € H:

d(z,wp) <e = p(z0,2) <T.
(Because this means that BZ(wg) C Bf(zp)). Since p satisfies the triangle inequality, it suffices to find
€ > 0 such that for all z € H

d(z,wp) <e = p(z,wp) <.
The existence of such an € > 0 follows from the explicit formula for p given in 4 f), which shows that p
is continuous with respect to the Euclidean topology.
We turn to the proof of (i). The beginning of the argument is exactly as in part (ii), with the roles of d
and p reversed. Consider wy € B%(zy). Write d(z0,wo) = 7 — § where & € (0,7]. We want to find € > 0
such that for all z € H:

p(z,wo) <e = d(z0,2) <.
(Because this means that B?(wq) C B%(zp)). Since d satisfies the triangle inequality, it suffices to find
€ > 0 such that for all z € H

plz,wo) <e = d(z,wg) <.

Again by the explicit formula 4f), if p(z,wp) is small, then % is small, so it suffices to find

e >0, & > 0 such that for all z € H

|z — wo|?

(p(z,wo) <& and ] < e’) = |w— 2| <4 (0.2)

Im(z) Im(wg
We the general estimate p(z,wg) > |Im(z) — Im(wy)| from before and deduce

|z — wo|? ,) N |z — wo|? ,
— < £ = < <e
Im(z) Im(wo) (Im(wo) + &) Im(wp) Im(z) Im(wy)

It is now clear that &’,&” > 0 exist such that (0.2) holds for all z € H. This finishes the proof.

(p(z,wo) <¢&” and



Exercise 4 (The hyperbolic measure). (a) For z € H we write z = 2 + iy, x,y € R, y > 0. By quoting
a result from measure and integration theory or otherwise, give a precise meaning to: the measure
on H given by du(z) = d‘z#. Show that this measure p is SLo(R)-invariant, that is, show that for all
f € C.(H) and all g € SLy(R), we have

[ tau= [ (rowin.

(b) Compute the volume with respect to u of the following set

where ¥, is defined as in Exercise 1.

1
{zem 2 > 1, |Re(2)] < 2}.

Solution. (a) To give a precise definition of p, we first recall a few definitions and general facts from
measure theory (taken form [2, ch. 3.1]). Let X be a locally compact, second countable and Haus-
dorff topological space. Let C.(X) = C.(X,R) denote the space of real-valued, compactly supported
continuous functions on X. Recall that a linear form C.(X) — R is positive, if A(f) > 0 holds for all
everywhere non-negative f € C.(X). Let B C 2% denote the Borel sigma algebra. Recall that a Radon
measure on X is a measure 4 : B — [0, +o00], which is finite on all compact subsets and inner regular
on all Borel sets B € B. The latter means that u(B) = sup {u(K) : K C B compact}. To each such
Radon measure p, one can attach a positive linear form A, defined by A, (f) = fX fdu for f € C.(X).
The Riesz representation theorem (see [2][Theorem 3.15]) asserts that the assignment p +— A, defines a
bijection between

e the set of all Radon measures on X,

e the set of all positive linear forms on C.(X).

Thus, one can (implicitly) define a measure on X by defining a positive linear form on C.(X).

We apply the above discussion to X = H. For this exercise, we denote by A : X — [0,400] the
restriction of the Lebesgue measure on R2. For f € C.(X), we define f € C.(X) by?

We define
A:Co(X)—=R, by A(f) ;:/ fdA.
X

It is clear that A is a well-defined, positive linear form on C.(X).

Definition 1. The hyperbolic measure p is the unique Radon measure on X = H corresponding to the
linear form A defined as above, via the Riesz representation theorem.

Now we prove the invariance. Let g € SLo(R). Let ¥, be as in Exercise 2. It defines a C°-
diffeomorphism on H. Write DU (z) : C — C for the derivative of ¥, at the point z € H. This
is an invertible R-linear map. Its determinant is

det (DU, (2)) = (¥, (2) . (0.3)

Vy(z+h)—Ty(
h

where, on the right, the derivative (¥,)’(z) = limcxsp_0 2 ¢ C* is the complex derivative.

We compute that

(W = g o= (0 5): 0.0

2There’s no relation to the Fourier transform here, but the notation seemed typographically convenient.



We claim that

——

FoW,(z) = f(¥y(2))|det (DW,(2))| for all z € H. (0.5)

Granting (0.5) and transformation formula for integrals (change of variables theorem, see [2, Thm 2.16])
we deduce that, for every f € C.(X),

/X (foWy)dpu=A(foW,) by definition of p

—

foW,(z)dA(z) by definition of A

(Wy(2))[ det (DWy(2))[dA(2) by (0.5)

Il
)

=)

(w)dA(w) by the transformation theorem and ¥,(X) =X

I
=
=

by definition of A

by definition of p,

|
=
U
=

X

which is the desired.

(b) We have

{z €eH,|z| > 1,|Re(2)| < 1/2} = {z € H,Im(z) > /1 — Re(2)?,-1/2 < Re(z) < 1/2}.

1/2  poo 1 1/2 1 T
— dy dz = / —dr = -
—1/2 /\/1_962 y? 12 V1 —2? 3
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