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Solutions — week 8

Exercise 1. Closed subschemes.

(1) Let X be a scheme. Let Z be a quasi-coherent ideal sheaf. Let
Z = supp(Ox/Z). Denote by ¢ : Z — X the inclusion. Show that
(Z,1*Ox/I) is a scheme. In what follows, V(Z) denotes the above
associated scheme.

Hint: This is a local question. So using that I is quasi-coherent you
can reduce to the case where X is affine and I correspond to an
ideal.

(2) Show that V(Z) is a closed subscheme of X.

(3) Show that

{Quasi-coherent ideals of Ox} +— {Closed subschemes of X}

sending Z to V(Z) is a one-to-one correspondence.
(4) Let Spec(A) be an affine scheme. Show that

{Ideals of A} <— {Closed subschemes of Spec(A)}

sending I +— (Spec(A/I) — Spec(A)) is a one-to-one correspon-
dence.

Hint: You may use the equivalence of categories between quasi-coherent
sheaves of Ogpec(ay-modules and A-modules. For a proof which does
not use this fact, see the solution of exercise 5, week 6.

Exercise 2. Intersection of affine schemes. Let X be a scheme and U,V C
X be open affine sub-schemes.

(1) Show that if X is separated then U NV is affine.
Hint: Show that UNV 2 X xxxx (U x V).

(2) Show that U NV is not necessarily affine if X is not separated.
Hint: remember this open of an affine which is not affine? Play with
this.

Solution key. For the first point, the claim follows from the Hint because
the intersection is realized has a closed subscheme of an affine scheme. For
the second point, one can take the affine plane with two origins. O

Exercise 3. A map from a proper scheme to a separated scheme is closed.
Let f: X — Y be a map of S-schemes. Suppose that Y — S is separated.
(1) Show that the graph (id, f) =T'y: X = X xgY is a closed immer-
sion.
(2) Let Z C X a closed subscheme proper over S. Show that f; is
closed.
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Solution key. The first point follows because

x—1 Ly

| |a

XxgY 2y wgy
is a pullback square. The second claim follows because Z — Z xgY — Y
is closed, the first map being closed by the first point and the second map
being closed by universal closedness of Z — S.

O

Remark. This fact is analogue to the topological result that a continuous
map from a compact topological space to a Hausdorff space is always closed.

Exercise 4. Morphisms into separated schemes. Let S be a scheme. Let
X — S and Y — S be S-schemes. Suppose that X is reduced and ¥ — S
separated. Show that two morphisms of S-schemes

fl)fQ: X =Y

that coincide an open dense subset of X are equal.
Give counter-examples if one of the hypotheses is dropped.

Solution key. Let Z be the scheme where f; = fy i.e. the pullback

7 fi=f2 %
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Because Y is separated Z is closed in X. Because of the assumption, Z = X
topologically, but then schematically because X is reduced.

We provide a counter-example if X is not reduced. Consider the two k-
algebras maps (k being a field say)

klz] = klz,y]/ (zy, y°)

sending x to « and x + y respectively. The induced maps on Spec agree on
D(z) which is dense. O

Remark. This fact is analogue to the topological result that if two con-
tinuous morphisms to a Hausdorff space agree on a open dense then they
actually agree everywhere.

Exercise 5. Generically finite morphisms.

(1) Let k be a field. If & — A is finite, show that every prime of A is
maximal.

Let f: X — Y be a dominant morphism between integral schemes.



(2) If f is finite, show that dim(X) = dim(Y").
Hint: reduce to the affine case. Then use going up and that the map
is surjective. Use point (1) to deduce that if A — B is finite and the
preimage of two primes in B is the same in A, then the two primes
are not included in one another.

(3) If f is finite type and K(Y) C K(X) is a finite extension of fields,
show that there exists an non-empty open U C Y such that f: f~1(U) —
U is a finite morphism.
Hint: first prove the case where both X and Y are affine and then
battle to use this case to conclude.

Solution key. (1) Because A is a finite dimensional k-vector space, it
is Noetherian and Artinian. Let J be the Jacobson radical of A.
Because of the Artinian hypothesis, J* = J"*! for some n. Then by
Nakayama J"™ = 0. It implies that the Jacobson radical is equal to
the radical.

Also, A has a finite number of maximal ideals. Indeed if not
say (m;) is an infinite list of distinct maximal ideals. Then by
the Artinian property, m; N---Nm, = my; N--- N m,4;. But then
my---m, C my41, a contradiction (see a similar argument below).
Say mq,...,m, are the maximal ideals.

If p is prime, then my N ---Nm, C J C p. If for all m; we have
m; € p, then we have elements x; € m; € p. But then z;---z, €p a
contradiction.

(2) The dimension is equal to the one of a dense open. So we can
reduce to the affine case. Now, let A — B be finite between integral
domains. Let pg C - -+ C p, a maximal chain of primes in A, meaning
that there is no prime lying in between those. Because the map is
finite, the map on Spec is surjective so we have qqg lying over py. By
going up we can lift to a chain in B. We now argue that we can
not fit any more primes in the above list. If so, we would have two
primes q C q’ with the same image in Spec(A). But by the previous
point if two primes are in the same fiber, because the fiber has only
maximal ideals, we see that q = ¢'.

(3) Note that without loss of generality Y is affine. We first begin by
supposing that X is also affine. We are then in the situation of a
finite type map A — B between integral domains, such that this
map induces a finite extension of fields at the fields of fractions. Say
that by,...,b, generates B as an A-algebra. By hypothesis, there
exists polynomials f; € Frac(A)[t] such that f;(b;) = 0. Therefore
there exist a non-zero element g € A, namely the product of the
denominators of each coefficients of the polynomials f;, such that
b1,...,by, are integral over A,. This implies that A, — B, is finite.

Now we show the general case. As f: X — Y is finite type over
an affine scheme, there exists a finite covering by affine schemes
X; of X. By the preceding case, there exists U; C Y such that
f~YU;) N X; — Uj is finite. We may replace Y by the intersection
of the U;’s and also suppose that it is affine. With this reduction,
we are now in the following situation: we have a covering X; of X



such that X; — Y is finite. Let V be the intersection of the X;’s.
Say that A — B is the finite ring map corresponding to X; — Y.
Say that 0 # b € B is such that D(b) C V. Note that as b is integral
over A, there is a polynomnial with non zero-constant coefficient
S g ait’ € Aft] such that f(b) = 0. Therefore,

b (zn: aibi1> = —ayg
=1

Therefore, there is a non-zero element b’ € B such that a := bl €
A. Tt implies that f~1(D(a)) ¢ D(b) € V C X;. Therefore
f: f~YD(a)) — D(a) is finite.

O

Exercises 6, 7, and 8 are purely about the underlying topology of the schemes
in question.

Exercise 6. Projection from affine spaces. Let R be a ring.

(1)

(2)

Show that
m: Spec(R[t]) — Spec(R)

is open. More precisely, if f = 3" a;t* show that
T (D(f(1))) = |J D(a).

Let g(t) € R[t] be a monic polynomial and f(t) € R[t]. Remark that
R[t]/g(t) is a free R-module of rank deg(g). Let x(X) = > /' r X"

be the characteristic polynomial of the multiplication by f(t) on
R[t]/g(t). Show that

n—1

T(D(f)NV(g)) = |J D(ra).

%

Solution key. (1) Let p € Spec(R). Then p € n(D(f(t))) if and only if

(2)

k(p)[t] ¢ # 0 if and only if f(t) # 0 in k(p)[¢] if and only if there is
some 7 such that a; & p.
Let p = qN R with g € D(f)NV(g) in the image. So we have a map
k(p)[t]/(g(t)) — k(q). Note the following fact: by Cayley-Hamilton
f is nilpotent in k(p)[t]/(g(t)) if and only if p € V(ro,...,7n—1).
Note also that f # 0 in k(q) because q € D(f). So f is not
nilpotent in k(p)[t]/(g(t)) and therefore p € (J;2, D(r).
Reciprocally if p € [J; D(r;), the by the above argument f is
not nilpotent in k(p)[t]/(g(t)). Therefore there is some q ¢ f in
k(p)[t]/(g(t)) meaning that g € D(f) NV (g), which is therefore sent
to p.
U
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Exercise 7. Chevalley’s theorem. Let X be a Noetherian topological space.
A subset T C X is called constructible if it can be written as a finite union
of sets of the form U N V¢ where U and V are open sets.

(1)

(2)

3)

Show that if X = Spec(R) for a Noetherian ring R, a subset is
constructible if and only if it can be written as a finite union of
subsets of the form D(f) NV (g1,...,9m) with f,g1,...,9m € R.
Show using exercise 6 that

m: Spec(R[t]) — Spec(R)

sends constructible subsets to construtible subsets.

Hint: Show by induction on ), deg(g;) that if f,g1,...,9m € R[t]
are polynomials, the image of D(f) NV (g1,...,gm) is constructible.
To conduct the induction step, consider o the leading coefficient of
g1. Break down the study on the open and closed D(«) and V(a) to
reduce the sum of the degrees.

Deduce Chevalley’s theorem. Let f: X — Y be a finite type mor-
phism between Noetherian schemes. Then f sends constructible sub-
sets to constructible subsets.

Solution key. (2) Note that we already know two cases. Namely the case

D(f) and the case D(f) NV (g) where g is monic. We proceed by
induction on the sum of the degrees of g; — also we order them such
that they have increasing degrees. Let ¢ be the dominant coefficient
of g1. We have

Spec(R[t]) = Spec(R/c[t]) L Spec(R.[t]).

In the first the image of g is of degree striclty less. So induction
goes.

Also, note that g; is monic in Spec(R.[t]). If n = 1, we are in an
already dealt situation. If not let

gh = go —t27N(d /o)

where ¢’ is the leading coefficient of g;. Then

D(f)NV(g1,92:---9n) = D(f) NV (91,95 - gn)-

But now the sum of degrees of the list lowers giving the claim by
induction.
We can reduce to the affine case where we can reduce to

R — R[t1,...,ty,] = S

where the last map is surjective. The first arow induces on Spec a
map which preserves constructibility by the above and the second
also because it is a closed immersion

O

Remark. In general the topological image of a morphism of schemes can
fail to be open or closed but in cases where Chevalley’s theorem applies, it

IThe generalization to non-Noetherian settings requires more careful definitions, but
once these definitions are addressed the proof is the same.
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tells that it still not too far from it and manageable. In particular one can
endow the image with a scheme structure.

Exercise 8. An application of Chevalley’s theorem. Let f: X — Y be a
finite type dominant map between Noetherian schemes with Y irreducible.
Use Chevalley’s theorem to show that the topological image f(X) contains
an open set.

Solution key. The image being dense contains the generic point of Y, there-
fore, ny € UNZ C f(X) because the topological image f(X) is constructible,
for some open U and closed Z of Y. But if ny € Z then we see that Z =Y

O



