

Exercise to hand in. *Twistor* \mathbb{P}^1 . (Due Sunday November 3, 18:00) Please write your solution in TeX .

Consider the following graded \mathbb{R} -algebra map $\sigma: \mathbb{C}[x, y] \rightarrow \mathbb{C}[x, y]$

$$f(x, y) \mapsto \overline{f}(-y, x),$$

where $\overline{(-)}$ means applying the complex conjugation to the coefficients of the polynomial. Denote by $\tau = \text{Proj}(\sigma)$ the induced \mathbb{R} -scheme morphism of $\mathbb{P}_{\mathbb{C}}^1$.

(1) Recall that we can identify the \mathbb{C} -rational points $\mathbb{P}_{\mathbb{C}}^1(\mathbb{C})$ as equivalence classes $[\alpha, \beta]$ of elements of $\mathbb{C}^2 \setminus 0$. We can also identify those with $\mathbb{C} \cup \infty$ with $[1, 0] \mapsto \infty$ and $[z, 1] \mapsto z$.

Describe τ on \mathbb{C} -rational points

$$\tau: \mathbb{P}_{\mathbb{C}}^1(\mathbb{C}) \rightarrow \mathbb{P}_{\mathbb{C}}^1(\mathbb{C})$$

with these two identifications of $\mathbb{P}_{\mathbb{C}}^1(\mathbb{C})$.

(2) Show that $\tau^2 = \text{id}$ schematically.

We now consider

$$\mathbb{C}[x, y]^{\sigma} = \{f(x, y) \in \mathbb{C}[x, y] \mid f(x, y) = \sigma(f(x, y)) = \overline{f}(-y, x)\}$$

the graded \mathbb{R} -algebra of σ -fixed points. We define the \mathbb{R} -scheme

$$\mathbb{P}_{\text{tw}}^1 = \text{Proj}(\mathbb{C}[x, y]^{\sigma})$$

and call it the *twistor* \mathbb{P}^1 .

(3) Show that

$$\mathbb{C}[x, y]^{\sigma} = \mathbb{R}[ixy, x^2 + y^2, i(x^2 - y^2)].$$

(4) Show that $\mathbb{P}_{\text{tw}}^1 \times_{\text{Spec}(\mathbb{R})} \text{Spec}(\mathbb{C}) \cong \mathbb{P}_{\mathbb{C}}^1$.
 (5) Identify the kernel of the 2-homogeneous map of \mathbb{R} -algebras

$$\mathbb{R}[t_1, t_2, t_3] \rightarrow \mathbb{C}[x, y]^{\sigma}$$

sending $t_1 \mapsto 2ixy$, $t_2 \mapsto x^2 + y^2$, $t_3 \mapsto i(x^2 - y^2)$.

(6) Show that there is no \mathbb{R} -rational points of the twistor \mathbb{P}^1 , *i.e.*

$$\mathbb{P}_{\text{tw}}^1(\mathbb{R}) = \emptyset.$$

Remark. Some explanations and motivation.

(1) The map $\tau: \mathbb{P}_{\mathbb{C}}^1 \rightarrow \mathbb{P}_{\mathbb{C}}^1$ from the first part of the exercise is what we call a *descent data*. Like saying that a sheaf can be described as a collection of sheaves on opens sets which forms a covering with isomorphisms on intersections satisfying the cocycle condition, here we specify an \mathbb{R} scheme as a \mathbb{C} -scheme with some special involution. Here the *cover* taken is the Galois cover $\text{Spec}(\mathbb{C}) \rightarrow \text{Spec}(\mathbb{R})$ and the involution property has to do with the fact that the Galois group $\text{Gal}(\mathbb{C}/\mathbb{R})$ is of order 2.

(2) The *descended* \mathbb{R} -scheme that we get is a \mathbb{R} -conic (curve described by a degree 2 equation in $\mathbb{P}_{\mathbb{R}}^2$) which has the strange property that it has no \mathbb{R} -points. In general if k is a field and $C \subset \mathbb{P}_k^2$ is a regular conic with admits at least one k -rational point (which here is not the case for \mathbb{P}_{tw}^1), then it is actually isomorphic to \mathbb{P}_k^1 . This can be understood *via* the nice method of stereographic projection. See here for a nice explanation of this method.

(3) The \mathbb{R} -scheme \mathbb{P}_{tw}^1 appears in cohomology theory. Namely one can show that vector bundles on this scheme are intimately related to *Hodge structures*. Singular cohomology groups of projective varieties admits Hodge structures, that's why we care about this kind of linear algebraic objects.

Solution key. (1) (*Claudio*) Recall that the \mathbb{C} -rational points of $\mathbb{P}_{\mathbb{C}}^1$ given by the homogeneous ideals $(\beta x - \alpha y)$ are identified with elements $[\alpha : \beta]$ of the classical projective space. This was part of the last homework exercise, to identify \mathbb{C} -rational points we use exercise 4 of sheet 3 and the local charts $D_+(x)$ and $D_+(y)$ of $\mathbb{P}_{\mathbb{C}}^1 = \text{Proj}(\mathbb{C}[x, y])$. Let's see where $\tau : \mathbb{P}_{\mathbb{C}}^1 \rightarrow \mathbb{P}_{\mathbb{C}}^1$ takes $(\beta x - \alpha y)$. Recall that

$$\tau((\beta x - \alpha y)) = \sigma^{-1}((\beta x - \alpha y)) = (\bar{\beta}y + \bar{\alpha}x)$$

where we used that $\sigma : \mathbb{C}[x, y] \rightarrow \mathbb{C}[x, y]$ is invertible with inverse given by

$$\sigma^{-1} : \mathbb{C}[x, y] \rightarrow \mathbb{C}[x, y] : f(x, y) \mapsto \bar{f}(y, -x).$$

Hence $[\alpha : \beta]$ is sent to $[\bar{\beta} : -\bar{\alpha}]$ under the corresponding identifications which furthermore means that τ carries $[1 : 0]$ to $[0 : -1] = [0 : 1]$ and thus $\infty \mapsto 0$, $[z : 1]$ is carried to $[1 : -\bar{z}] = [-\frac{1}{\bar{z}} : 1]$ if $z \neq 0$ and thus $z \mapsto -\frac{1}{\bar{z}}$ and finally $[0 : 1]$ is carried to $[1 : 0]$ which implies that $0 \mapsto \infty$.

This concludes the first part of the exercise.

(2) (*Céline*) Notice that $\sigma^2(x) = -x$. Hence, $\tau^2|_{D_+(x)} : D_+(x) \rightarrow D_+(x)$. Recall that $D_+(x) \cong \text{Spec}(\mathbb{C}[\frac{y}{x}])$. Now, since we have an equivalence of categories between rings and affine schemes, the map $\tau^2 : \text{Spec}(\mathbb{C}[\frac{y}{x}]) \rightarrow \text{Spec}(\mathbb{C}[\frac{y}{x}])$ corresponds to a ring homomorphism $\mathbb{C}[\frac{y}{x}] \rightarrow \mathbb{C}[\frac{y}{x}]$. We find that this map is

$$\begin{aligned} \mathbb{C}[\frac{y}{x}] &\longrightarrow \mathbb{C}[\frac{y}{x}] \\ \frac{y}{x} &\longmapsto \frac{\sigma^2(y)}{\sigma^2(x)} = \frac{-y}{-x} = \frac{y}{x} \end{aligned}$$

which is the identity. Thus, $\tau^2|_{D_+(x)} : D_+(x) \rightarrow D_+(x)$ is the identity. Similarly, $\tau^2|_{D_+(y)} : D_+(y) \rightarrow D_+(y)$ is the identity. Hence, by the gluing property, $\tau^2 = \text{id}$.

(3) (*Benoît*) We want to show that the \mathbb{R} -algebra of fixed points $\mathbb{C}[x, y]^{\sigma}$ is given by $\mathbb{R}[ixy, x^2 + y^2, i(x^2 - y^2)]$. Denote this ring by A , and note that as an \mathbb{R} -algebra, $A = (1, ixy, x^2 + y^2, i(x^2 - y^2))$. Clearly, all four generators of A are fixed by σ , so that we only have to show that $\mathbb{C}[x, y]^{\sigma} \subseteq A$. Let $f \in \mathbb{C}[x, y]^{\sigma}$, if f is constant, $f = \bar{f}$ by assumption, so we are done. If f is not constant, we may assume that it is homogeneous. As seen already, if f is of degree d , we have

$\sigma^2(f) = (-1)^d f$, so d is necessarily even. We first show the claim for f of the form $ax^{2n} + \bar{a}y^{2n}$ by induction. When $n = 0$, f is constant and we are done, and when $n = 1$, we have that $f = \operatorname{Re}(a)(x^2 + y^2) + \operatorname{Im}(a)i(x^2 - y^2)$ so that $f \in A$. Now suppose the claim holds for even degree lower than $2n$, and note that :

$$ax^{2n} + \bar{a}y^{2n} - (x^2 + y^2)(ax^{2n-2} + \bar{a}y^{2n-2}) = -ax^{2n-2}y^2 - \bar{a}x^2y^{2n-2} = (ixy)^2(ax^{2n-4} + \bar{a}y^{2n-4}),$$

so that indeed $f \in A$ by induction hypothesis. Now returning to the general case, note that for f any homogeneous element of degree $2n$, we can write :

$$f(x, y) = \sum_{i+j=2n} a_{i,j}x^i y^j = a_{2n,0}x^{2n} + a_{0,2n}y^{2n} - ixy \sum_{\substack{i+j=2n \\ i>0, j>0}} ia_{i,j}x^{i-1}y^{j-1} =: g(x, y) - ixy\tilde{f}(x, y).$$

As f is a fixed point, we see that $a_{2n,0} = \overline{a_{0,2n}}$ so that $g \in A$ by previous part. Moreover, $\tilde{f} = -\frac{f-g}{ixy}$ is also fixed by sigma, so that it is a form of even degree $\leq 2n-2$. Iterating this process, we conclude that f is indeed in A .

- (4) (*Céline*) Notice that, from the previous point, $\mathbb{C}[x, y]^\sigma$ is an \mathbb{R} -algebra. Moreover, $\mathbb{C} \cong \mathbb{R}[i]$ is an \mathbb{N} -graded ring such that the set of homogeneous elements of degree 0 of \mathbb{C} is an \mathbb{R} -algebra. By exercise 2 of exercise sheet 5, we have that $\operatorname{tw} \times_{\operatorname{Spec}(\mathbb{R})} \operatorname{Spec}(\mathbb{C}) \cong \operatorname{Proj}(\mathbb{C}[x, y]^\sigma \otimes_{\mathbb{R}} \mathbb{C})$. Since $\mathbb{C}[x, y]^\sigma = \mathbb{R}[ixy, x^2 + y^2, i(x^2 - y^2)]$, we have that $\mathbb{C}[x, y]^\sigma \otimes_{\mathbb{R}} \mathbb{C} \cong \mathbb{C}[ixy, x^2 + y^2, i(x^2 - y^2)] = \mathbb{C}[x^2, y^2, xy]$. Then, using exercise 5 of exercise sheet 4, we find that $\operatorname{Proj}(\mathbb{C}[x^2, y^2, xy]) \cong \operatorname{Proj}(\mathbb{C}[x, y]) = \mathbb{P}_{\mathbb{C}}^1$.
- (5) (*Benoît*) Let ψ be the 2-homogeneous map of \mathbb{R} -algebras $\mathbb{R}[t_1, t_2, t_3] \rightarrow \mathbb{C}[x, y]^\sigma$ sending

$$t_1 \mapsto 2ixy, \quad t_2 \mapsto x^2 + y^2, \quad t_3 \mapsto i(x^2 - y^2).$$

By point (3), ψ is clearly surjective, let us identify its kernel. We see that $\ker \psi$ contains the principal ideal $I = (f) := (t_1^2 + t_2^2 + t_3^2)$. Moreover, I is prime, as for example $\operatorname{ev}_{t_2=1, t_3=0}(f) = t_1^2 + 1$ is irreducible, implying that f itself is irreducible. To show that $\ker \psi = I$, we use an argument dimension. Indeed, we have by a result of the course that $\operatorname{ht}(\ker \psi) = \dim(\mathbb{R}[t_1, t_2, t_3]) - \dim(\mathbb{C}[x, y]^\sigma)$ by surjectivity. To compute $\dim(\mathbb{C}[x, y]^\sigma)$, we use the following fact : *Let $k \subseteq k'$ be an extension of fields, and A a finitely generated k algebra. Then*

$$\dim(A \otimes_k k') = \dim(A).$$

Proof. Let $d = \dim(A)$, By the Noether normalization lemma, there exists an integral extension $k[x_1, \dots, x_d] \hookrightarrow A$ for some x_1, \dots, x_d . Tensoring with k' preserves injectivity (as k' is free, it is in particular flat). Moreover, the extension $k'[x_1, \dots, x_d] \hookrightarrow A \otimes_k k'$ is still integral (as it is still finite). We deduce that $\dim(A \otimes_k k') = \dim(k'[x_1, \dots, x_d]) = d$ as wanted. \square

By the lemma, the dimension $\mathbb{C}[x, y]^\sigma$ is the same as the dimension of $\mathbb{C}[x^2, xy, y^2]$, which is 2, since it admits $\mathbb{C}[x^2, y^2]$ as a Noether

normalization for example. Therefore, $\text{ht}(\ker \psi) = 1$, which implies that $\ker \psi = I$.

(6) (*Benoît*) We want to show that the twistor has no \mathbb{R} -rational points. Note that by point (3), we have induced map of \mathbb{R} -schemes $\text{tw} \rightarrow \mathbb{P}_{\mathbb{R}}^2$ (by exercise 5.4 sheet 4 for example). Moreover, this is a closed embedding onto $V_+(t_1^2 + t_2^3 + t_3^2)$. By way of contradiction, suppose we have an \mathbb{R} -point in the twistor, this gives an \mathbb{R} -point of $\mathbb{P}_{\mathbb{R}}^2$ via this map. Now $\mathbb{P}_{\mathbb{R}}^2$ is covered by $D_+(t_i)$, so without loss generality, let us assume our \mathbb{R} -point lands in $D_+(t_3)$. Therefore, it corresponds to a prime ideal $\mathfrak{p} \in \text{Spec}(\mathbb{R}[u, v])$ which contains $(u^2 + v^2 + 1)$, where $u = \frac{t_1}{t_3}, v = \frac{t_2}{t_3}$. Then by hypothesis on \mathfrak{p} , we have an isomorphism

$$\left(\mathbb{R}[u, v] \big/ \mathfrak{p} \right)_{\mathfrak{p}} \cong \mathbb{R},$$

but this is a contradiction, as the image $a, b \in \mathbb{R}$ of u, v must satisfy $a^2 + b^2 = 1$.

□