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Solutions

Exercise 1. Let φ : A → B be a ring map, and let f : Spec(B) → Spec(A)
be the associated morphism of schemes.

(1) Let nil(A) denote the nilpotent elements in A. Use the equality

nil(A) =
⋂

p∈Spec(A)

p

to show, as a consequence of the definitions, that D(a) = ∅ if and
only a is nilpotent.

(2) Show that if φ is injective, then f has dense topological image.
(3) Further assume that A is reduced. Show that, if f has dense topo-

logical image, then φ is injective.

Solution. (1) Fix a ∈ A By definition, D(a) consists of the primes in A
that do not contain a. Now, if a ∈ nil(A), then a ∈ p for every p, and
hence D(a) = ∅. Conversely, assume that a is not nilpotent. Then,
by the description of nil(A) provided, there exists a prime p such
that a /∈ p. In particular, p ∈ D(a) holds, and the claim follows.

(2) Let a ∈ A such that D(a) is not-empty, meaning that a is not nilpo-
tent. Because φ is injective, φ(a) is also not nilpotent. Therefore
D(φ(a)) = f−1(D(a)) ̸= ∅, which concludes.

(3) Let a ∈ ker(φ). Therefore f−1(D(a)) = ∅. Because we supposed that
the image is dense, the only possibility is that D(a) = ∅, meaning
that a is nilpotent. Because we supposed that A is reduced, we
conclude that φ is injective, a being forced to be zero.

□
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Exercise 2. Let k be an algebraically closed field. Let R = k[x, y, z]/(xy−
z2) and X = Spec(R). In the following, the notation x, etc., denotes the
image of x, etc., in the quotient ring k[x, y, z]/(xy − z2).
In the exercise, you can freely use the following formulation of the Jacobian
criterion:
Let A = k[x1, . . . , xn]/(f). Denote by ∂if the derivative of f with respect to
xi. Then

Spec(A) is regular ⇐⇒ V (f, ∂1f, · · · , ∂nf) = ∅.

Moreover the closed subset V (f, ∂1f, · · · , ∂nf) consists exactly of the non-
regular points of Spec(A).

(1) Is X regular? Answer this question using the Jacobian criterion and
list (if any) all the non-regular k-points.

(2) Prove that X is normal.
In the following, identify R with k[u2, v2, uv] under the identifica-
tion x 7→ u2, y 7→ v2, z 7→ uv, where u and v are variables. You
can use this identification without proof. In the following, we write
A2
k = Spec(k[u, v]). Let f : A2

k → X be the morphism given by the
inclusion k[u2, v2, uv] ↪→ k[u, v].

(3) Show that f is a finite morphism.
(4) Compute the fibers of f over the points (u2, v2, uv) and (u2−1, v2−

1, uv− 1). For each of them, determine whether the fiber is reduced
and provide its cardinality.

Warning: In the following, some of the answers may depend on char(k).
Watch out!

Solution. In the following, we freely use that k[x, y, z]/(xy− z2) is a domain
and a finitely generated k-algebra. In particular, additivity of height and
dimension holds, and so does Serre’s criterion for normality.

(1) X is not regular. Since k is algebraically closed, we can apply the
Jacobian criterion to determine all non-regular k-points. The gra-
dient of the polynomial xy − z2 is ⟨y, x,−2z⟩. The common zeroes
of xy − z2 and ⟨y, x,−2z⟩ consist of only the point with Cartesian
coordinates (0, 0, 0).

(2) We apply Serre’s criterion for normality. By the Jacobian crite-
rion, we know that the non-regular locus is the closed set V (xy −
z2, y, x,−2z), which by the previous part only contains a closed
point, which, by additivity, corresponds to a prime of height 2. In
particular, X has the property R1. To conclude, we only need to
check X satisfies the S2 property. At a regular point of codimension
k we have a regular sequence of length exactly k. Thus, we only
need to check the S2 property at the only singular point. The point
(x, y, z) (which corresponds to the Cartesian point (0, 0, 0)) corre-
sponds to a prime of height 2. Then, we consider x, y as a regular
sequence, and we conclude that X is normal.

Alternatively, we include a direct approach as well. By worksheet
6, it is enough to show that the domain R is integrally closed. We
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use the identification with k[u2, v2, uv]. Namely, the ring is the sub-
ring of k[u, v] whose elements are sums of monomials of even degree.
Now, we use that k[u, v] is integrally closed (this fact was discussed
in class). Thus, any element that is integral over R is an element of
k[u, v]. But any such element s(u, v) can be also written as a ratio
of polynomials p(u, v)/q(u, v), where all the monomials in p and q
have even degree. Then, one can deduce that all the monomials in
s(u, v) need to have even degree. Indeed s(u, v)q(u, v) = p(u, v) so
if by contradiction there is a monomial of odd degree in s(u, v), as a
monomial of odd degree times a monomial of even degree is of odd
degree, we would get a contradiction.

(3) The inclusion realizes k[u, v] as a k[u2, v2, uv]-module. We claim that
the elements {1, u, v} generate k[u, v] as a k[u2, v2, uv]-module. If so,
then the desired assertion follows from the claim by the definition of
a finite morphism. To show the claim, it suffices to show that every
monomial in u and v is generated over k[u2, v2, uv] by 1, u, v. This
is clear by direct inspection.

(4) By definition of fiber and the fact that localization commutes with
quotients, we need to compute the following tensor products:
(a) k[u, v]⊗k[u2,v2,uv]k[u

2, v2, uv]/(u2, v2, uv) ≃ k[u, v]/(u2, v2, uv) =

k[u, v]/(u, v)2. Thus, the desired fiber is Spec(k[u, v]/(u, v)2).
In particular, the underlying topological space of the fiber is
the same space as the one obtained by quotienting by the max-
imal ideal (u, v). In particular, the scheme we obtain consists
of only one point (whose Cartesian coordinates are (0, 0)), and
such scheme is not reduced; and

(b) k[u, v]⊗k[u2,v2,uv] k[u
2, v2, uv]/(u2 − 1, v2 − 1, uv − 1) ≃

k[u, v]/(u2 − 1, v2 − 1, uv − 1). In this ring, u and v (i.e., the
images of u, v in the quotient ring) are units, so, by taking linear
combinations of the generators and factoring out the units u or
v, we see that the relation u = v is satisfied. But then, it
is equivalent to quotienting by the product ideal (u − 1, v −
1)(u + 1, v + 1). In particular, if the characteristic of k is not
2, the underlying scheme is reduced and it is the disjoint union
of two closed points, corresponding to points with Cartesian
coordinates (1, 1) and (−1,−1). If the characteristic is 2, we
obtain one non-reduced point.
Alternatively, we can also argue by considering the following
chain of isomorphisms:

k[u, v]

(uv − 1)
/(uv − 1, u2 − 1, v2 − 1) ∼=

k[u, 1/u]

(u2 − 1, 1/u2 − 1)
∼=

k[u]

(u2 − 1)
.

□
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Exercise 3. Let k be an algebraically closed field. Let R = k[x, y, z]/(xy−
z2) and X = Spec(R). In the following, the notation x, etc., denotes the
image of x, etc., in the quotient ring k[x, y, z]/(xy − z2).
In the following, you may (it is not necessary, but you may find it useful
for the computations) identify R with k[u2, v2, uv] under the identification
x 7→ u2, y 7→ y2, z 7→ uv where u and v are variables. You can use this
identification without proof.

(1) Show that the ideal (x, z) of R is prime in R and that Spec(R/(x, z))
is isomorphic to A1

k.
(2) Let P be the prime Weil divisor corresponding to (x, z) and let D

be the Weil divisor corresponding to the Cartier divisor (x). Show
that D = 2 · P .
Note: You can utilize without proof that X is normal, and, in
particular, regular in codimension 1 (cf., Exercise 2). In particular,
the theories of Weil and Cartier divisors are well posed.

Solution. (1) To show primality, we argue that the quotient is an integral
domain. By the third isomorphism theorem, we have R/(x, z) ≃
k[x, y, z]/(x, z) ≃ k[y], which is an integral domain. Furthermore,
this is a polynomial ring in one variable, so also the second claim
follows.

(2) For ease with computations, we utilize the identification provided as
hint. First, we observe that (u2) is a principal ideal, so we indeed
obtain a Cartier divisor. Also, observe that, if u2 = 0, then we
have (uv)2 = u2v2 = 0. Thus, we have V (u2) = V (u2, uv). In
particular, it follows that D is an integral multiple of P , since the
only codimension 1 point where the regular function u2 vanishes is
the generic point of P . To obtain the coefficient of proportionality,
we need to compute the order of vanishing at such generic point.
Thus, we need to localize our algebra at the prime (u2, uv). We
observe that v2 is in the complement of (u2, uv) and thus is a unit
in this localization. Thus, the ratio uv/v2 = u/v is an element in
this localization. Furthermore, we have u2 = (u/v) · uv. Thus, in
this localization, the ideals (u2, uv) and (uv) are the same ideal. By
assumption, we know that X is regular at the generic point of P .
In particular, we obtain a DVR with maximal ideal (u2, uv) = (uv).
Thus, uv is a local uniformizer of this DVR. Thus, we need to check
the divisibility of u2 by the local uniformizer uv. We have u2 =
(uv)2/v2, where 1/v2 is a unit. In particular, u2 vanishes of order 2
at the generic point of P , and hence D = 2 · P holds.

□
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Exercise 4. Let k be a field, set Pn
k = Proj(k[x0, x1, . . . , xn]). Recall that,

for an OPn
k
-module F and any integer m, F(m) denotes F ⊗OPn

k
OPn

k
(m).

(1) Show that for a coherent OPn
k
-module F , there is a short exact se-

quence,

0 → N → E → F → 0,

where E is a finite direct sum of copies of OPn(l) for some l ∈ Z and
N is coherent.

(2) Recall that the canonical isomorphism of OPn
k
-modules F(m) ⊗OPn

k

OPn
k
(j) ∼= F(m+ j) makes the k-vector space⊕

j∈N
Γ(Pn,F(j))

a graded module over the graded ring ⊕
j∈N

Γ(Pn
k ,OPn

k
(j)) ∼= k[x0, x1, . . . , xn].

Show that, when F is coherent, ⊕
j∈N

Γ(Pn
k ,F(j)) is a finitely gener-

ated module over k[x0, x1, . . . , xn].
Hint: Use part (1) to relate ⊕

j∈N
Γ(Pn,F(j)) and ⊕

j∈N
Γ(Pn, E(j)).

Solution. (1) Since OPn(1) is ample, there exists a natural number m
such that F(m) is globally generated. Recall that Γ(Pn,F(m)) is
a finite dimensional k-vector space. Choose a basis e1, e1, . . . , ed of
Γ(Pn,F(m)). Consider the OPn-linear map from a direct sum of d-
copies of OPn to F(m)), which sends the 1 ∈ Γ(Pn,OPn) of the i-th
copy to ei ∈ Γ(Pn,F(m)), for 1 ≤ i ≤ d:

d⊕
OPn → F(m).

Since F(m) is globally generated and e1, e2, . . . , ed is a k-basis of
the space of global sections of F(m), the above map is sujective;
denote the kernel by N ′. Since the kernel of a map between two
coherent sheaves is coherent, N ′ is coherent. Tensoring the resulting
exact sequence:

0 → N ′ →
d⊕
OPn → F(m) → 0,

by O(−m), we get an exact sequence:

0 → N ′ ⊗OPn O(−m) →
d⊕
OPn(−m) → F → 0.

Here, ⊗O(−m) preserves exactness asO(−m) is locally free. Since
tensor product of two coherent sheaves is coherent, N ′⊗OPn O(−m)
is coherent. Therefore, the last sequence is a desired one.

(2) Fix an exact sequence as in part (1). For each natural number j,
tensoring this exact sequence with O(j), we get an exact sequence
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of sheaves:

0 → N (j) → E(j) → F(j) → 0

The induced long exact sequence of sheaf cohomology groups yields
an exact sequence:

0 → Γ(Pn,N (j)) → Γ(Pn, E(j)) → Γ(Pn,F(j)) → H1(Pn,N (j))

Taking direct sum gives another exact sequence of graded k[x0, . . . , xn]
modules:⊕

j∈N
Γ(Pn, E(j)) →

⊕
j∈N

Γ(Pn,F(j)) →
⊕
j∈N

H1(Pn,N (j)).

By Serre’s criterion for ampleness, there exists an integer j0 such
that, for all j ≥ j0, H

1(Pn,N (j)) = 0. Since for each j, H1(Pn,N (j))
is a finite dimensional k-vector space, the k[x0, . . . , xn]-module ⊕

j∈N
H1(Pn,N (j))

is finitely generated. We claim that ⊕
j∈N

Γ(Pn, E(j)) is a finitely gen-

erated k[x0, . . . , xn]-module. Indeed, for a fixed integer m,⊕
j∈N

Γ(Pn,O(m)(j))

is isomorphic to k[x0, . . . , xn](m). Since E is a direct sum of finitely
many copies of possibly different O(k)’s and a finite direct sum of
finitely generated modules is finitely generated, ⊕

j∈N
Γ(Pn, E(j)) is

finitely generated. Now the desired finite generation follows from
the fact: given an exact sequence of modules over a noetherian ring

M ′ → M → M ′′,

if both M ′ and M ′′ are finitely generated as modules, so is M .
□
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Exercise 5. Let S,X, Y be schemes. Let f : X → Y be a map of S-schemes.
Suppose that Y → S is separated.

(1) Show that the graph map Γf defined using the universal property of
the product of S-schemes

Γf := (id, f) : X → X ×S Y

is a closed immersion.
Hint: Use that the diagonal map (id, id) : Y → Y ×S Y is a closed
immersion by definition of separatedness, and that closed immersions
are stable under pullback.

(2) Suppose now thatX is proper over S. Show that f is closed, meaning
that the underlying map of topological spaces is a closed map.

Solution. (1) We claim that

X Y

X ×S Y Y ×S Y

Γf

f

∆

f×id

is a pullback square. This is checked by universal property: a pair
of maps (a, (b, c)) going to Y and X ×S Y creating a commutating
square with the above will satisfy a = c = fb. Indeed using the def-
initions of the maps we get that commuting means (a, a) = (bf, c).
Therefore there is unique map to X that makes the diagram com-
mute, this map being b. This by definition shows that the square
is Cartesian. Now, because ∆: Y → Y ×S Y being a closed im-
mersion by separatedness, and that closed immersions are stable by
pullbacks, we conclude.

(2) As X → X×S Y → Y is closed as a composition of closed maps, the
first map being closed by the first point and the second map being
closed by universal closedness of X → S.

□
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Exercise 6. Let k be an algebraically closed field. Let X be an integral
(i.e., reduced and irreducible), regular, one dimensional projective scheme
over k and x be a closed point of X.

(1) Since the local ring OX,x is regular, the unique maximal ideal of
OX,x is generated by one element. Fix a generator, say t, of the
maximal ideal. Show that the element dOX,x/k(t) generates the stalk

(ΩX/k)x as an OX,x-module.
(2) Show that theOX,x-linear mapOX,x → (ΩX/k)x sending 1 to dOX,x/k(t)

is an isomorphism of OX,x-modules.
(3) Given g ∈ OX,x and t as above, by part (2), there is a unique h ∈

OX,x such that

dOX,x/k(g) = hdOX,x/k(t).

Denote such an h by dg/dt. Show that the map g 7→ dg/dt is a
k-linear derivation of OX,x.

(4) Show that given any other k-linear derivation δ ∈ Derk(OX,x,OX,x),
there is a unique fδ ∈ OX,x, such that for all g ∈ OX,x,

δ(g) = fδdg/dt.

Solution. (1) Denote the maximal ideal of OX,x by mx. Since x is a
closed point and k is algebraically closed, the composition

k → OX,x →
OX,x

mx

is an isomorphism. Therefore we know that the canonical map

mx

m2
x

→ (ΩX/k)x ⊗
OX,x

mx
,

sending a (modm2
x) to dOX,x/k(a) (modmx) is an isomorphism. So

dOX,x/k(t) (modmx) generates (ΩX/k)x/mx(ΩX/k)x. Since X is fi-

nite type over k, the OX -module ΩX/k is coherent. Thus (ΩX/k)x is
a finitely generated module over the noetherian ring OX,x. Thus by
Nakayama’s lemma, dOX,x/k(t) generates (ΩX/k)x.

(2) The given map is surjective by part (1). Denote the kernel of this
map by I. So (ΩX/k)x as an OX,x-module is isomorphic to OX,x/I.
On the other hand, since X is regular, ΩX/k is locally free of rank
one. So (ΩX/k)x is a free OX,x-module of rank one. In particular,
(ΩX/k)x is a torsion free OX,x-module. Therefore I = 0. So the
given map is an isomorphism.

(3) Note that the following diagram commutes:

OX,x (ΩX/k)x

OX,x

d(t)

dg/dt dOX,x/k
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where the top arrow is multiplication by dOX,x/k(t). Since by part

(2), the top arrow is an isomorphism of OX,x-modules, the top left
copy of OX,x serves as the module of Kähler differentials with the
universal k-linear derivation d/dt, where d/dt(g) = dg/dt.

(4) By part (2), OX,x is the module of Kähler differentials of the k-
algebra OX,x, and, by part (3), d/dt serves as universal derivation.
So, given any such derivation δ, there exists a unique OX,x-linear
endomorphism of OX,x, say ϕ, such that δ = ϕd/dt. But any such ϕ
is multiplication by fδ, where fδ = ϕ(1).

□


