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Solutions — week 1

Exercise 1. Refresh
The goal of this exercise is to refresh some notions of commutative algebra as

well as their interpretation in algebraic geometry. Let k be an algebraically
closed field.

(1) Recall (your definition) of A} and that the polynomnial algebra
klx1,...,zy] is to be interpreted as functions on this space.

(2) A finite type k-algebra A is a k-algebra who admits a surjection
fk[x1...,z,] = A. The algebra A is to be interpreted as functions
on which space 7 What is the interpretation of the ideal ker(f) 7

(3) Recall what the localization of a ring on a multiplicative subset is.
Recall that this is an exact functor. Recall the important example
of the localization at a prime ideal of a ring.

(4) Let A be a finite type k-algebra. Let a € A. Recall the localization
A, (so with respect to the multiplicative subset {a"},>0). The ring
A, is to be interpreted as functions on which space ? Is k[z,y], a
finite type k-algebra 7

(5) Let R be aring R’ and R” some R-algebras. Recall what is the tensor
product R' @z R”. What is the R-algebra law on this tensor product
? Which is the universal property of this object as an R-algebra ?

(6) Recall that for a ring R, an ideal I of R, multiplicative subset S of
R and an R-algebra ¢ : R — A,

R/IQr A= A/IA S'Rop A= p(S) 1A

(7) Let A and B be finite type k-algebras. The k-algebra A @ B is
to be interpreted as the functions on which space 7 Now fix sur-
jections k[zi,...,x,] — A and k[xi1,...,2,] — B. The k-algebra
A ®kfay,....0n] B is to be interpreted as the functions on which space
o

(8) Let R be a ring and M an R-module. Recall what is Ann(M) and
show that if I < Ann(M) then M is naturally a R/I-module. Deduce
for example that I/I? is an A/I module.

Where are we headed? We will introduce the theory of schemes. From the
course on algebraic curves, you learned how to interpret finite type k-algebras
as functions on closed subsets of A7, and saw that the study of such spaces
was ultimately related to the algebras of their functions. With the theory of
schemes, we will now interpret any commutative ring as functions on some
space. For example, Z or any ring of integers can be interpreted as functions
on some space, and also rings in finite characteristic. This unveils an all new
range of geometric objects. One of the strength of the theory of schemes
is that it is a general framework which captures not only the geometry of
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curves over C but also the geometry of objects that are more arithmetic in
nature. The dictionary between algebra and geometry in the setting that
you know and was recalled in a small amount in the preceding exercise will
extend to the general setting of schemes.

Solution key. (5) The universal property of R’ ®r R” is that a R-algebra
map out of this to an R-algebra S is the same as a pair of maps of
R-algebras R — S and R — S. It is therefore the coproduct of R
and R’ in the category of R-algebras.

(7) A®y, B is to be interpreted as function on the product of the associ-
ated closed subspaces of A}l and A ®y,, ..., B as functions on their
intersection in A}.

O

The following exercises are about sheaves. Unless specifically mentioned, a
sheaf means a set-valued sheaf. For a topological space X, Op(X) denotes
the poset of opens of X.

Exercise 2. Hom sheaf

Let X be a topological space. Let F be a presheaf on X and G be sheaf on X.
For any open U C X, denote by F; the presheaf on U defined by V' +— F(V')
for any V' C U. Show that the presheaf Hom : U — Hom(Fy, Gy), where
Hom(Fy, Gy ) denotes the set of morphisms of (pre)sheaves on U, is a sheaf.

Solution key. We first expose a proof for sheaves of sets. Let (U;) be an open
cover of X.! Let ¢; : Fiy, — Gy, be a collection of morphisms who agree
on intersection. We show that it lifts uniquely to a morphism of presheaves
F—=G.

Let V be any open of X. Consider s € F(V'). Using that G is a sheaf, that
morphisms agree on intersections, and that ¢; is a morphism of presheaves
for all 4, we get that (;vnu,(svau,)) lifts uniquely to an element of G(V)
that we denote by ¢y (s). We want to show that (py : F(V) — G(V)) is a
morphism of presheaves. To see that, note that if V/ C V and s € F(V),

def. of ¢
@V’(SV')\V/mUi = SOi,V’ﬁUi(SV’ﬂUi)

¢ is a morphism of presheaves def. of ¢

‘Pi,VﬂUi(SVﬂUi)\V’ﬂUi = @V(S)\V’ﬂUi

so both ¢y (sy/) and py(s)y restrict on V' N U; to the same element. As
G is a sheaf, the desired equality follows. Note that for any V C U; we see
by definition that ¢y = ¢; 1. This shows the existence of the lift.

IThis case will suffice; for a general open V we can apply the reasoning to X = V and
F = ]:\V and Q = g‘v.



3

As for the unicity note that value on s € F(V) of a lift ¢’ necessarily restricts
to (wivnu,(svnu,)). Therefore the uniqueness follows from the uniqueness
in the sheaf property of F.2

We answer now a question asked during TA sessions : can we do this with
sheaves with value in an arbitrary category C ¢ The answer is yes and we
will do some preliminary definitions. Note that in the above proof there is
essentialy three steps: one commutative diagram to show the existence, one
to show that this defines a natural transformation, and one argument for the
unicity. The proof below is the same pattern.

Let C be a complete category. A sheaf F on X with values in C is a presheaf
such that for any open U of X and open covering (U;) of U, the following®

FU) — [ FU) —= Hzg F(Uij)

is an equalizer diagram. We denote by Sh¢(X) the full subcategory of
Pshe(X) = Fun(Ouv(X)®, C) consisting of sheaves with values in C.
Now we define the Set-valued presheaf

U — Homgy, vy (Fu, Gu)

Now we want to show that this pre-sheaf is a sheaf, if we make the hypothesis
that G is a sheaf. To show this, take (U;);c; an open cover of U € Ouv X
and a collection of natural transformations

(ai: 'FU«; — gUi)iEI

such that for all 7,5 € I and W C Uy

(1) (afy: F(W) = GW)) = (ody: F(W) = G(W)).

We need to show that there is a unique natural transformation a: Fyy — Gy
such that restricting this natural transformation to a U; gives «;.
Let V C U be open. By the universal property of the product, let :

By : F(V) = [[o(vnin)
el

induced by

FV) = FVU;) 2% g(v nuy).

Now we want to consider ay: F(V) — G(V) the unique morphism who
would be given the universal property of the following equalizer (because
G is a sheaf) for the cover of V being (V N U;);. Note that if V' C Uj;, by
construction, we will have ay = oz%/.

2If one now wants to show a similar statement for sheaves of abelian groups/rings/etc.
one can now argue that to verify that a morphism of presheaves of sets is a morphism of
presheaves of abelian groups/rings/etc. it suffices to check it at stalks/locally, which will
hold because by construction it will already hold locally.

3with the two maps being on component (i, ) once II, F(Ux) = F(U;) = F(Ui;) and
I1, F(Ux) = F(U;) = F(Usj) the other time



F(V)

S \\\\\EZ\$
ay |

G(V) — [Le, (VN UY) : H” Gg(vVnuy)

To see that this works, we need to show that 8y commutes indeed in this
diagram.

This holds, because of the commutative the diagram below, who commutes
because F and G are functors, that o', aJ are natural transformations and

: i — o)
that using (1) we have oy, = ayqy, -

FV) ——— FVNU)

| |~

FVNU;) — FVNU)

j\
XU,

’ Q(Dferg)

Lfrﬁla)

g(vffﬁlﬁj)

So ay: F(V) — G(V) is indeed well defined.

We claim that (ay : F(V) — G(V))ycv is a natural transformation lifting
the collection above.

We show that @ is natural. This mean we have to show that the following
diagram commutes.

F(V) —— F(V')

avl lav,

Gg(v) —— Gg(v"

By the universal property of the equalizer (using again that G is a sheaf), it
amounts to prove the commutativity of,

FV) — F(V) — 5 g(v)

av | |

g(V) —— G(vV)) —= [L;9(V' Nl

So using the universal property of the product, we need only to verify that
for every 1 :

V) — FV) — L g(v') — S LGV N Uy)

‘| |

Ggv) — G(V") — [,V nU;) —— g(V' nUy)

K,.]

Q)
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commutes. But this holds because we can insert commutating diagrams
inside the diagram above in the following way :

F(V) (V" —>Q(V’)—>H gv'nt)

)J—"
FVNU) —— FV'NnU;)

o ah
GV AT

Q( ) —— G(V) —— [L(V'nU;) —>Q(V’ﬂU)

The intermediate diagrams commute because of the functoriality of F and
G, the naturality of o’ and the definition of a. R

The unicity of the lift is left to show. Suppose that o/ is a lift. Then for any
V, and ¢ € I we have the following commutative diagram.

F(V) —— FVNU;)

~ i
’Vl lavai

Ggv) — Gg(vnuy)

Therefore we see that by universal property of G(V') as an equalizer with

respect to the sheaf property and the cover (U; N'V); of V that o'y = ay.
O

Exercise 3. Constant sheaves
Consider the sheafification of the constant presheaf of Q-vector spaces on
the real line R defined by

U € Op(R) = Q.

We denote by this sheafification Q. Compute the value of Q on any open
subset of the real line. When the dimension of the Q-vector space Q(U) is
finite 7 In this case, what is this dimension 7

Solution key. Let S be a set and X a topological space. In what follows we
prove that on a connected open subspace U the canonical map S — S(U)
is a bijection. We use the following description

§(U):{(31)6H5’|VxeX Wz Vyy eU sy,=s,}
zelU

and the natural map S — S(U) being the diagonal. Let (¢;) € S(U). Fix
y € U (connected implies non empty). Now note that

Vi={zeUlty=t,} Va={zelU|ts#t,}

form a disjoint decomposition of U into open subspaces. As U is connected
and y € V] we get V5 = () and the claim follows.
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Now, as any subset U of the real line is a disjoint union of connected open
subsets (which is also true for any locally connected space), we get that

Q) =

H Q using the sheaf property. This vector space is finite dimen-

sional When U has finitely many connected components and the dimension
is then equal to mo(U).

O

Exercise 4. Sheaves and sections

(1)

Let X and Y be topological spaces, and f : Y — X a continuous
map. Show that the following

F¢(U)={s:U — Y continuous | fos=idy}

defines a sheaf on X. We call it the sheaf of section of f.
Let F be a sheaf on a topological space X. Define the topological

space

zeX
as a set with the finest topology such that for any U C X open and
s € F(U) the section x — s, of the canonical map is continuous.
Show that |F| — X is a local homeomorphism and that the sheaf of
section of this map is isomorphic to F.

Solution key. (2) Everything in what follows works for a presheaf. Note

first of all that any s € F(V') the map 5: V — | F| defined by x + s,
is a section of p : |F| — X. Note also that

sS(V)y={sy |z eV}

is open. Indeed, we need to show by definition of the topology that
for any V' open and t € F(V')

tIEV) ={z e VNV |s, =t,}

is open. This follows from the following lemma about directed col-
imits.!

Lemma. Let (A;) be a directed system of sets and lim, A; the colimit.
If a; € A; and aj € Aj coincide in the colimit, then there exists k
with 1 — k and j — k with the image of a; and a; being the same in
Ag.

Proof. One checks that the colimit is given by the quotient of | |, A;
by the relation (a; € A;) ~ (a; € A;) if and only if there exist i — &
and j — k with a; and a; identified in Ag. Once this understood,
the lemma follows. O

Now, it follows that p : |F| — X is continuous. Indeed for an
open set U of X we have

pl )= || s

(s,V),s€eF (V)

4As forgetful functors to sets from abelian groups or rings commute with directed
colimits, this lemma also applies to directed colimits of abelian groups, rings.
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Also, we see that for any open V and s € F(V) we have pj5y5 =
idy and spjg) = idgy). Therefore p is a local homeomorphism
because p().

Remark. We have a natural isomorphism between F, — F*. (Here F,
denotes the sheaf of sections of p : | F| = X.)
O

Remark. One can promote the construction F — |F| to an equivalence
of categories between Sh(X) and Et(X) the category of local homeomor-
phisms over X. For more details, see for example Manifolds, sheaves, and
cohomology by Wedhorn.
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Exercise 5. Sheafification

Let X be a topological space and F a presheaf on X. Show that the natural
map F — F 7 is an isomorphism at stalks.

Find examples of topological spaces X and presheaves F on X such that

(1) The natural map F — F T is not injective/resp. not surjective on
some non empty open set.
(2) An abelian group valued presheaf with F # 0 but F* = 0.

Solution key. To show that F — F 7 is an isomorphism at stalks, we proceed
as follows. Note that for any open U > x the following projection map

Froyc ] 7o — Fe
zelU

will pass to the colimit (F*), — F,. One immediately checks that this is
an inverse to the induced map at stalks from F — FT.
For (2) and "not injective” we can take the presheaf on R with value Z /27
on R and 0 for any other open.
For ”not surjective”, take R and the sheafification of any non-zero abelian
group. See ”constant” sheaf exercise 3.

O

Exercise 6. Some sheaves on the circle
We are using the notation F; from exercise 4.

(1) Consider the map e : [0, 3] — S* defined by ¢ — exp(2it). Compute
all stalks of F,.
(2) Let O be the presheaf on S! defined for U € Op(S!) by

O(U) = {U — R continuous}

Show that O is a sheaf. Note that O is a sheaf of R-algebras by acting
pointwise. Show that for every z € St, O, is a local R-algebra with
residue field R.

Consider now the quotient M of [0,1] x R by identifying (0, ¢
with (1,—t). Consider the map m: M — S! defined by 7([z,t]) =
exp(2miz). We also take the notation Fr = L.

(3) Show that for every U € Op(S!), L(U) is an O(U)-module by O(U)
acting on the second component.

(4) Show that for every open set U C S! with at least one point missing
there is an isomorphism of sheaves Oy = Ly which respects the
module structure on evaluation on each open subset.

(5) Show that for every s € £(S!) there exist a z € S* such that s(z) =
[z,0].

(6) Deduce that there is no isomorphism O = L of sheaves respecting
the module structure on each open subset.

Solution key. (1) Note that e : [0,3] — S is a local homeomorphism.
We claim that the natural evaluation map

(Fo). 22 e7(2)



9

is a bijection.” Let # € e!(z). Let U 3 Z such that ¢ is an
homeomorphism. Then e|_U1 (z) = x. This shows surjectivity. If s,t
are sections on say V' 3 Z and V' 3 2 which have the same value on z,
say x, then take an open U > x such that ey is an homoemoprhism
and e(U) C VNV'. Then s|¢yy and ¢,y are both the unique inverse
to ey. This shows the injectivity.

(2) We show that O, is a local R-algebra. We claim that the ideal

{fe0:]f(z) =0}
is the unique maximal ideal. To this end, it suffices to show that
the complement consits of the invertible elements. If f(z) # 0, then
there exists a neighbourghood of z where f never vanishes. Therefore
1 is a well defined multiplicative inverse in the stalk.
Some setup and notations for the rest of the exercise.

(a) To avoid confusion, we write the complex number e(0) =e(1) =1 €
St by u.
(b) Denote by e: [0,1] — S! the quotient map given by exp(2mi—).
(¢) The quotient map p: [0,1] x R — M gives an homeomorphism
p: (0,1) x R — 77 1(ST\ w).
(d) The quotient map p: [0,1] x R — M gives an homeomorphism
1
p:[0,5] x R 7 (8L,),

where Séo denotes the points of the circle with imaginary part pos-
itive or zero.
(e) The quotient map p: [0,1] x R — M gives an homeomorphism

1 _
pi [5,1] x R = 7 (Sk),

where S%o denotes the points of the circle with imaginary part neg-
ative or zero.

Let s € L(U) be a section. We define a continuous map as: e 1(U) — R

such that
s(e(t)) = [e(t), as(t)]-
For t # 0,1, we define as(t) to be the second component of p~1(s(e(t))), by
(c) above. When ¢t = 0 and ¢t = 1, we extend by continuity and the same
method using the points (d) and (e) respectively. Note that
as(0) = —as(1)
because s(u) = [0, as(0)] = [1, as(1)].
(3) We define a module structure. We explain how to define the mul-
tiplication by scalars, the others operations being defined similarly.
Let U be any open of M. Let f € O(U) and s € L(U). We define

f - s as follows. We pass to the quotient map e: [0,1] — S!, the
following continuous map [0, 1] — M

e [t f(e(t))as(t))]-

®Note that the following argument holds true for any local homeomorphism e : X — Y.
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To show that it passes to the quotient we have to show that it agrees
ont=0andt=1. But as

fw)as(0) = f(u)(—as(1)) = —f(u)as(1),
this follows from the quotient relation of the M6bius band.
The zero element is the section sg : St — M, so(e(t)) = [t,0].
One continue similarly to define the rest of the structure. The
key is that the “gluing of the quotient” (—1): R — R is an automor-
phism of R-modules so that we can “lift” calculations to pointwise
calculations in [0,1] x R. That’s why we put the emphasis on that
in the above calculation.
(4) For any section s € £(U) we have the unique map

O|U — £|U

that respects the module structure on each open subset of U and
sends 1 to s. We claim that if s vanishes nowhere, then this map is
an isomorphism. To prove that, we suppose that s vanishes nowhere,
and construct an homeomorphism over U

Ys: N (U) = U xR
defined by [t, A] — (e(t), —a:z 5 ). This is well defined by non-vanishing.
The inverse is given by (z,A) — (X - s)(z), where - designates the
module structure defined above. Now

provs(—=): Ly = O

gives an inverse to the above map.

We are now left to prove that on any open subset missing a point
U, there exist a non-vanishing section. But whenever a point is
missing, say e(tg) € U for some ty € [0,1) then we can define the
section U — M by

o) s {[t,l] t <t

[t,*l] t >t

which vanishes nowhere.

(5) Let s € L£(S!). By the intermediate value theorem as: [0,1] — R
necessarily vanishes because a5(0) = —as(1).

(6) Note that a section s € L(U) vanishes at z = e(t) in the sense that
s(z) = [t,0] if and only if s, € m.L,. Note that 1 € O(S') vanishes
on no point. By contradiction, the image of 1 by an isomorphism
O = L would not vanish at any stalk, in contradiction with the
previous point.

O

Exercise 7. Skyscraper sheaves

For any set S and = € R show that the following defines a sheaf, for U €
Op(R)

SifzelU

z5(U) = {]l ifzgU
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where 1 is the set with one element. We call this sheaf the skyscraper sheaf of
S at x. Compute every stalk of x,5. Understand and draw the topological
space |z.S| (see exercise 4). Do you understand the name skyscraper now ?
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Solutions — week 2

Exercise 1. Sheaves of abelian groups. Let X be a topological space. Let
F, G be sheaves of abelian groups and ¢ : F — G a morphisms of sheaves of
abelian groups.

(1) Let ker(¢) and im(yp) be respectively the kernel sheaf and the image
sheaf.! Show that for every € X, one can define natural maps
which are isomorphisms

ker(p), — ker(yz) and im(p), — im(py).

(2) Show that ¢ is an injective morphism of sheaves (resp. surjective
morphism of sheaves) if and only if for every x € X the morphism
of abelian groups ¢, : F, — G, is injective (resp. surjective).

(3) Show that ¢ is a surjective morphism of sheaves if and only if for
every U open and s € G(U), there exists an open cover U = (JU;
and sections t; € F(U;) with ¢(t;) = sp,.

(4) Show that the natural map im(¢) — G is injective.

(5) Show that ¢ is an isomorphism if and only if it is an injective mor-
phism of sheaves and a surjective morphism of sheaves.

(6) Let f = X — * be the unique morphism to the point. Show that
f« = (X, =) : Shap(X) — Ab is left-exact. Give an example to
show that f. is not right-exact in general.

Exercise 2. Gluing sheaves. Let X be a topological space and (JU; = X
an open cover of X. Let (F; € Sh(U;), i) be a collection of sheaves on
Sh(U;) together with isomorphisms

wij: Fijuy,; — Fiju;

in Sh(Uj;) satisfying for each ¢ that id = ¢;; and for each 1, j, k the following
cocycle condition @i, = QjLpij.

Show that there exists a unique? sheaf F € Sh(X) with maps 1; : Fu, = Fi
with the following universal property: for all sheaves G € Sh(X) we have a
a bijection

Hom(G, F) = {(gwi EIR Fi) € HHom(gwi,]:i) | s.t. for all 4,7 : i fi = fj}

given by f — v flu,.
Show furthermore that ; are isomorphisms.

1The kernel sheaf is the kernel presheaf but the image sheaf is the sheafification of the

image presheaf.

2up to isomorphism.
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Solution key. Let ¢; : U; — X for the inclusion of the open set.

Some quick remarks : using cocycle condition, we get @;; = @i © ;. By
hypothesis ¢;; are isomorphisms so we get : ¢; = idz,. Then using the
cocycle condition : idx, = pj; 0 pi; and idr; = @ij © @ji.

We define 3 F on an open set U by :

FU) = A{(si) € [ TRWNT) 19G.5) )10, = st )}

as sub-(pre)sheaf of the product sheaf [[, v If V. C U note that the
restriction (s;) — (sq|,,) is well defined because : Silvgav = Spij(si\vij)\v =
©ij(8i|,. -y ), using the fact that ¢;; is a morphism of sheaves.

ij

e We show that F is indeed a sheaf. Let V = U,V an open cover. Let

((5£)i)a be a collection of elements lying in F(Vy,), such that we have

Silve = sf v, for any «, 5. Using the sheaf property on the product
sheaf (which follows directly from the sheaf property of each factor),
we get a unique element (s;) € [[; tixFi(V) lifting the collection.
We show that this unique element lies in fact in F(V). We need
to show that for any ,j we have Silu, = (Pij(sﬂuij)' But when we
restrict both sides of the desired equality on V,, the equality holds
because (s'); lies in F(V,). So using again the uniqueness in the
sheaf property of the product sheaf, we get what we want.

e To show that F is unique up to isomorphism in Sh(X) we spell out
an universal property that it verifies. We write (F LN LixJFi)i the
collection of sheaf morphisms induced by the projections from the
product. We claim that F satisfies the following universal property

For all G € Sh(X) and collections (G EN ti+JFi)i of sheaf morphisms

such that :
for all U open and Vt € G(U), we have for all 4, :
there is a unique sheaf morphism G ERN F such that for all 4,

pif = fi-

This is indeed the case : if we take a collection (G ﬁ) LixFi)i, We get

a map f from G to the product ], ¢;xF; by the universal property

of the product in Sh(X). But the condition f;(t),,, = »i;(fi(t)

for all ¢, j says exactly that in fact f factors into F.

e Now we show that ¢y : Fy, — Fj induced by the projection is an
isomorphism of sheaves for all k. To show surjectivity we will use
crucially the cocycle condition.

vis)

30ne should question the coherence of this definition : let (s;) € F(U). Then

(1) Silu,, = Pia(Sily,, ) = @i (i (8i1u,,)) = Silu,,
using the property for (4,7) and (j,4) and idx; = @ij o @;i. So (1) highlight why the fact
that ¢;; and ¢;; are inverses to each other is important in this gluing process.
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(1) Surjectivity. Let V' C Uy open. Let s € Fr(V). We want to
construct an element (s;) € F(V) C [[; F:(V NU;) such that its
k-th component is sj.

For each i, we define s; using the cover VNU; = U;V NU;;, and
the collection (p;(sk|,,,,)) of elements in F;(V NU;;). It verifies
the intersection property because ¢;; is a morphism of sheaves.
So s; is defined by Silu, = ap/ﬂ-(sk‘wj). Note that if ¢ = k the
element defined in this way is si, because @y is the identity.
Now we claim that the collection (s;) that we just defined is
indeed in F(V'). To show this, we need to show that for any
i,J, we have : Silu;; = (Pij(SﬂUij)' But :

Sj|Uij - Sij(SMUiJ') = Pij © SDki(sl‘?bij) - Spij(QOki(SMUij)) = Soij(SﬂUij)
Using the definition of s;’s and the cocycle condition.
(2) Injectivity. Let (s;) and (s}) be two elements in F(V') such that
their k-th component is s, = sj.. Now one gets for any i :

si = pik(sk) = pin(sy) = s
thus proving the injectivity.
Remark. One can interpret the result of the previous exercise as sying that
the presheaf with values in categories
Sh: Ouv(X)°? — Cat

is a sheaf in a suitable sense.
O

Remark. Can you see how the last exercise resembles the following state-
ment: “U +— Sh(U) is a sheaf”?

Exercise 3. Inverse image. Let f: X — Y. Let F € Sh(Y'). We define the
presheaf on X

FFFU)= lim F(V).
VDO f(U)
(1) Show that if f: x — X is a point 2 € X then f{F = F,.
(2) Show that if y = f(z) then there is a natural isomorphism

(fﬁ]-')w — Fy.

(3) Show that if f is an open immersion, then f* is a sheaf.

(4) Find an example of map of topological spaces f : X — Y and a
sheaf F on Y such that ffF is not a sheaf.

(5) Let f~'F be the sheafification of fF. We call this sheaf the inverse
image of F. Show that the f~! - £,* meaning that there is a natural
isomorphism

Homgy,(x)(f~'F,G) = Homgyy)(F, f+G).

AWe say that f~' is left adjoint to f.
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Exercise 4. Localization Let R be a ring. Let S be a multiplicative subset.
(1) Describe the points of Spec(S™!R). If p € Spec(R) show that
Spec(Ry) is the intersection of all opens containing p.
(2) Let M be an R-module and I O R an ideal. Show that there is an
isomorphism
STHM/I) = (S~ M)/(IS™IM).
(3) Let p € Spec(R) and I < R and ideal. When
(R/D)y =0 7

Can you interpret this geometrically?

(4) Let R be integral. Identify the image of the injective map S~'R —
Frac(R).

(5) Let R = Z[x]. Describe the localization at the maximal ideal (p,x).

Exercise 5. Affine schemes are quasi-compact. Let R be a ring. Show that
Spec(R) is quasi-compact.® Deduce that the underlying topological space of
any (affine) scheme has a basis of quasi-compact open subsets.

Solution key. Let R be a ring. Let (a;) be a collection of elements such that
Spec(R) = UD(ai).
i

This means that 1 € (a;). Therefore there exists ai,...,a, and by, ..., b, €

R such that
]_ = Z bjaj
j=1

for some n. Therefore

O

Exercise 6. Connected affine schemes. We say that a ring R is connected
if for all a,b € R if

a+b=1and ab=0
then exactly one of the two elements is non-zero.

(1) Show that it is equivalent to the fact there is exactly two idempotents
(namely 0 and 1) in the ring R.
(2) Show that R is connected if and only if Spec(R) is connected.

Exercise 7. Stalks, morphisms and cotangent spaces

5A topological space X is quasi-compact if every open cover of X can be refined to a
finite cover.
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(1) Let X — Y be a continuous map between topological spaces, and F
a sheaf on X. Let z € X and y = f(z). Show that there is a natural

map
(f+F)y = Fu

Remark. This is used to define the induced map on local rings of a

map of locally ringed spaces. Namely if (f, f*): (X,0x) — (Y, Oy)

is one, with f¥: Oy — f.Ox, the induced map on local rings is for

r = f(y),

1
OY,y _y> (f*OX)y — OX,x-
(2) Let R be an integral domain. Consider ¢: Rz, y] — Rz, y] defined
by x — zy and y — y. Consider

f+ Spec(R[z,y]) — Spec(R[z, y])
the induced map on associated affine schemes.® Show that for all
A € R we have f((x — \,y)) = (x,y).
(3) Let now R = k a field. With point (1) and the remark there is
induced map on local rings

k12, Yl (zy) = k[T, Y@y

We write mg ) := m,,) and m(, g) = m,_y,) for the maximal
ideals of these local rings. Understand the induced k-linear map

m(0,0)/“1%0,0) = M(X0) /m%,\,o).

This mean the following: find a k-basis of these vector spaces and
describe the matrix of the map in term of your chosen basis.

Remark. We will later see that these vector spaces are the cotangent
spaces at (0,0) and (A, 0) respectively and that the map that you
studied is the precompostion by the differential of f at these points.

Solution key. This exercise was a previous hand in exercise, and so-
lutions are credited to past students of the course.

(2)(Alissa) Let R be an integral domain. Consider ¢ : R[x,y] —
R[z,y] a ring homomorphism such that  +— zy and y — y. Consider
now the map f : Spec(R[z,y]|) — Spec(R[z,y]) induced by the map
¢. We show that for every A\ € R we have that f((z — \,y)) =
¢~ (x — N, y) = (z,y). To prove this point, consider the following
commutative diagram

Rz, y] %ny]

ev(m /V()\ 0)

We have that ev(y g)o¢p = ev(g). Hence we have the following
series of equalities

(,y) = ker(ev(p0)) = evg) (0) = (ev(x0) 0¢) ' (0)
= gbil(ev(_,\l,()) (0>) = (bil(x - )‘7 y) = f(x - )\7y)
This proves our point.

6Recall that the induced map on Spec is given by the preimage ¢!



(3)(Maxence) Now let R = k be a field. We have a local homo-
morphism of local rings

i .
Tog) * Osvectblzal).(ay) = Ospec(kla)).(a—ru)
But we know that OSpec(k[m,y]),p & k‘[.’IJ, y]p for any p € Spec(k[x, y])

Thus we can see f?x y) AS 2 local homomorphism of local rings k[, y] ;) —

k2, Yl (z—xy)- Set m(g) and m, o) to be the maximal ideal of respec-
tively k[z,y](z,) and k[z, y](z—x -

We want to understand the k-linear map m g o)/ m%0,0) — m(x0)/ m%)\vo).
For any maximal ideal m of k[x,y|, we have the following isomor-
phism of k-vector spaces (k[z,y]/m-vector spaces) :

My /m2 = m/m?

where my, is the maximal ideal of k[z, y|n.

Furthermore, it is easy to see that {Z,y} is a k-basis of (z,y)/(2?, zy, y?)
and {x — \, 7} is k-basis of (z — \,9)/((z — A%, (x — Ny, 4?) since
they are k-linear independent elements in their respective quotient.
Since the induced linear map is just defined by applying ¢, we get
that ¢(T) = Ty = Ay and ¢(y) = 7 by definition of elements in the
quotient (z — A, y)/((z — M), (z — Ny, y?).

That is, by taking bases as above, the linear map that we are
looking for can be describe as the following matrix

(A1)



Dr. Stefano Filipazzi EPFL, fall semester 2024
Dr. Alapan Mukhopadhyay AG II - Schemes and sheaves
Léo Navarro Chafloque

Solutions — week 3

Exercise 1. Nilradical. Let R be a ring. Denote by
nil(R) := {f € R| f is nilpotent}.
(1) Show that
nil(R)= (] ».
pESpec(R)

(2) Show that for an ideal I C R, we have V(I) = Spec(R) if and only
if every element of [ is nilpotent, meaning I C nil(R).

Exercise 2. Spec is an adjoint. Let (X,Ox) be a scheme and A a ring.
Show that the induced map on global sections

Homgep ((X, Ox), Spec(A)) — Hompging (A, Ox (X))
is bijective. This implies that
Spec: Ring” — Sch
is a right adjoint. In particular colimits of rings are sent to limits of schemes.

Solution key. It is straightforward to check the naturality of the map in X
and A. We then just need to construct an inverse map to

Homge, ((X, Ox), Spec(A)) — Homping (A, Ox (X)).

We proceed in three steps. (See the document Gluing arguments for more
precision on some points.)

(1) If X is affine, this is bijective because this is the statement of the
anti-equivalence of categories between affine schemes and rings.
(2) Suppose then that X can be covered by affines

X:Uw

such that their intersection is affine. We construct an inverse map.
Let ¢: A — Ox(X) be a ring map. Denote by ¢;: A — Ox(U;) the
composition of ¢ with the restriction. Using the anti-equivalence
between rings and affine schemes (1), we get that ¢; correspond
uniquely to a map of schemes f;: U; — Spec(A). We want to show
that f; and f; coincide on U; N U;. As this intersection is affine by
hypothesis we get that the restriction of f; and f; is the unique map
of affine schemes which correspond to the map ¢;;: A = Ox(Uj;)
which is ¢ composed by the restriction. Therefore we get a map of
schemes f: X — Spec(A4). We check that it is the desired inverse. If
¢: A — Ox(X)is aring map, the map on global sections induced by
the above constructed f is ¢ by construction of the glued map. The
1



other way around, if f is a map X — Spec(A), we see by restricting
to U; that f is necessarily given by gluing of the maps induced by
the above construction.

(3) We now consider X to be an arbitrary scheme. We want to construct
an inverse map. We proceed exactly as above. The only difference
is in the step when we want to compare f; and f; on U; N U;, which
is not necessarly affine. But U; NUj is a scheme that can be covered
with affine schemes such that their intersection is affine (see Gluing
arguments.) Therefore we can use (2) to say that a map U; N U; —
Spec(A) is the same as a map of global sections A — Ox (U; N Uj).
Therefore f; and f; are the same because they correspond to the the
map ¢i;: A = Ox(U;j) which is ¢ composed by the restriction as
in the above case. Every other step goes similarly.

O

Remark. The above remains true if we replace Sch by the category of
locally ringed spaces Toplfifng. This characterizes Spec as the right adjoint
of the global sections functor Toplﬁfng — Ring?. This formalize the saying
that Spec(R) is the universal (locally ringed) space such that R is the ring

of global functions on this space.

Exercise 3. Reduced schemes. A scheme (X, Ox) is reduced if for all opens
U of X the ring Ox(U) is reduced.

(1) Show that a scheme (X, Ox) is reduced if and only if for all x € X
the stalk Oy, is a reduced ring.

(2) Show that an affine scheme Spec(A) is reduced if and only if A is a
reduced ring.

The reduction of a scheme X is a scheme X,.; together with a map ¢ :
X,eq — X with the property that for every map ¥ — X where Y is a
reduced scheme, then Y factors uniquely to «¢.

(3) Show that if X = Spec(A) then Spec(A/nil(A)) — Spec(A) is the
reduction of Spec(A).

(4) Show that the reduction of any scheme exists and that ¢: X,eq — X
is a homeomorphism.

Solution key. (1) Suppose that (X, Ox) is reduced. Take s, € Ox , such
that s = 0. First take an U where s, lifts to a section s € Ox (U).
Then s" is sent to 0 in Ox .. It implies that there is a smaller open
V such that s = 0. But as Ox (V) is reduced, we deduce that s =0
in Ox (V) proving that s, = 0 as wanted.

For the other direction, take f € Ox(U) nilpotent. Then every
image in all stalks for all x € U are nilpotent implying that f, =0
for all x € U and then f = 0.
(2) If Spec(A) is reduced then taking global sections we deduce that A
is reduced as a ring.
For the other way around, we prove the following:
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Claim. If S is any multiplicative subset of A and A is reduced, then
S—1A is also reduced.

Indeed, if Z—: = 0, it means that there is some N and s’ € S such
that s’Na™ = 0. But then, we see that s’a is nilpotent, of order at
most M = max{N,n}. As A is reduced, s'a = 0 implying that a is
mapped to zero in ST A.

Therefore for every prime p of A, A, is reduced, showing that
Spec(A) is reduced.

(3) We show that Spec(A,eq) — Spec(A) is the reduction in the category
of schemes. Let Y — Spec(A) a map, where Y is a reduced scheme.
By adjunction, this is the same as the data of a map A — Oy (Y).
Because the target is reduced, this map factors uniquely to A —
A,eq. By adjunction again, we get the unique desired map ¥ —
SpeC(Ared)'

(4) Define a scheme X,.q with the same underlying topological space,
but with Oy, , being the sheafification of U — Ox(U)yeq. Let
(U;) be a basis of X consisting only of affine open sub-schemes. For
every open affine U; = Spec(4;) the presheaf define above is equal to
OSpec( Ay req) O1 ODEN affines of U;. Therefore, because this presheaf
already defines a sheaf on a basis of open subsets, this implies that
the sheafification equals it on these affine opens (but not necessarily
on other opens). Therefore we conclude that Ogpec( A;req) 15 €qual
to the sheafification of the presheaf defined above on Spec(A4;). It
follows that X,..q with the same toplogical space as X and the sheaf
define above is a scheme.

Now for the universal property, if f: Y — X is a morphism with ¥
reduced, then topologically there is evidently a unique lift Y — X,..4.
For the sheaf part consider the map

OX — f*Oy.

Because f.Oy is reduced on every open this factors uniquely through
the presheaf reduction and then to the sheafification Ox ,¢q by uni-

versal property of the sheafification. This is what we wanted.
O

Exercise 4. Residue fields and rational points. Let (X, Ox) be a scheme,
x € X and k(z) := Ox ,/m, the residue field at x.

(1) Let K be a field. Show that a map Spec(K) — X with topological
image = amounts to a field extension k(x) — K.

(2) Let k be a field. Fix X — Spec(k) a map for the rest of the exercise.
Show that for all x € X, k(z) is naturally a field extension of k.

(3) We say that x € X is k-rational if the natural extension of last item
k — k(z) is an isomorphism. Show that the set of k-rational points
of X is identified with the set of maps Spec(k) — X such that the
composite Spec(k) — X — Spec(k) is the identity.



(4) Let now X = Spec(k[x1,...,2,]/(f1,--., fm)) — Spec(k)!, where
fi,--., fm are polynomials. Show that the set of k-rational points
of X is identified with the set of solutions in k" of the system of
polynomials fi,..., fi.

Exercise 5. FEzceptional functors (1). Let X be a topological space. Let
j: U — X be an open subset and ¢: Z — X its closed complement. We
work with categories of sheaves of abelian groups on these spaces.

(1) Consider F € Shap(Z). Compute every stalk of ¢, F.
(2) Show that ¢, is exact.
(3) Give an example to show that j. is not exact.

Consider G € Shay,(U). We define the extension by zero or exceptional direct
image jiG to be the sheafification of the presheaf defined by V — G(V) if
V C U and 0 otherwise.

(4) Show that for every sheaf 7 € Shap(X) there is a natural exact
sequence

0= " H—-H— i 'H—o0.

(5) Show that there is a natural bijection in G € Shap(U) and H €
Shab(X)

Homgy,,, 1)(G, M) = Homgy,,, (x) (G, H).

This means that for an open immersion j, we have a sequence of
adjoints j1 4 571 4 .

Solution key. (1) If x € Z then we see that we have a natural isomor-
phism

(13 F )y = Fy.

If © ¢ Z then as 1. F(X \ Z) = F(0) = 0 we see that (+F); = 0.

(2) To check the exactness of a sequence, we check it at stalks. Therefore
the exactness of ¢, follows from the previous computation.

(3) Consider U = C\ 0 — C. Consider the exponential sequence (O
denotes sheaves of holomorphic functions and O* the sheaf of non-
vanishing holomorphic functions)

exp

12— 0y — O — 1.

We claim that j,Op — j, O is not surjective. By contradiction, if
it is, it would be surjective at the stalk at zero

(j«Ov)o — (307 )o-

In particular the germ of the inclusion map g: U — C\ 0 would be
attained by some element. This means that there exists V' C U with
f € O(V) with exp(f) = g. This a contradiction, for example to
Cauchy formula.

Hnduced by the inclusion k — k[z1, . .., 2]
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(4) First, remark that if G € Sh(U), then stalks of 1;G behave the fol-
lowing way. If x € U we have a natural isomorphism

(L!g)x — g$7

and if x ¢ U we have (1G), = 0. The exactness follows from the
computation at stalks. If x € U then it amounts to an isomorphism
and then the zero map, and if x € Z first the zero map, and then an
isomorphism.

(5) First note that

Homgy,,, (x) (719, H) = Hompgy,, x) (4] G, H).

Where j{" denotes the extension by zero before sheafification. We
see that a morphism jI"G — H amounts to a morphism G — j —1.
Indeed if V ¢ U we have j/'G(V) = 0. So a map jI'G — H
just amounts to maps G(V) — H(V) which are compatible with
restrictions for every V' C U. In other words this exactly the data
of a map of sheaves G — j‘l’H. This association is natural and
bijective.

O

Exercise 6. Exceptional functors (2). We keep setup and notation as in
previous exercise. Let H € Shap(X).

(1) Show that for every s € H(V') for an open V, then
supp(s) :=={zx € V | s, # 0}

is closed.
(2) Show that Hz, the presheaf on X defined by

Hz(V)={seH(V)|supp(s) C ZNV}
is a sheaf. Show that Hz (V) is the kernel of the map
H(V) = HV N (XN Z)).

(3) Show that if V/ C V such that V/'NZ =V N Z then the restriction
map Hz(V) — Hz(V') is an isomorphism.
(4) Show that for any sheaf F € Shap(Z) any map . F — H factors
through Hz.
We define the exceptional inverse image o'H == 1" H .

(5) Show that there is a natural bijection in F € Shap(Z) and H €
Shap(X)

HomShAb(Z) (F, L!%) = HomShAb(X) (L*f,H)

This means that for a closed immersion ¢, we have a sequence of
o . — |
adjoints ¢ Ly, 4

Solution key. (1) If x € X is such that s, = 0 there is an open set
around x with s = 0 in this open set.



(2) We show that Hy is the kernel map of the unit map (so the fact that
it is a sheaf will follow from this description)

H— juj ' H
which is on each open set V' the restriction
H(V) = HVNU).

But elements s which are sent to zero by this restriction are exactly
elements such that s, = 0 for all x € V NU. This happens if and
only if that supp(s) C ZNV.

(3) Let V! Cc V with V/'NZ =V N Z. It implies that

V=vV'ulVn(X\2).
We show that
Hz (V) — Hz (V)
is an isomorphism. We show the injectivity. if s is sent to zero, then
note that sy» = 0 and syn(x\z) = 0 by construction. So s = 0. The
surjectivity follows from gluing. If s € Hz (V') we can glue s € H(V)
and 0 € H(V N (X \ Z)) to get a section of Hz(V).

(4) Follows by computation at stalks at z € U.

(5) Note that the presheaf preimage of Hz can be expressed as, on an
open set W C Z of Z, by (the colimit ranges over opens V of X such
that VNZ=W)

lig Hz (V).

VCcX
vnz=w

Note that therefore by point (3) above this colimit is taken on iso-
morphisms: we mean by this that every morphism in the diagram is
an isomorphism. This implies that the colimit is equal to the limit
on the same system. With the fact that this colimit is taken on
isomorphism we also see that this presheaf is already a sheaf.

Note first that

Homgy,,, (x) (¢xF, H) = Homgp,, (x) (t+F, Hz)

by point (4). Let W be an open of Z. A morphism F — +'H on W
amounts to a collection of morphisms F (W) — Hz (V) for every V' C
X open with VNZ = W that commutes with restrictions (the colimit
equals the limit). Therefore a map of sheaves F — J'H amounts to
a map for every open set U C X of X from F(UNZ) — Hz(U)
which is compatible with every restriction. In other words, this is
the data of morphism of sheaves v, F — Hz. These identifications
are natural and bijective.

O

Exercise 7. Topological properties of schemes. A topological space X is Ty
if for every pair of different elements z,y € X there exist an open set U of
X such that exactly x or y is in U.

(1) Let X be the underlying topological space of a scheme. Show that
X is T().
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A topological space is called irreducible if it cannot be written as the union
of two proper and non-empty closed subsets.
(1) Show that any non-empty open set of an irreducible topological space
is dense.
(2) Show that if an irreducible topological space X contains at least two
points, then X is not Hausdorff.
(3) Let A be a ring. Show that the topological space Spec(A) is irre-
ducible if and only if A,.q4 is an integral domain.
A topological space is called sober if for any non-empty irreducible closed
subset Z C X, there exist a unique point 7z € Z such that {nz} = Z. In
this case, we call nz the generic point of Z.

(1) Show that any Hausdorff topological space is sober.

(2) Let X be the underlying topological space of a scheme. Show that
X is sober.

(3) Let A be an integral domain. What is the generic point of Spec(A)?
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Exercise 1. Tangent vectors. Let R be a ring, R — S an R-algebra and N
an S-module. An R-derivation

d:S—>N
is an R-linear map such that for all f,g € .S

d(fg) = fd(g) + gd(f) (Leibniz rule)
We denote this set by Derg (S, N).

(1) Show that if d: S — N is an R-derivation, then d(r) = 0 for every
re R.

Let S@¢ N denote the R-algebra with underlying R-module S@® N and with
the multiplication defined by

(s,n)-(s',n') = (ss',sn' + s'n).
The multiplicative unit is (1,0).
(2) Show that the projection S &y N — S is a ring map which has a
square zero kernel ideal I, meaning that I? = 0.

(3) Show that the data of a derivation is the same as map of R-algebras
S — S @¢ N which is a section of the projection.

Let X — Spec(k) a scheme over a field k.
(4) Show that k[e] := k[t]/t? is isomorphic to k &g k.
(5) Let x : Spec(k) — X be a k-rational point. We see k(z) as an Ox ,-
algebra by the quotient map. Show that there are identifications

Derg(Ox ., k(z)) = Vecty(m, /m2, k(z)) = Schy, ,(Spec(k[e], X))

where Schy, . (Spec(k[e], X)) denotes k-schemes maps' that sends the
point of Spec(kl[e]) to x.

Solution Key. (1) We have d(1) = d(1%) = 2d(1) implying that d(1) = 0.
Now using R-linearity d(r) = rd(1) = 0 for any r € R.

(2) The kernel of the projection is 06 N. Note that (0,n)-(0,n") = (0,0)
implying the square zero requirement.

(3) Immediate from the definition of the law.

(4) The k-algebra morphism k[t] — k @¢ k sending ¢ to (0,1) factors
through k[t] /2, and is surjective. By equality of dimensions, because
this map is a map of finite dimensional k-vector spaces, we deduce
that this map is an isomorphism.

Imeaning that the composition Spec(k[e]) — X — Spec(k) is the one associated to

Spec(k[e]) — Spec(k) being the inclusion.
1



(5) First we note that as x is a k-rational point we have a k-algebra
section of the surjection Ox , — k(x). Using this, we may write

Ox o =k(z) dmy,

as a direct sum of k-vector spaces. Note that a k-derivationd: Ox , —
k(z) will have to send the first component to zero by the first point
of the exercise. Note also that if f,g € m, then d(fg) = f(z)d(g) +
g(x)d(f) = 0, because we have f(z) = g(x) = 0. Therefore, any
derivation necessarily factors through m,/m2. It is therefore also
sufficient for a k-derivation Oy, — k(x) to define a k-linear map
m,/m2 — k(). This shows the first isomorphism.

For the last one, note that a k-scheme morphism from Spec(kle])
to X sending the point to = is equivalent to the data of a local
k-algebra map Ox , — kle]. Projecting to ke and then using the
identification k£ = k(x), it defines a derivation Ox, — k(z). The
other way around, given d: Ox , — k(x), we define a k-algebra map
Ox o — kle] by (evg,d).

O

Remark. Note that in differential geometry, what was exposed above is
a way to define tangent spaces. See Manifolds, sheaves and cohomology by
Wedhorn, Remark 5.7 Therefore, in the context of the above exercise we
define

(my/m3)"
to be the be the k-tangent space of X at x.
Remark. We have just seen that maps of k-schemes from Spec(k[e]) into a
scheme are to be interpreted as a choice of a point and one tangent vector.
Therefore, we interpret Spec(kle]) as a point with a one dimensional tangent
or a point with an infinitesimal neighbourhood of order 1.

Exercise 2. Galois actions. Let Spec(A) = X — Spec(k) an affine k-
scheme where k is a field. Let & — [ a Galois extension. We define on
Spec(A ®y, [) an action of Gal(l: k) defined by ¢, = Spec(id ®g) where g is
in Gal(l: k).
(1) For which g € Gal(l: k) is the map ¢4 a morphism of I-schemes ?
(2) Show that that the invariants® of A ®j, [ with this action is A.
(3) By the identification C[t] = R[t] @r C, show that the action of
Gal(C: R) on CJt] acts on the coefficients of a polynomial. For every
x € Spec(Clt]), what is ¢4(z) for the non-trivial g € Gal(C: R) 7
(4) Show that two points are identified by the natural map Spec(C[t]) —
Spec(R[¢]) if and only if they are in the same orbit of the above
action.
(5) What are the possible residue fields of points of Spec(R[t]) ? Show
that the degree of the residue field at a closed point x as an extension
of R corresponds to the cardinality of the fiber at x of the above map.

2Elements of A ® [ fixed by the action of Gal(l: k).
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Solution Key. (2) Let k — [ be a Galois extension. Let V' be a k-vector
space. We consider the base change V; = V ®; . We consider the
Galois action of G = Gal(l: k) on V; given by g- (v ® \) = v ® g(\).
The goal is to show that (V;)¢ = V, more precisely the image of
V -5 V®lbyv—v®l. We may sometimes write V' for this image
in what follows.
Suppose first that V' is finite dimensional. Write V' = €, V; with
V; being one dimensional. Then

Vi=aVi =[]V

and the action G restricts to this direct sum/product.

If V' is one dimensional, then (V ®l) = V follows from Galois the-
ory. Note that we can compute the fixed points of a direct product as
the fixed points of each components. Therefore, the case where V is
finite dimensional follows: indeed V' C VlG with the same dimension.

To treat the arbitrary case, we want to show (V @ )¢ C V.
Let v € (V ®; 1)®. Then there exists a finite dimensional subspace
W C V such that v is in Wj. Therefore we see by the previous case
that v € W C V, which conclude the argument.

O

Remark. By duality, it means that Spec(A) is the quotient of Spec(A ®y 1)
by the Galois action in the category of affine schemes. This can be useful
to interpret what is a scheme over an arbitrary field. Namely, schemes over
algebraically closed field are more geometric in nature and have more simpler
properties — we can therefore interpret a scheme over any field as quotient
by the absolute Galois group of k of a scheme over k.

Exercise 3. Noetherian topological spaces. We say that a topological space
is Noetherian if there is no infinite descending sequence of closed subsets in
X. Show that if A is a Noetherian ring, then Spec(A) is Noetherian. Does
the converse hold ?

Exercise 4. Properties of maps. Let A — B be a ring map. Denote by
f: Spec(B) — Spec(A) the associated map of schemes.
(1) Show that A — B is injective if and only Ogpec(a) = fxOspec(B) 18
an injective map of sheaves.
(2) Show that if A — B is injective then the image of f is dense.
(3) Show that if A — B is surjective then f is a closed embedding on
the underlying topological spaces.

Solution key. We show that if ¢: A — B is injective, then the topological
image of f: Spec(B) — Spec(A) is dense. Take any a € A not nilpotent.
Because the map is injective ¢(a) € B is also not nilpotent. Therefore
f~YD(a)) = D(¢(a)) # 0, implying that D(a) intersects with the image of
Spec(B), showing the claim.

O
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Some notation. We introduce some notation needed for exercise 5 below.
Let A and B be N-graded rings. Let d > 1. We define the graded ring

AD = P Ang

n>0

and vg: A@ — A for the canonical inclusion as a subring. This subring is
called the d-Veronese subring.

We say that a ring map : A — B is homogeneous of degree d if for n > 0
A, maps to Bg,>. For example for the usual grading on Z[z] show that
x — z% is homogeneous of degree d. Also, vy is homogeneous of degree d.

Exercise 5. Functoriality of Proj. Let A and B be N-graded rings. Let
1¥: A — B be an homegeneous map of degree d for some d > 1.

To the contrary of Spec, the functoriality of Proj is not evident. The reason
is that ¢~ 1(p) for a prime p € Proj(B) may contain the irrelevant ideal A .

(1) Show that

U¥) = {p € Proj(B) | ¥(Ay) £ p}

is open. Namely show that it is the union of opens D (¢(f)) for all
homogeneous f € A,.

(2) Find an example where U (%)) is a non-empty open strict subspace of
Proj(B).

(3) Show that ¢! defines a map of schemes 7, : U()) — Proj(A). Do
this by defining a map D1 (¢((f)) — D+(f) for all homogeneous
f € A and then glue.

(4) Show that if there exists a ko such that for all £ > ko the map
Ay, — Byy, is surjective then U (1)) = Proj(B). Show moreover that in
this case 7, is a topological closed embedding with image V. (ker(v)).

(5) Show that if there exists a ko such that for all & > ko the map
Aj, — By is an isomorphism then 7, is an isomorphism.

(6) Deduce that for any d > 1 and for vg: A4 — A the map r,, is an
isomorphism.

Solution key. (2) For example ¢: Z[z,y| — Z]z,y, ] the inclusion. Then
U(t) = Dy(x) UD4(y). In particular (X,Y) =1[0:0: 1] is not in
this open.

(3) We use that U(%)) is a gluing

Uw)=|J Spec(By))

a€Ay hom.

with gluing data is given by, at the dual level of ring of functions by
the natural maps

By (ay)

N

By — B(aa))

3Note that this means that the map factors through the d-Veronese subring.
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So to define a map out of U(%)), it suffices to define a map from each
Spec(B(¢(a))). To do this we glue the map induced by 1

Spec(B(y(a))) — Spec(A(q))-

This glues because the following commutes as every map is giving
by the natural extension-restriction of 1 to these rings
A@) — By

A(aa’) —— B
) — By(a))

(4) We first show that U(y)) = Proj(B). Let p € D,(b) any point of
Proj(B) and some homegeneous b € B,. Note that b0 is in the
image of ¥ by hypothesis, which concludes.

To show that the map is a closed immersion, it suffices to show
that locally

(¥(aa’))

A

Spec(B(y(a))) — Spec(A(y))
is a closed immersion. But therefore it suffices to show that the
underlying map of rings is a surjection. Because D (a) = D (a’)
for any N > 1 we can suppose that deg(a) > ko. But then an
element of B(y(,)) is of the form ﬁ with deg(b) = dndeg(a). But
as Ap deg(a) — Bdndeg(a) 1S surjective by assumption, we win.

Now we are left to show that the image is Vi (ker(¢)). It suffices
to show that it’s the image when intersecting to every D, (a). But
Dy (a) NV, (ker(¢))) = V(ker(¢)(4)), which concludes.

(6) Same local trick. It suffices to show that it’s locally an isomorphism.

Enlarging degrees is again harmless.
O

Exercise 6. Dimension. Let k be a field. Compute the irreducible compo-
nents and their dimension of the spectrum of the following ring

k[l‘, Y, Z,t]/(t%’,ty,tZ).
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Exercise 1. Closed subschemes of Proj. Let B be an N-graded ring and [
be a homogeneous ideal. Show that the subset

Vi(I) ={p € Proj(B) | I C p}

is closed in Proj(B) and can be endowed a scheme structure via Proj(B/I).
Show that for any b € B, homogeneous

(B/T)@) = By/11)-

In what follows, V4. (I) is taken in the schematic sense of the previous exer-
cise.

Exercise 2. Proj and base change. Let R be aring and R’ be an R-algebra.
Let A be an N-graded ring such that Ay is an R-algebra. Define B = AQr R’
and write ¢: A —» B.

(1) With the notations of week 4, exercise 5 show that U(y)) = Proj(B).
(2) Show that the commutative diagram

Proj(B) —— Proj(A)

| |

Spec(R’) —— Spec(R)

is a Cartesian squareH

(3) Let I be an ideal of R. Show that if " = R/I then we have
Proj(B) = Vi (6D,,>¢ [ A»n) inside Proj(A).

(4) Let R be a ring. Let R’ = R[zg,...,2,). Using the above, realize
P x g A?{H as the Proj of a graded ring.

Exercise 3. Blow-ups. Let R be a ring and I C R an ideal. We define the
blow-up of Spec(R) at V(I) to be the map (I° = R)

b: Bl = Proj(ED I") — Spec(R).
n>0

1t means that for every scheme X and pair of morphisms fi: X — Proj(A4) and
fo: X — Spec(R') that agree when further composing to Spec(R), then there exists a
unique morphism to f: X — Proj(B) such that f is fi and f2 when postcomposing with
the maps to Proj(A) and Spec(R') respectively.
1
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The ezceptional divisor of the blow-up is the closed subscheme of Proj(€D,,~¢ I")

E=V (PI1).

n>0
(1) Show that b defines an isomorphism of schemes
b: Bl \E — Spec(R) \ V(I).

(2) Let A be aring, R = Alxo,...,z,) and I = (xo,...,x,). Show that
E =P
Remark. Let us introduce a bit of intuition. Points (1) and (2)
subsume the key philosophy of blow-ups. First of all a blow-up is a
map which is an isomorphism outside of a the fiber closed subscheme
V(I). We will see later that in nice cases I/I? is to be interpreted as
the conormal bundle of V(I) in Spec(R) (i.e. tangent vectors going
out of V(I)). Therefore E can be interpreted as the projective space
of the vector space of directions outside of V(I). Meaning that for
each direction going outside of V'(I), there is a corresponding point
in E. For example, in the actual computation above, the exceptional
divisor E is the space of lines through the origin in A"*!, ie. P".

(3) Standard blow-up charts. Consider the same setting as in the last
item. Show that Bl; can be identified as the scheme

Vi (2:Y) — 2;i)
inside A" x P% = Proj(A[zo, . .., zn] ®a A[Ys, ..., Ys]) where the
grading is taken to be the Y-grading (see exercise 2.4).

Remark. See here for a representation of the blow-up at (zg,z71) of A?
using the standard charts. The projection to the z,y-plane is a bijection
outside of the pre-image of the origin which is a line.

Solution key. (1) We show that b induces an isomorphism
b: b H(U) = U.

To see this, let f € I so that D(f) C U. Note that Iy = Ry.
Therefore by the compatibility of Proj and pullbacks we have as in
the example above

b~ (U) = Proj(€P Ry) = Proj(Rylt]) = Spec(Ry).
n>0
As U is covered by such D(f)’s the above map is locally an isomor-
phism and therefore an isomorphism.
(2) Note that I"/I? is a free A-module of rank n + 1 generated by
To,...,Tn. More generally I"/I"*! is a free A-a module generated
by degree n-monomials. This leads to a graded isomorphism

P/t = A, .. @),

n

(3) We proof something more general.

Definition 0.1 (Regular sequence). Let R be a ring. A finite se-
quence of elements f1, ..., f, is said to be a reqular sequence if f; is a
non-zero divisor in R/(f1,..., fi—1) and R/(f1,..., fn) is non-zero.


https://www.geogebra.org/3d/tngxryfj

We show the following.

Proposition 0.1. Let R be a ring and I = (f1,..., fn) where fi,..., fn
form a reqular sequence. Then the kernel of the surjection sending
}/; tO fl(l)

Rvi,.... Y. - PI”
n>0

is given by the ideal J = (f;Y; — f;Y5).

Proof. We show this using two steps which both really heavily on
the regular sequence hypothesis.
First, we show that the kernel of

R"— 1
sending e; — f; is generated by the vectors e; f; — e; f;. We proceed
by induction on n the length of the regular sequence. For n = 0,1

the claim is obvious. To proceed inductively we define the chain
complex K,

RG) S R SR

with R placed in degree zero and differentials being respectively given
by e; j — fjei— fje; and e; — f;. Note that Hy(K),) of this complex
is R/(f1,..., fn). and that the claim amounts to this complex being
exact in the middle, meaning that H;(K,) = 0. Note that we also
have the following exact sequence of complexes

n

R(2) R" R

LoDl

n+1

R L—

R > R 0
Where the left vertical arrows are given by e; ; — e;; and ¢;; —
Ont1,5€i- The middle vertical arrows are e; — ¢; and e; +— 0j p41-
The first right vertical arrow is the identity.

By induction H;(K,,) = 0, and we want to show that Hy (K,4+1) =
0. The long exact sequence in homology gives

0= Hi(Kn) = Hi(Knt1) = R/(fiy- s fa) 2 RI(frye o fu),

where ¢ is the connecting morphism. The connecting morphism is
computed by following the red arrows on the diagram above. It

is therefore given by 6 = -f,11 the multiplication by f,y11. As
fi,- -+, fns1 is aregular sequence § is injective and therefore Hy (K1) =
0.

We have now understood the degree 1 elements of the kernel of
the surjection sending Y; to fi(l)

R[Y1,...,Y,] —>€BI”.

n>0



It now suffices to show that this kernel is generated by degree 1
elements.

Just for the rest of this proof, we call a polynomial F' € R[Y1,...,Y,]
to be of weight i if ¢ is the minimal integer such that F' € (Y1,...,Y})
but f(Y1,...,Yn) & (Y1,...,Yi—1). A weight 0 polynomial is defined
to be 0.

This proposition will be shown as a special case (but the general
case will be needed in the proof by induction) of the following.

Claim. Let F € R[Y1,...,Y,] be an homogeneous polynomial of
degree m with

F(fl,...,fn)E(fl,...,fk).

Then there exists an homogeneous polynomial G of degree m and
weight at most k such that F — G € (f;Y; — f;Y;). In particular if
F(fi,...,fa) =0, then F € J = (f;Y; — f;Y}), showing the proposi-
tion.

We prove the claim by induction on the degree m of the polyno-
mial. Let F' be a polynomial of degree 1. Then

k
F(fi,....fa) = Zaifi'
i=1

Therefore the weight k& and degree 1 polynomial G = Zle a;Y;
satisfies the claim: indeed F' — G is an homogeneous polynomial of
degree 1 with (F'—G)(f1, ..., fn) = 0. Therefore using the first part
of the proof above, we see that ' — G € J.

Now if F' is a polynomial of degree m, we show the claim by
induction on the weight [ of F. If [ < k, set F = G. Otherwise
write F' = Y;F1 4+ F5 with F; homogeneous of degree m — 1 and F5
of weight at most [ — 1. Recall that by hypothesis

lel(fla"'afn)+F2(f17--'7fn) € (fl,-*-afk;) C (flv"'afl—l)

and Fo(f1,..., fn) € (f1,..., fi—1) because Fy is of weight at most
[ — 1 by construction. Modding out by fi,..., fi_1 and using that
fi..., fiis aregular sequence we get that Fy(f1,..., fn) € (f1,..., fi—1)-
We apply induction on the degree to get a polynomial G of weight
at most [ — 1 such that F; — G1 € J. Now set G' = Y;G1 + F5. This
is a polynomial of weight at most [ — 1 because G and F5 are. Note
also that F — G’ = Y|(F; — G1) € J. Note also that G'(f1,..., fn) =
F(fi,...,fn) € (f1,-.., fx). By induction on the weight there is a
polynomial G of weight at most k such that G’ — G € J. But now
F-G=(F-G)+ (G- G) € J, concluding the proof. O
O

Exercise 4. Strict transforms. Let R be a ring. Let I be an ideal and
b: Bl; — Spec(R) the blow-up at the ideal I. Let J C R be another ideal.
We define the strict transform of V(J) to be the blow-up of V((I + J)/J)
in Spec(R/J).
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(1) Show that St can be identified with be the closed subscheme of Bly

vy <@ Imn J> :
(2) Show that b induces an isomorphism
b: Sty \E —= V(J)\ V().
(3) Resolving a singularity. Let k be a field. Compute the strict trans-
form with R = k[xo, z1], the ideal I = (¢, 1) and J = (2?2 — (23 +

z2)). Use the standard blow-up charts. Show that this strict trans-
form is regular.

Solution key. (1) By definition the strict transform St is

Proj(E(1 + J)"/J)
n>0
As the kernel of I" — (I 4+ J)"/J is I" N J we see that we can
realize the strict transform as the closed subscheme of Bl; given by
Vi @z I" N ).

(2) This is similar to exercise 3, point 1.

(3) Let k be a field and consider R = k[xg,z1], I = (zg,21) and J =
(22— (z3+23)) which is a singular plane curve, which is the called the
node. We compute the strict transform St ;. We claim that St ; = Ai
(which is regular) and that the blow-up map may be described as
AL — C C A}

A= (A2 —1,03 - )\).
We use the standard charts, meaning that we see Bl C A? x P!,
Recall that this inclusion is induced by the surjection

k[l‘o,xl,Yb,Yl] — @In
n

sending Y; to z; in degree 1. We claim that the preimage of the ideal

Vi (@ Imn J)
n
by the above map is given by (H, (x1Yy — z¢Y1)) where
H = (af — (25 + 25), 211 — (43Y0 + 20Y0), Y{¥ — (20Yg’ + Y5))

Indeed, for degree zero, one and two, these elements are sent to the
generator of J (we have I" NJ = J for n < 2).

We now argue that these generators are enough. Note that being
in I" for a polynomial means that the monomials forming it are at
least of degree n. Being in J means that the polynomial is of the
form f(xo,x1)(2? — (x3 + 22)) for an f(zo,71) € k[wo,71]. So we
see that if such an element f(zo,71)(z} — (23 + 23)) is in 1" N J,
then f(xg,21) € I"2 counting the degrees of the monomials because
(22 — (z3 + 23)) € I?\ I3. Therefore for n > 3 using the degree 2
generator and elements of I in degree 1, we can attain every element
of I N J.
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Therefore the strict transform is
PI‘Oj(A[QS(), x1, Yb, Yl]/(H, $0Y1 — aclYo))

Denote by B the grading ring we are taking Proj of. Note that
V+(H, zoY1—21Y0, Yb) = @, so that V+(H, zoY1—2x1Y0, }/0) C D+(Yb)
implying that

Proj(A[xo, x1, )/0, Yl]/(H, xoYl - 131}/0)) = Spec(B(yo)).
But, if we write % by y we get

(Yo) — A[;L'Ovl'l’y]/(l'% - (l’g + 1'(2))73313/ - (:E(2) + xO)a y2 - (:EO + 1)7 (l"oy - l’l))

= Alwo, yl/(y* — (w0 + 1)) = Aly].

Indeed using oy = z; the equation 27 — (z§ + x3) turn into

23(y? — (zo + 1)) and 1y — (3 + o) turn into xo(y* — (zo + 1))
which are both subsumed by the equation coming from degree 2.
Therefore we see that the strict transform is isomoprhic to A!. By
using that under this isomorphisms x¢ — y? — 1 and 1 — zgy =
y3 — y the claim about the form of the map follows.
O

Remarks. The equation of the last item is the equation of a nodal curve
which is a type of singular curve. See |here for a representation. The tangent
space at the origin has dimension 2, which is why the curve is not regular.
Since the blow-up at a point replaces a point by “directions out of the
point”, it is no surprise that blowing up a node at its nodal point removes
the singularity.

Exercise 5. A criterion for affineness. Let X be a scheme. Let f €
OX(X) Let

Xj={zeX| f(z) 0}

where f(x) denotes the image of f in k(z).

(1) Show that X is open.

(2) Show the following lemma.
Lemma. A scheme X is affine if and only if there exists fi,..., fn €
Ox(X) = A that generates the unit ideal in A and opens Xy, are

affine.

For item (2), show that it suffices to show that the natural map

is

F(X7 OX)fi - F(sz'7 OXfi)

an isomorphism.

To show this, show the following intermediate lemmas.

(a) For injectivity, show that if X is a quasi compact scheme and g €
['(X,Ox) such that the restriction of g to I'(Xy, Ox,) is zero, then
there is some n > 0 such that f"¢g =0 in I'(X, Ox).

(b) For surjectivity, show that if X admits a finite cover by affine schemes
with intersections being quasi-compact, then if g € I'(Xf, Ox f) then
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there is some n > 0 such that f"¢ is the image of an element
I'X,0x).

Solution key. We show the two lemmas mentioned in the exercise.

(a) We first treat the affine case Spec(A). If g € A is zero in Ay the
by definition of localization we get that there is some n such that
f"g = 0. Now if X is quasi-compact, we cover X by finitely many
open affines (U;);; and find n; such that f™g is zero when restricited
to the respective open affines. Taking N = max{n;} concludes by
the sheaf property.

(1) We also first treat the affine case X = Spec(A). If g € Ay the there is
some n > 0 such that f™g is the image of an element a € A. Now if X
admits a cover as in the hypothesis, then we can find a; in I'(U;, Oy;,)
such that a; restricted to U; ; is fg. Arranging n and a; by suitably
multiplying by power of f to get that such that a; restricts to fg on
Ui,y Now, a;—a; € T'(U;NUj, Oy,nu,) restricts to zero on (U;NUj) .
Therefore by item (a), there is some n;; such that f™(a;—a;) = 0in
I'U;nU;j, OUmUj)~ Again, up to multiplying by some suitable power
N we can replace a;’s so that they are compatible on intersections.
Therefore by the sheaf property there is some a € I'(X, Ox) which
satisfies what we want.

O

Exercise 6. Let k be an algebraically closed field. Are the following schemes
regular?

(1) Vi(XZ - Y?) C P?

(2) V(wz —y?) C A3

(3) Vi(XZ—-Y2 YW —-Z2 XW -YZ)CP3

4) V(y? —z(z — 1)(z+1) C A?
Hint: Be careful about the characteristic of k!

Exercise 7. Let k = F,(¢), and consider X}, = V(2P —t) C A}. Show that
X is regular.
However, let k' = F,,(t!/P) D k. Then show that X} is not regular.

Remark. As we will shortly see, we have a Cartesian diagram

Xk’ _— Xk

| |

Spec(k’) —— Spec(k).

We say that X/ is obtained by a base field extension (or base change) of
Xk.

What the previous exercise then tells us is that that being regular (or even
reduced) is not stable under field extensions. We will later see a notion,
called smoothness, which implies regularity, and which is stable under base
change.
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Exercise 1. Normal schemes and normalization An integral scheme X is
said to be normal if every stalk Oy , is integrally closed.

(1) Show that an affine integral scheme Spec(A) is normal if and only if
A is normal ring.

(2) Show that an integral scheme is normal if and only for every closed
point x € U the stalk Ox . is integrally closed for every open affine
vcx[l

The normalization of an integral scheme X is a scheme X together with a
dominant ma v: X — X such that for every dominant morphism from
an integral normal scheme f: Z — X there exists a unique morphism
f:Z = X with vf = f. Therefore the normalization is unique up to
unique isomorphism.

(3) Let A be an integral domain. Show that if X = Spec(A), then

Spec(A) is the normalization of X if A — A is the normalization of
A

(4) Show that every integral scheme admits a normalization.

Solution key. We first remark the following general fact about integral do-

mains
A= [j A

memax(A)

Indeed, if = € (Vyemax(a) Am the ideal
I,={a€ A|ax € A}

needs to contain 1, implying that z € A. Otherwise there is some maximal
ideal m D I,. But as we can write z = aA™! with a € A and A € A\ m, we
get that A € I, a contradiction.

(1) and (2)

Now suppose that for every maximal ideal m the local ring Ay, is normal.
Write K = Frac(A4). If a € K is the root of a monic polynomial in A[t],
it is therefore also the root of the same monic polynomial seen in Ay[t],
implying that a € Ay,. The above implies that a € A and as a byproduct,
A is normal.

For the converse, we show that any localization of an integral normal ring is
again normal. Say S is a multiplicative subset. Take z € K to be a root of
a monic polynomial in S~!A[t]. Clearing the denominators and multiplying

I¥or finite type k-schemes, this the same as saying every closed point of X. See week
10, exercise 1.
2A map is called dominant if the topological image of the map is dense.
1
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by enough elements of s, we see that there is an s € S such that sz is a root
of a monic polynomnial in A[t], implying that sx € A, and that z € S~ A.
(3) Note that first that if Spec(B) — Spec(A) is dominant with A reduced,
it implies that A — B is injective. Indeed, if a + 0, it implies that D(a)
does not meet the image. But then, D(a) = @), implying that a is nilpotent.
As A is reduced, the claim follows.

Now the universal property in the category of affine schemes amounts to
check equals by duality to the following. If B is normal, and A — B
is injective, then there is a unique factorization A — A — B. Consider
K4 — Kp the induced map. If x € K4 is the root of a monic polynomial
in Aft], the image in Kp is the root of the same polynomial seen in B[t],
implying that the image is in B. This concludes.

Now we prove that the universal property also holds in the category of
schemes. Let f: Z — Spec(A) be any dominant map from an integral
normal scheme. Cover Z by affine, necessearly normal integral, schemes
(Z;). Then f;: Z; — Spec(A) factors through Spec(A) by the above. By the
universal property, it glues to a necessarily unique map f: Z — Spec(ﬁ).

(4)

e First we make the important remark for the construction that nor-
malization preserves open immersions. More precisely, if A — A’ is
an affine map between integral domains that induces an open im-
mersion, then A — A’ also induces an open immersion. The key is

~——

that if S is a multiplicative subset of A, we have S—1A = S—1A.
Using this we show the claim. That A — A’ is an open immersion
means that there exists a finite number of functions a1,...a, € A
such that the localization A,, — A is an isomorphism, and the
image of the a;’s generated the unit ideal in A’. Using that we can
commute localization and normalization as stated above, we get that
the maps A,, — Aj, are also isomorphisms also, showing the claim.

e Now we show that any separated integral scheme admits a normal-
ization. Say X is such a scheme, and that X is covered by affine
schemes X;’s with affine intersection (by separated) X;;. We claim
that we can glue the schemes )Zi’s to a scheme X together with a
map X - X. By the above the image of ¢;;;: )Nfij — X, is open.
We write it U; ;. Now note that gpij,jgp;j}i: U;,; — Uj; is an isomor-
phism. We denote this last map ; ;. Using the universal property
of — in the affine case, it follows that (¥i5)i,5) s a collection that
satisfies the cocyle condition, allowing us to proceed to the usual
gluing construction. Note that the maps X; — X; glue by construc-
tion to a map X — X. To show that this has the required universal
property, let f: Z — X be any dominant map from an integral nor-
mal scheme. Write Z; = f~1(X;). By the above affine case there is
a unique map f: Z; — )?2 — X which glues to a necessarily unique
map f: Z — X showing the claim.

e The general case follows by the same pattern and the separated case.
Namely, any scheme can be covered by an union of open separated
(affine) schemes such that the intersection is separated.
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O

Exercise 2. Blow-ups. Let k be an algebraically closed field. You can use
the following.

Let A = klx1,...,x,)/(f). Denote by O;f the derivative of f with respect to
z;. Then

Spec(A) is regular <= V(f, 01 f, -+ ,0nf) = 0.

Moreover V(f,01f, - ,0nf) consists exactly of the non-reqular points of
Spec(A).

(0)

(1)
(2)
(3)
(4)

()

Let R be a ring. Show that if I = (fo,..., fn) is generated by a
regular sequence then Bl; = Vi (X, f; — X f;) in P, = P, x Spec(R).
(Use the lemmas in the blow-ups document from moodle)

Show that blow-up of (22, 3?) in Spec(k[z,y]) is not normal and that
the blow-up of (z,y) is its normalization.

Show that blow-up of (22,y) in Spec(k[x,%]) is not regular. What
are the regular points?é

Show that X = Spec(k[z,y, z,w]/(zy — zw)) is not regular. What
are the regular points?

Show that blow-ups of X at (z,y,z,w) and (z,z) are regular. We
denote these blow-ups by X; — X and X3 — X.

Remark. This is another example where blow-ups resolves (=re-
moves) singularities, as in 4.(3) of week 5.

Compute fibers of (z,y, z,w) of X; — X and Xy — X.

Solution key. This exercise was a previous year hand-in exercise so
solutions are credited to past students of the course who wrote them.

(1)(Joel) Let A = k[z,y], I = (22,4?) and R = A/I. Consider the
map ¢ : A[Z, W] — @D,,>o " which sends Z — z? and W — y? in
degree one. Then ker ¢ = (Zy— W), so Bl; = Proj A[Z,W]/(Zy*—
Wx?). Next, we show that the blow-up is not normal. Consider the
affine chart Uy, where W # 0, which is given by Spec k[, y, 2]/ (zy*—
2?) =: Spec B, where z = Z. Then Z € Frac(B), and (%)2 =

2 2 . : .
=2y~ = # = z. Hence, Z is a root of the monic polynomial

Px(t) = t — z with coefficients in A. Now 2 & B((,,)), as = is
not inverted in the localization, and the field of fractions of B, )
is the same as for B, we see that the blow-up is not normal.

The affine chart Uy can also be expressed as Spec k[z, y, z—z], and

similarly we get a chart Uz = Spec kz,y, Z—;] As above, neither
of these affine charts are normal, and we can normalize on the ring
level by exercise (2). Hence, for k[, y, ;—;} the normalization is given
by klz,y, z—;][i] = klz,y, 5] = kly, 5] = kly, 1], and similarly for we
get k[x,t'] as the normalization for the ring corresponding to Uy.
Thus we have two affine planes over k as the normalizations of our

charts.

3This investigation can be used to show that this blow-up is normal.



Let us inspect the blow-up of J = (z,y): the blow-up algebra
Bl; is isomorphic to A := k[z,y][Z, W]/(zW — yZ) by the same
procedure as in the beginning. Here, we have the charts Uw
Spec klz,y,2']/(x — y2') = Spec k[z,y, 7] = Spec kly, 7] = K[y,

R = 1l

when W # 0 and similarly Uz = Spec k[z,y,w']/(z — yw')
Spec k[x,t'], which are the normalizations of the two affine charts
of the blow up of (22,4%). Now, on the intersection Uz N Uy of

Proj Bl; we have Z,W # 0, so Uz N Uw = k[z,y, z—;, Z—z], with its

normalization given by k[z,y, = 4 = kly, Z, 4], which corresponds

to the intersection on the blow up of (z,y). Hence, we can glue to
. . 2 2

get the normalization of the blow-up of (2=, y).

(2)(Joel) Let I = (22,y) and R = A/I. The blow-up is iso-
morphic to Bl; & Proj A[Z, W] = Proj klx,y][Z,W]/(yZ — 2*W),
which we can cover with Uy = Spec k[z,y][a]/(y — ax?®) and Uy =
Spec k[z, y][b]/(by — 2%), where a = % and b = Z&. On Uy we see
that at the point x = b = 0 the scheme is not regular by the criterion
provided in the exercise, as (0,0,0) € V(by — 2%, —2z,b,%). This is
the only non-regular point, as on Uz we have V (y—ax?, —2a,1, —x?) =
@. Hence all points except x =y = W = 0 are regular.

(3)(Julie) Let g = zy — zw € k[z,y,z,w|. By the criterion pro-
vided in the statement of the exercise, the set of non-regular points

in "
Spec I:x7 y? Z’ w]
(zy — zw)
is given by

V(gv 8J:gaayg’azgaaw ) = V(xy_zwvyvxa —w, _Z) = V(ﬂs,y,z,w) = {(ﬂ:,y,z,w)},

where the last equality holds by maximality of (x,y, z, w) in k[z, y, z, w].
Hence, all points of X are regular except for (z,y, z, w) (correspond-
ing to the origin in V(zy — 2w) C A}).

(4)(Maxence) Consider R = k[z,y,z,w]. Let I = (z,y,z,w),
I' = (z,2) and J = (zy — zw). We consider the strict transform
Sty (vesp. St’}) of V(J) = X at I (vesp. I') in A}. We denote
these schemes as respectively X7 and Xo. We know that X; (resp.
X>5) is the closed subscheme V (€D, 1" N J) of Bl; (resp. the closed
subscheme V. (€,, I'" N J) of Blp).

Notice that Bl; = Proj(R[X,Y, Z, W]/I) and Bl;» = Proj(R[X, Z]/I")

where

I = (yX—2aV,2X—aZ wX—aW,yZ—zY,yW—wY, :2W—wZ) and I' = (2:X —z2).

So, the preimage of the ideal @,, I" NJ by the natural surjection
is given by the ideal K = I+ (zy— 2w, xY —2W, XY — ZW). Indeed,
it must be generated in R[X,Y, Z, W] by homogeneous polynomials
with degree less or equal to 2 with respect to the variables X, Y, Z, W
whose image is send to the generator of J which has degree 2. These
generators are enough since every elements f in I has monomials of
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at least degree n and if f € J, then f = g- (zy — zw). Since zy — zw

is of degree 2, the polynomial g must be of degree n — 2, hence

g € I"2. So for every element in I" N .J with n > 3 can be reach

using generators of K. In the same way the preimage of @, I'"" N J

by the natural surjection is the ideal K’ = I’ + (zy — zw, yX — wZ).
That is,

X1 = Proj(R[X,Y, Z,W]/K) and X, = Proj(R[X, Z]/K").

For X; on Di(X), we have Ox, (D4 (X)) = k[, s1, S2, s3]/ (51 —
s983) by simplifying the equations of K. And by the criterion, the
affine open subset D, (X) of X; is regular. The same result holds
for D4 (Y),D1(Z) and D4 (W) by symetry of the variables. Hence
X is regular.

For Xy on Dy (X), we have Ox, (D4 (X)) = k[z,w, s] by simplying
equations of K’, and so D4 (X) = A} which is regular. The same
result holds for D (Z) by symetry. Hence X5 is regular.

(5)(Maxence) We want to compute the fiber of f; : X; — X and
fo: Xo = X over (z,y, z,w).

First, the residue field of (z,y, z,w) € X is simply k by exactness
of localization, so for i = 1, 2, we need to compute the fibred product
X, xx Spec(k). Hence, if we denote A = k[z,y, z, w](xy — zw) we
have

AX,Y, Z, W]
K

Looking at these tensor products, by using A-linearity all relations
given by K vanish except XY — ZW = 0 in the residue field of
(x,y, z,w) by its definition. The same holds for K’ but here all its
relations vanish.

It yields that

!/
X1 x xSpec(k) = Proj ( ®A k) and X9 x xSpec(k) = Proj (A[‘;((’Z] ®a k:> .

X1 xx Spec(k) = Proj(k[X, Y, Z, W]/(XY = ZW)) = P}, Xspee(r) P

and

Xy xx Spec(k) = Proj(k[X, Z]) = P}.
O

Exercise 3. Integrality/reducedness of Proj. Let B be an N-graded inte-
gral/reduced ring. Show that Proj(B) is an integral /reduced scheme.

Solution key. If B is reduced any localization is also. Therefore the degree
zero part of any localization by homogeneous elements are also. It implies
that Proj(B) is reduced. If B is integral, the product ss’ of two non-zero
homegeneous elements s, s’ is never zero. It implies that the degree zero part
of By is not zero also. It implies that the intersection of two non-empty
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opens is never empty in Proj(B). Therefore Proj(B) is irreducible. Being
also reduced, it is integral. O

Exercise 4. Fibers.

(1) Compute the fibers of the morphism
Spec(Z[z, vy, 2]/ (222 + 9y*)) — Spec(Z).

Which fiber is reduced ? Which fiber is integral ?
(2) Compute the fibers of the morphism, where p is a prime number

Spec(Z[x,y)/(zy® + p)) — Spec(Z).
Which fiber is reduced ? Which fiber is integral ?

Solution key. (1) The fiber over 2 is not reduced. The fiber over 3 is
reduced but not integral. It is integral over any other prime by
Eisenstein criterion.

(2) The fiber over p is not reduced and not irreducible. Othewise it is

isomorphic to k[z,y,y '] where k is a prime field not equal to Fp.
O

Exercise 5. Properties under base change. Let f: X — Y be a morphism
of schemes. Which of the following properties are stable under base change?
Prove the statement or provide a counter-example.

(1) fis an open immersion.
(2) fis a closed immersion.
(3) f is injective.

(4) f has integral fibers.
(5) f has reduced fibers.

Solution key. Statements (1) and (2) are true (proof below), for (3) take
Spec(C) — Spec(R) while a counter example to the remaining is the map
Spec(F,,(t'/P)) — Spec(F,(t)), base changed against itself.

Let us start with open immersions. Up to composing by an isomorphism we
can suppose that f: X — Y is U C Y an open.

But now we see that the following is a pullback diagram

U —— U

f ’l lf

Y’ —— Y

Let U = ¢g~(U) C Y’ open, equipped with the open-subscheme of Y-
structure. Indeed the universal property of the pullback here reads as a
map Z — Y’ that topologically factors to the open f~1(U), implying that
it factors schematically because the sheaf on the open is just the restriction
of the sheaf on the all set.

We now prove and (2). First, amap f: X — Y is a closed immersion if and
only if f: f~1(U;) — Uj is a closed immersion for | JU; = Y an open cover.
Indeed a subset Z C Y is closed if and only if U;NZ C U; is closed for every
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¢ and to check that the desired sheaf map is surjective is and only if it is
locally.
Therefore if

X — 5 X

b

y 4y

is a pullback diagram with f being a closed immersion, we can reduce to the
affine case as follows. First, take a cover (U;) of Y by affines, and consider
the cover of X induced by the pre-images (¢~ !(U;)). Then cover each of
these opens g~ 1(U;) by affines (V;;). Then

Vi) —— fH(U))

I s

Vij — Ui

is again a pullback diagram.

We now use the following lemma.

Lemma. Let X = Spec(A) be affine and v: Z — X a closed immersion.
Then the natural map Z — Spec(Oz(Z)) is an isomorphism and

A 04(2)

is surjective. If I is the kernel of this map, we therefore have

Z ———— Spec(A)

|

Spec(A/I)

Proof. Let Z = U;V; a finite covering by affines. By hypothesis V; =U; N Z
for some open U; of X. Covering all U; and X \ Z by finitely many principal
opens of X we can suppose that V; = D(f;) N Z for some f; € Ox(X) with
(fi) being the unit ideal in A, and therefore in Oz(Z) also. Now we use
week 5.5.2 to conclude that Z is affine. Therefore Z — Spec(Oz(Z)) is an
isomorphism.

By assumption for every p € Spec(A) the map Oxp — (1.Oz), is surjective.
When p ¢ Z the right is zero and coincides with Oz(Z),: indeed take
p e D(f;) C X\ Z, then as D(f;) N Z = (), we conclude that f; in Oz(2)
is nilpotent and as Oz(Z)y is a further localization of Oz(Z), = 0 we have
our claim. When p € Z the right hand side is Oz, and because X and Z
are affine this is Ay — Oz(Z),. So we conclude that A — Oz(Z) is a map
of A-modules surjective at every localization at primes, implying that this
map is surjective. U
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Therefore f~1(U;) is also affine. Because the inclusion of affine schemes into
schemes preserve limits, we are therefore in a situation
Spec(B®4 A/I = B/IB) —— Spec(A/I)
lf ! lf

Spec(B) g > Spec(A)

which concludes.
O

Exercise 6. An open of an affine is not neccesarly affine. Let R be a
non-zero ring. Show that U = Spec(R[x,y]) \ V(z,y) is not affine.
Hint: compute O(U) using an appropriate cover and the sheaf property.

Solution key. We use the cover D(x)U D(y) and the sheaf property to com-
pute global sections of U. Because x,y are non zero divisors, localization
maps R[z*! y] — R[zT!, 4! and R[z,y*'] — R[z*!, y*!] ar injective and
we may treat them as inclusions. Now, global sections are the elements of
the kernel of the map

Rz y] x Rl y™] — Rlz™! y™]
that sends (f,g) — f — g. In other words
O(U) = Rlz*',y] N Rlz,y™'] = Rlz,y].
If U was affine, then the natural U — Spec(R][z,y]) would be an isomor-
phism, because it an inclusion of an open, an equality. But because R # 0,

Spec(R[z,y] \ U) = Spec(R) is non empty, a contradiction.
O
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Exercise 1. Finite covers of IP’}C. Let n > 1. Consider the self map ¢, of
C-schemes on Proj(C|z,y]) = PL induced by Proj from the C-algebra map
xz+— 2" and y — y" on Clz,y].

(1) Compute the preimage by this map of D (x) and D4 (y), show it’s
affine and show that the induced map of rings at global sections
c; Y (Di(z)) — Dy (x) (and same with y) is finite.!

(2) Compute all the fibers of the map.

Solution key. (1) The preimage of D4 (x) and Dy (y) is Dy (z") = D4 (x)
and D4 (y") = D4 (y). The map on ring of functions is given the C-

n
algebra map given by sending ¥ (%)n and ¥ — <§> . Now note

that C[t"] C C[t] is finite free of degree n. A basis being 1,¢,...,t" 1.
(2) The generic fiber is C() because the generic point’s unique preim-
age is the generic point for dimension reasons. But let us also de-
duce as follows. Locally this amounts to compute the tensor prod-

uct=pushout of

Cle/il =Tl /]

!

Clz/y)

But note that localizing C[x/y| at the multiplicative (C[z/y])" \ 0
(where the power n here means elements of this ring that are the
n-th power) is the same as localizing by the multiplicative subset
Clz,y] \ 0. Indeed inverting an element or it’s n-th power is the
same. As for the fiber of closed points, say (t — \) where t = x/y or
y/z seen in Dy (z) or Di(y), we get

Spec(CJt]/(t" — N)).

So if A = 0, we get a single non-reduced point and n-copies of
Spec(C) otherwise.
O

1A map of rings A — B is finite if B is a finitely generated A-module. This implies
that this self map is a finite map of schemes a notion to be introduced in the lecture soon.
1
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Exercise 2. Cones. Let S be a graded ring finitely generated in degree 1.
We define the Cone of Proj(S)? to be the Spec(S). We call v := V (S, ) the
vertex of the cone.

(1) Consider T' = Bl,(Spec(S)). Suppose that S is generated in degree
1. Show that the blow-up algebra (see week 5, exercise 3) is

s-@ Do

n>0 \ k>n

The aspect generated in degree 1 is crucial for the above. We suppose
this for the rest of the exercise.

(2) Show that the natural graded map S — S’ induces a morphism
f: T — Proj(S).

(3) Show that f restricted to the exceptional divisor of the blow-up is
an isomorphism.

(4) Let a be an element of degree 1 in S. Show that f~1(D,(a)) =

Spec(S(q) [t]).

Solution key. (1) Note that as the algebra is finitely generated in degree
1, we have that for n > 1

(51)" = P Sk-

k>n

The result follows.

(2) Just note that Sp-generators in degree 1 are sent to S-generators in
degree 1.

(3) Note that S7/S"*! = S,,. Therefore, the result follows.

(4) Let a € S; be a degree 1 element. We denote by B the blow-up
algebra we are working with, and if f; € S; then we denote by
Jfi,(k) € By for this element placed in degree ¢ > k.

We first remark that S(,) embeds as a ring in B(%)) by

f T,
7]12 = kk(k) :
a a(l)

Note also that any element in B, ) is a sum of elements of the form
Ji k)
k
‘)

where f; € S; with ¢ > k£ > 0. Now note that in B, if d =7 — k, we
have

fiwyayy = fiwaioy = (fia") s
In consequence we can express the above as

fiy _ [ fow) )\ fiw \ 4
— = — | a = — ] a .
ak al (1) al (0)
1) (1 (1)
2Note that the following algebra depends on the algebra S, and so not only on the
isomorphism class of Proj(S).
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In consequence the S, -algebra map S, [t] — B ) sending to

a(l
t — a() is surjective. We claim that it is also injective. Indeed,
suppose that (here each i in the sum depends on d but we omit it to

simplify the notation)

" fi)
0=3 (5t
d=0 1)

Then, there is a N > 0 such that in (B)n = @~y Sk we have
n . n .
0= 3 () = 3 ()
d=0 d=0

But each individual term of this sum is of degree (seen as elements
of S) d+ N. Therefore, the claim follows.
Remark. Note that we proved more precisely that By

P 5@)(D+(a)).

d>0

a) identifies with

We see therefore that the blow-up of the cone at vertex identifies with
V(Oproj(s)(—1)), the canonical bundle on Proj(S). You may be able to
understand these notations at the end of the lecture.

O

Remark. Some interpretation. Say Sp = k. Take generators in degree 1
of S as a k-algebra. It gives a closed embedding in P}}. We can therefore
interpret X as a certain subset of lines in k"*!. The cone consists of those
lines in ATkLJrl. The vertex v correspond to the origin where all lines meet.
Recall that X can be seen as the G,,-quotient of Spec(S) \ v. Blowing up
at the vertex replaces v by all directions going into v inside Spec(S), i.e. X.
We will soon see that T is a line bundle over X, in fact the one associated to
Ox(—1). The zero section of this line bundle correspond to the exceptional
divisor in the above point of view.

Exercise 3. Functions on integral schemes and So property. Let X =
Spec(A) be an integral affine scheme. Denote by 1 the generic point of X.
Denote by K(X) = Ox,. Let f € K(X). Define

I'={ge Al fge A},

the ideals of denominators of f.

(1) Show that X \ V(I) is the largest open subscheme U of X such that
feo X(U)

(2) Geometric interpretation of the Sy property. Suppose that X is an
affine integral So scheme. Let f € K(X). Show that if V(I) has
codimension® at least 2, then V(I) is empty.

(3) Deduce that if X is an affine integral So scheme then if f € Ox(U)
with X \ U being of codimension at least 2, then f € Ox(X).

3meaning that every irreducible component of V' (I) has codimension at least 2
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X
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FIGURE 1. Some illustration of the above remark about Ex-
ercise 1.

Remark. We can drop the affine condition and do basically the same
exercise using the language of quasi-coherent sheaves.

Solution key. (2) Denote by A the integral domain we are now working

with, let f € K = Frac(A) and denote by I the ideal of denomina-
tors. Let p € V(I) a minimal prime. Therefore \/IA, = pA,. By
contradiction, suppose that it is of height at least 2. By the (S2)
hypothesis, we see that therefore is a regular sequence g,h € pA,,
and therefore without loss of generality in IA,. Let also a,b € A
such that

PR
g h
This implies ha = bh. As (g, h) is regular, this implies that a € (g)
reducing mod (g). But then f € A, implying that 1 € pA,, a
contradiction.
If fe Ox(U)then U C X\V(I). SoV(I) C X\U. By the previous
point, V(I) is empty.

O

Exercise 4. Fibers (2).

(1)

Show that for the morphism Spec(k[x,y]/(xy)) — Spec(klz]), in-
duced by the obvious map k[x] — k[z,y]/(zy), every fiber is irre-
ducible, although the Spec(k[z,y]/(xy)) is not.



(2)

5

Show that for the morphism Spec(Q[t]) — Spec(Q[t]) induced by
t — t2 there are infinitely many closed points with irreducible fibers
and infinitely many closed points with non-irreducible fibers.

Exercise 5. Separated schemes. Use the definition of separated maps to
show the following.

(1)

(2)
(3)

Show that a scheme X is separated if and only for every pair of open
affines U and V/, the intersection U NV is affine and the natural map
Ox(U)® Ox(V) = Ox(UNYV) is surjective. Show also that this
holds if we suppose that there exists a cover (U;) by open affines such
that all their intersections (U;;) are affines with Ox (U;) @ Ox (U;) —
Ox (Usj) is surjective.

Show that Proj(B) — Spec(Z) is separated for any N-graded ring
B. (Using (1) can be handy)

Let k be a field. Let X be the scheme which is the gluing of two copies
of Al = Spec(k[t]) on the open subscheme G,, = Spec(k[t,t™1]).
Show that X — Spec(k) is not separated.

Solution key. (1) We show that a scheme X is separated if and only if

for every (for a cover by) affine opens U and V (or for all pairs of
any affine cover) of X

e UNV is again affine,

e the natural map Ox(U) @ Ox (V) — Ox (U NV) is surjective.
If X is separated note that U NV can be realized as the closed
subscheme of the affine scheme U x V' = Spec(O(U)) x Spec(O(V))
which is (U X V)NA, where A C X x X is the diagonal and is a closed
subscheme by very assumption. This explains that the conditions are
necessary. To see that they are sufficient, note that to check that
A C X x X is a closed immersion we can check it locally on any
affine cover (U; x Uj);; of X x X where (U;); is any affine cover of X.
But now we see that the first condition ensures that the intersection
ANU; xUj is affine, and the second condition tells that it is a closed
immersion.
Now for a scheme of the form Proj(B), it suffices to show it for stan-
dard opens of the form Dy (f) and D4 (g) for f and g homogeneous.
The intersection is affine, being D, (gf). We need to show that

B(py @ Bg) = Bz

is surjective. But any degree zero element - can be written as a

fig?
product of degree zero elements Jf—]@% for appropriate b € B and

N,M € N.

We can use the criterion displayed above. Denote by Al and A; the
two different copies of Al inside this scheme. Their intersection is
their common G,, by construction. It is the second property in the
criterion above that fails. Namely

E[t] ® k[t] — E[t,t71]



is not surjective, missing t~!. This shows that X — Spec(Z) is
not separated. As a byproduct X — Spec(k) is also not separated.
Indeed if it was, as Spec(k) — Spec(Z) is, X — Spec(Z) would also.

O

Exercise 6. Gradings, geometrically. In what follows we write
Gy = Spec(Z[t, t71]).

Note that Z[t,t~!] — Z[x,27 ! y,y~ '] defined by ¢t + zy gives a map of
schemes®

m: G, x G, = Gy,

which we call the multiplication.
A G,,-action on an affine scheme X = Spec(A) is a map®

w: Gy x X - X

such that the following diagram commutes®

GmemxXMGmxX

| Jo

GnxX —" X

and if ¢ denotes the map c¢: X — G,, x X induced by the evaluation a 1,
then pc = id.

(1) Show that the set of Z-gradings on a ring A (meaning gradings that
turn A into a graded ring) is in one to one correspondence with the
set of G,,-actions on Spec(A).

(2) Let d > 1, S and R two Z-graded rings, with associated action ug
and pp. Show that (where (=)?: G,,, — G,, is induced by Spec by
the ring map determined by t — t%)

Gm % Spec(S) —2 Spec(S)

()] |#

G % Spec(R) —22 Spec(R)

commutes’ if and only ¢ factors through S (@) — D,, Snd, meaning
that is it homogeneous of degree d. Compare with the notion intro-
duced in Exercise 5, week 4.

(3) Let A be a Z-graded ring and Ay — A the inclusion. Show that
m: Spec(A) — Spec(Ap) has the following universal property. For
every affine scheme X and map f: Spec(A) — X with the property

4We have Gm X G, = Spec(Z[z,z ", v,y .

SWe have G, X X = Spec(A[t, ¢ 1].

6We have G X G x X = Spec(Alz,y, 2",y 1.
7On points, this means that fOz) = X f(x).



that

G x Spec(A) —2— Spec(A)

przl l ¥ (Gyp-invariant maps)

Spec(A) —J . x

then there exists a unique map f: Spec(Ag) — X with fr = f. It
means by definition that 7 : Spec(A) — Spec(Ap) is the quotient by
the action of G,, in the category of affine schemes.

Solution key. This exercise was to hand in in a previous years so solutions
are credited to past students who wrote them.

(1) (Daniil) Let’s use the equivalence of categories of rings and affine schemes.
So to each diagram from the definition of the action of G,, on an affine
scheme X corresponds one to one with a map of rings pu*: A — A[t,t7!]
such that

A[l’, 3371, Y, yil] W A[tv til]

(t—my)@idT M*T

*

At ——— A

and the composition of y with evaluation at 1 (denoted by c) is id.
Write pu(a) = > a;t'. The commutativity of the diagram means

)

Y ailyr)' = ((t = wy) @id) (Y ait’) = ((t = 2y) @ 1d) (u*(a))

% %

commutativity:of the diagram (id ®M*) (M ( ) _ ld ®1u Z az Z M*(ai)xi-

In other words, the diagram above commutes if and only if p*(a;) = a;9" i.e.
if and only if a; belongs to A; = (u*) "1 (At). As for the second condition,
it holds if and only if a = ), a;.

It now follows that A = @ A;. The sum is direct because u is an injective
map of abelian groups.

Note also that A;A; C A;4; because p* is a morphism of rings. We then see
that this gives an associated grading on the ring A.

Now given a grading on A = ®A; where we denote a = ) a; we see that
p*: A — A[t,t7!] sending a — Y a;t’ is a ring morphism and using trans-
lations in algebra of the two conditions of a Gy,-action, we see that u* is
indeed one. These constructions are by construction inverse to each other.

(3)(Karl) Since X is an affine scheme, let’s just say X = Spec(B). The
morphism f correspond to some morphism ¢ : B — A. Let ¢ denote the
inclusion A9 — A. The pry is induced by the inclusion of A into A[t, ¢+,
which we’ll call i. We want to show that there is a unique ¢ such that the
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diagram below commutes.

A[t7t_1] * A
2 /
; Ao 6
K\
A / AN
p B

We note that for b € B, i(¢(b)) = p*(4(b)) if and only if ¢(b) € Ag. So we
can define ¢ = ¢l40 which is necessarily unique because ¢ is injective.

O
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Exercise 1. Closed subschemes.

(1) Let X be a scheme. Let Z be a quasi-coherent ideal sheaf. Let
Z = supp(Ox/Z). Denote by ¢ : Z — X the inclusion. Show that
(Z,1*Ox/I) is a scheme. In what follows, V(Z) denotes the above
associated scheme.

Hint: This is a local question. So using that I is quasi-coherent you
can reduce to the case where X is affine and I correspond to an
ideal.

(2) Show that V(Z) is a closed subscheme of X.

(3) Show that

{Quasi-coherent ideals of Ox} +— {Closed subschemes of X}

sending Z to V(Z) is a one-to-one correspondence.
(4) Let Spec(A) be an affine scheme. Show that

{Ideals of A} <— {Closed subschemes of Spec(A)}

sending I +— (Spec(A/I) — Spec(A)) is a one-to-one correspon-
dence.

Hint: You may use the equivalence of categories between quasi-coherent
sheaves of Ogpec(ay-modules and A-modules. For a proof which does
not use this fact, see the solution of exercise 5, week 6.

Exercise 2. Intersection of affine schemes. Let X be a scheme and U,V C
X be open affine sub-schemes.

(1) Show that if X is separated then U NV is affine.
Hint: Show that UNV 2 X xxxx (U x V).

(2) Show that U NV is not necessarily affine if X is not separated.
Hint: remember this open of an affine which is not affine? Play with
this.

Solution key. For the first point, the claim follows from the Hint because
the intersection is realized has a closed subscheme of an affine scheme. For
the second point, one can take the affine plane with two origins. O

Exercise 3. A map from a proper scheme to a separated scheme is closed.
Let f: X — Y be a map of S-schemes. Suppose that Y — S is separated.
(1) Show that the graph (id, f) =T'y: X = X xgY is a closed immer-
sion.
(2) Let Z C X a closed subscheme proper over S. Show that f; is
closed.
1
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Solution key. The first point follows because

x—1 Ly

| |a

XxgY 2y wgy
is a pullback square. The second claim follows because Z — Z xgY — Y
is closed, the first map being closed by the first point and the second map
being closed by universal closedness of Z — S.

O

Remark. This fact is analogue to the topological result that a continuous
map from a compact topological space to a Hausdorff space is always closed.

Exercise 4. Morphisms into separated schemes. Let S be a scheme. Let
X — S and Y — S be S-schemes. Suppose that X is reduced and ¥ — S
separated. Show that two morphisms of S-schemes

fl)fQ: X =Y

that coincide an open dense subset of X are equal.
Give counter-examples if one of the hypotheses is dropped.

Solution key. Let Z be the scheme where f; = fy i.e. the pullback

7 fi=f2 %

! Ja

x Iy oy

Because Y is separated Z is closed in X. Because of the assumption, Z = X
topologically, but then schematically because X is reduced.

We provide a counter-example if X is not reduced. Consider the two k-
algebras maps (k being a field say)

klz] = klz,y]/ (zy, y°)

sending x to « and x + y respectively. The induced maps on Spec agree on
D(z) which is dense. O

Remark. This fact is analogue to the topological result that if two con-
tinuous morphisms to a Hausdorff space agree on a open dense then they
actually agree everywhere.

Exercise 5. Generically finite morphisms.

(1) Let k be a field. If & — A is finite, show that every prime of A is
maximal.

Let f: X — Y be a dominant morphism between integral schemes.



(2) If f is finite, show that dim(X) = dim(Y").
Hint: reduce to the affine case. Then use going up and that the map
is surjective. Use point (1) to deduce that if A — B is finite and the
preimage of two primes in B is the same in A, then the two primes
are not included in one another.

(3) If f is finite type and K(Y) C K(X) is a finite extension of fields,
show that there exists an non-empty open U C Y such that f: f~1(U) —
U is a finite morphism.
Hint: first prove the case where both X and Y are affine and then
battle to use this case to conclude.

Solution key. (1) Because A is a finite dimensional k-vector space, it
is Noetherian and Artinian. Let J be the Jacobson radical of A.
Because of the Artinian hypothesis, J* = J"*! for some n. Then by
Nakayama J"™ = 0. It implies that the Jacobson radical is equal to
the radical.

Also, A has a finite number of maximal ideals. Indeed if not
say (m;) is an infinite list of distinct maximal ideals. Then by
the Artinian property, m; N---Nm, = my; N--- N m,4;. But then
my---m, C my41, a contradiction (see a similar argument below).
Say mq,...,m, are the maximal ideals.

If p is prime, then my N ---Nm, C J C p. If for all m; we have
m; € p, then we have elements x; € m; € p. But then z;---z, €p a
contradiction.

(2) The dimension is equal to the one of a dense open. So we can
reduce to the affine case. Now, let A — B be finite between integral
domains. Let pg C - -+ C p, a maximal chain of primes in A, meaning
that there is no prime lying in between those. Because the map is
finite, the map on Spec is surjective so we have qqg lying over py. By
going up we can lift to a chain in B. We now argue that we can
not fit any more primes in the above list. If so, we would have two
primes q C q’ with the same image in Spec(A). But by the previous
point if two primes are in the same fiber, because the fiber has only
maximal ideals, we see that q = ¢'.

(3) Note that without loss of generality Y is affine. We first begin by
supposing that X is also affine. We are then in the situation of a
finite type map A — B between integral domains, such that this
map induces a finite extension of fields at the fields of fractions. Say
that by,...,b, generates B as an A-algebra. By hypothesis, there
exists polynomials f; € Frac(A)[t] such that f;(b;) = 0. Therefore
there exist a non-zero element g € A, namely the product of the
denominators of each coefficients of the polynomials f;, such that
b1,...,by, are integral over A,. This implies that A, — B, is finite.

Now we show the general case. As f: X — Y is finite type over
an affine scheme, there exists a finite covering by affine schemes
X; of X. By the preceding case, there exists U; C Y such that
f~YU;) N X; — Uj is finite. We may replace Y by the intersection
of the U;’s and also suppose that it is affine. With this reduction,
we are now in the following situation: we have a covering X; of X



such that X; — Y is finite. Let V be the intersection of the X;’s.
Say that A — B is the finite ring map corresponding to X; — Y.
Say that 0 # b € B is such that D(b) C V. Note that as b is integral
over A, there is a polynomnial with non zero-constant coefficient
S g ait’ € Aft] such that f(b) = 0. Therefore,

b (zn: aibi1> = —ayg
=1

Therefore, there is a non-zero element b’ € B such that a := bl €
A. Tt implies that f~1(D(a)) ¢ D(b) € V C X;. Therefore
f: f~YD(a)) — D(a) is finite.

O

Exercises 6, 7, and 8 are purely about the underlying topology of the schemes
in question.

Exercise 6. Projection from affine spaces. Let R be a ring.

(1)

(2)

Show that
m: Spec(R[t]) — Spec(R)

is open. More precisely, if f = 3" a;t* show that
T (D(f(1))) = |J D(a).

Let g(t) € R[t] be a monic polynomial and f(t) € R[t]. Remark that
R[t]/g(t) is a free R-module of rank deg(g). Let x(X) = > /' r X"

be the characteristic polynomial of the multiplication by f(t) on
R[t]/g(t). Show that

n—1

T(D(f)NV(g)) = |J D(ra).

%

Solution key. (1) Let p € Spec(R). Then p € n(D(f(t))) if and only if

(2)

k(p)[t] ¢ # 0 if and only if f(t) # 0 in k(p)[¢] if and only if there is
some 7 such that a; & p.
Let p = qN R with g € D(f)NV(g) in the image. So we have a map
k(p)[t]/(g(t)) — k(q). Note the following fact: by Cayley-Hamilton
f is nilpotent in k(p)[t]/(g(t)) if and only if p € V(ro,...,7n—1).
Note also that f # 0 in k(q) because q € D(f). So f is not
nilpotent in k(p)[t]/(g(t)) and therefore p € (J;2, D(r).
Reciprocally if p € [J; D(r;), the by the above argument f is
not nilpotent in k(p)[t]/(g(t)). Therefore there is some q ¢ f in
k(p)[t]/(g(t)) meaning that g € D(f) NV (g), which is therefore sent
to p.
U
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Exercise 7. Chevalley’s theorem. Let X be a Noetherian topological space.
A subset T C X is called constructible if it can be written as a finite union
of sets of the form U N V¢ where U and V are open sets.

(1)

(2)

3)

Show that if X = Spec(R) for a Noetherian ring R, a subset is
constructible if and only if it can be written as a finite union of
subsets of the form D(f) NV (g1,...,9m) with f,g1,...,9m € R.
Show using exercise 6 that

m: Spec(R[t]) — Spec(R)

sends constructible subsets to construtible subsets.

Hint: Show by induction on ), deg(g;) that if f,g1,...,9m € R[t]
are polynomials, the image of D(f) NV (g1,...,gm) is constructible.
To conduct the induction step, consider o the leading coefficient of
g1. Break down the study on the open and closed D(«) and V(a) to
reduce the sum of the degrees.

Deduce Chevalley’s theorem. Let f: X — Y be a finite type mor-
phism between Noetherian schemes. Then f sends constructible sub-
sets to constructible subsets.

Solution key. (2) Note that we already know two cases. Namely the case

D(f) and the case D(f) NV (g) where g is monic. We proceed by
induction on the sum of the degrees of g; — also we order them such
that they have increasing degrees. Let ¢ be the dominant coefficient
of g1. We have

Spec(R[t]) = Spec(R/c[t]) L Spec(R.[t]).

In the first the image of g is of degree striclty less. So induction
goes.

Also, note that g; is monic in Spec(R.[t]). If n = 1, we are in an
already dealt situation. If not let

gh = go —t27N(d /o)

where ¢’ is the leading coefficient of g;. Then

D(f)NV(g1,92:---9n) = D(f) NV (91,95 - gn)-

But now the sum of degrees of the list lowers giving the claim by
induction.
We can reduce to the affine case where we can reduce to

R — R[t1,...,ty,] = S

where the last map is surjective. The first arow induces on Spec a
map which preserves constructibility by the above and the second
also because it is a closed immersion

O

Remark. In general the topological image of a morphism of schemes can
fail to be open or closed but in cases where Chevalley’s theorem applies, it

IThe generalization to non-Noetherian settings requires more careful definitions, but
once these definitions are addressed the proof is the same.
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tells that it still not too far from it and manageable. In particular one can
endow the image with a scheme structure.

Exercise 8. An application of Chevalley’s theorem. Let f: X — Y be a
finite type dominant map between Noetherian schemes with Y irreducible.
Use Chevalley’s theorem to show that the topological image f(X) contains
an open set.

Solution key. The image being dense contains the generic point of Y, there-
fore, ny € UNZ C f(X) because the topological image f(X) is constructible,
for some open U and closed Z of Y. But if ny € Z then we see that Z =Y

O
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Exercise 1. Nullstellensatz via Chevalley.

(1)

Let m be maximal in k[z1,...,x,]. Suppose by contradiction that
pi = k[z;]Nm! is not maximal, because it is prime, we have p; = (0).
The image of the map Spec(k(m)) — A,ﬁm is p;. But by Chevalley,
the image of the map Spec(k(m)) — A}“ 2, 18 constructible, but by our
hypothesis, also contains the generic point, and therefore contains
an open set. But an open in A,lg contains infinitely many points, way
much than our singleton {p;}, leading to a contradiction.

We see by successive quotients, because each p; is maximal in k[z;],
that (p1,...,pn) is maximal. But has it is contained in m we have
our claimed equality. Also if we denote by k[z;]/(p;) = k(«a;) where
«; is therefore an algebraic element over k. Then

klxy,...,zp)/m=k(ag,...,an)

and therefore a finite extension.

First, note that from the last point, we deduce that every residue
field of a finite type k-algebra at a closed point is a finite extension
of k. Let m be maximal in Spec(B). Then we have injections

k— A/f(m) — B/m.

Because B/m is finite dimensional over k, so is A/f(m). But then
the multiplication by every non-zero element is injective, but then
surjective because it is a self of a finite dimensional k-vector space.
We conclude that A/ f(m) is a field, leading to the desired conclusion.
It suffices to show that every element which is not nilpotent is con-
tained in some maximal ideal. If f is not nilpotent, then Ay # 0. So
there is a maximal ideal in Ay. By the previous point, the preimage
of this ideal is maximal in A, concluding.

Exercise 2. Dual.
For (2) and (3), the key is to consider the natural maps in the sense that
for any map & — £’ we have commuting diagrams

Fp—- EV @0y F —— Homoy (€', F)
g —— VY EY ®oy F —— Homo (E,F)

1This is the projection to the i-th coordinate.

1
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To show that these natural horizontal maps are isomorphisms, we can prove
that the map is an isomorphism locally. But then, locally these shaves are
isomorphic to a finite sum of O, where for those the statement follows from
standard linear algebra. Using the above squares, we get the general claim.

Exercise 3. Compatibilities between f*, fi and ®.
For (1), one may show first that

Homop, (F®,G,H) = Homp, (F, Homo (G, H)).

Then the claim follows by combining adjunctions.

For (2), we proceed as in the previous exercise, meaning we construct a
natural morphism between the implicit functors in £, and then using this
naturality we are allowed to show the claim locally. The natural map cor-
respond by adjunction to tensoring the counit map f*€ ® (f* foF — F).

Exercise 4. Fibre dimension (of coherent sheaves).

Because each question is local, say X = Spec(A), where A is Noetherian
and we work with M global sections of F, which is a finitely generated A-
module. Let p € Spec(A). For (1), note that if M(p) is of dimension n, say

with basis m1,...,m;,, then we have a surjective map by Nakayama
Ay — M.

Find some a € A such that this surjections lifts to a map
Ay — M,.

The coker K of this map is finitely generated and satsfies K, = 0. Therefore
we may localize further to have K, = 0 for some b € A and concluding that
we have a surjective map

Ag — Mb.
This implies that complements of sets in the statement are open.
For (2), note that ¢ is continuous to the discrete topology on N if F is locally
free. Therefore only one fiber can be non-empty because fibers are disjoint
opens and the union of all fibers cover the space.
As for (3), proceed as in (1) to get a surjective map

AZ — Mb.
An element in the kernel is a vector (a,...,ay,) where each element is in
every prime ideal of Ap. Indeed, for any prime ideal p of Ay, looking at
k(p)" — M(p)

we have a surjective map between to k(p)-vector spaces of the same dimen-
sion so also injective. Because Aj is reduced, the intersection of all primes
is the zero ideal, concluding.
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Exercise 5. Fibre dimension (of finite type morphisms) We recall some
results along the way that you can assume.

Lemma 1 (Krull’s height theorem). Let R be a Noetherian ring. Suppose
that p is a minimal prime of (fi,..., fn). Then

ht(p) < n.

(1) Let R be a Noetherian ring and p be a prime ideal. Using Krull’s
height theorem, show by induction on the height that for every prime
p of height n there is (f1,..., fn) C p such that p is a minimal prime
of (f1,..., fn) and every minimal prime of (f1,..., f,) has height n.

(2) Let f: X — Y be a morphism between locally Noetherian schemes
and Y’ C Y a closed irreducible subset. Show that for every irre-
ducible component Z C f~1(Y”) that dominates Y’ we have

codim(Z, X) < codim(Y",Y).

Hint: This is a local problem so you can reduce to affines and use
item (1).

Lemma 2. Let k be a field, A be a finite type k-algebra which is also a
domain and p € Spec(A). Then

dim(A) = trdeg; (Frac(A))
and codim(Spec(A/p), Spec(A4)) = ht(p) = dim(A) — dim(A/p).

(3) Let f: X — Y be a map between finite type integral k-schemes.
Show that for every y € f(X) and Z irreducible component of X,
we have

dim(X) — dim(Y) < dim(Z) < dim(X).

Hint: Use item (2) with Y' = {y}. Use lemma 2 and the additivity
of transcendence degree with k | k(y) | K(Z). Namely

trdeg, (K (Z)) = trdegy (k(y)) + trdegy, (K(Z)).

(4) Let f: X — Y be a dominant map between finite type integral k-
schemes. Show that there is an open dense U C X such that for all
y € f(U) we have dim(X,) = dim(X) — dim(Y') and f(U) is open.
Hint: show that you can reduce to the affine case Spec(B) — Spec(A)
with t1,...,te € B, where e = dim(X) —dim(Y"), such that ty, ..., te
form a transcendence basis of K(X) over K(Y). Then factor the
morphism by Spec(A[t1,...,tn]). Note that X — Spec(Alti, ..., t])
induces a finite morphism at fraction fields and that Spec(A[t1, ..., te]) —
Spec(A) is isomorphic to A% — Spec(A) which is open by exercise
2. Use exercise 1.(2) to conclude.
Remark. You are free to prove the following weaker version of the
statement: show that there is an open dense U C X such that for all
y € f(U) we have dim(U,) = dim(X) — dim(Y’) and f(U) is open.

(5) Let f: X — Y be a dominant map between finite type integral k-
schemes. For h € N, let E}, be the set of points x of X such that



there is an irreducible component of Xy ,) with dimension at least
h, which contains z. Show that Ej, is closed.?

Hints: If h < e, then Ep, = X by (3). If h > e, note that E, C
X \ U where U is the open of item (4). Proceed by induction on the
dimension of X.

(6) Let f: X — Y be a closed map between finite type integral k-
schemes. For h € N, let Fj, be the set of points of y of Y such that
there is an irreducible component of X, with dimension at least h.
Show that F}, is closed.

Hint: Show that Fy, = f(Ep).

This exercise was hand in in a previous year and therefore solutions are
attributed to students who wrote them.

(1)(Joel) Suppose we have proved the statement for n = k, and let p be a
prime of height £ + 1. Choose a prime q C p of height k, so by induction
there exist { f1, ..., fx} such that q is a minimal prime of I = (fi,..., fx) and
ht(q) = k. Let {g;} be the minimal primes of I (so ht(g;) = k by induction).
As ht(q;) < ht(p) for all 4, p € g;, so by prime avoidance p ¢ Uq;. Hence,
there exists some fr11 € p \ Uq;. Define I’ = (f1,..., fxr1), and let p’ be a
minimal prime of I’. By Krull’s height theorem ht(p’) < k+1. As q; C p’
for some q; (as by our choice of fi11), we have ht(p’) > ht(q;), and hence
ht(p’) = k+1 for any minimal prime p’ of I’. As p contains all the generators
of I’ and is of height k+ 1 by assumption, p is a minimal prime of I’, as else
we could fit a minimal prime ¢’ of height k£ + 1 in I’ C ¢’ C p, contradicting
ht(p) =k + 1.

(2)(Joel) As codim(Z,X) = dim Oy, for the generic point n of Z’, and
similarly for Y/ C Y, the question is local and we can reduce to the case
where f: X = Spec B—Y = Spec A and ¢ : A — B is the corresponding
ring map. Let p € Spec A be such that V(p) = Y’ and Z C f~!(p) be an
irreducible component of f~!(p) = p¢, where p® denotes the extension of p by
©. Suppose p has height n, so by part (1) there exist fi,..., fn, € A such that
p is a minimal prime of I = (fi,..., fn). Then p® O I° = (¢(f1),...,¢(fn))-
Let g be a minimal prime of p® corresponding to the irreducible component
Z. Next, we show that q 2 p© is a minimal prime of /¢, which by Krull’s
height theorem implies that ht(q) < n = ht(p), which is equivalent to the
inequality codim(Z, X) < codim(Y”",Y).

First, we may assume that p® D I¢, as if p® = I, the result is immediate as
q is a minimal prime of p¢. Now, suppose there exists v € Spec B such that
q 2t 2I% Then o 1(q) 2 ¢ l(v) 2 ¢ 1(I¢) D I. As Z dominates Y,
¢ 1(q) = p, and furthermore as p is a minimal prime of I. As q is a minimal
prime of p¢ = p~1(¢)¢ C v, and t is by assumption prime, we see that q = t,
and hence codim(Z, X) < codim(Y",Y).

(3)(Joel) Again, the question is local, so let f : X = Spec B — Spec A=Y
be a morphism of affine schemes, and y € Y be a point corresponding to

2The statement is true for any f: X — Y between X and Y finite type k-schemes
without the dominant hypothesis. This can be shown by an easy reduction to the case of
the exercise.
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p € Spec A. Set Y’ := {y}, the closure of y in Y. Let ¢ : A — B be the ring
map corresponding to f.

B is a finitely generated A—algebra, so B ()4 k(y) is a finitely generated
k(y)-algebra, and hence dim Z = trdegy,)(K(Z)) for any any irreducible
component Z of f~1(y), as Z is of finite type over k(y) and the trace formula
holds.

If Z is an irreducible component of X, we want to show that Z is an irre-
ducible component of f~1(Y”). Z is contained in some irreducible component
W of f71(Y’"). As Z C W and Z C X, the image of W contains y € Y. Let
7 be the generic point of W. Then f(W) C Y” is a dense inclusion with both
W and Y’ irreducible, and so f(n) = y, the generic point of Y’. Note that
the closure of 7 intersected with X, is irreducible and contains Z, and hence
W ={n} C Z,son € Z. By part (2) we have codim(Z, X) < codim(Y",Y).
As Z is dense in Z, K(Z) = K(Z, and similarly for K(y) and K(Y”). Us-
ing the trace formula for & — k(y) — k(Z), we get trdegg () K(Z) =
trdegy, K(Z) — trdegy, K(y) = trdeg, K(Z) — trdeg, K(Y"'). Using the in-
equality for codimensions we get dimX — dimY < dimZ — dimY’ =
trdegy, K(Z) — trdegy, K(Y') = trdeg .y K(Z) = trdegy () K(Z) = dim Z.
As X, ~ f1(y) C X, we get that dim Z < dim X, and hence in total we
have

dim X —dimY <dimZ < dim X.

(4)(Héloise) We prove the following.

Lemma. Let f: X — Y be a dominant map between finite type integral k-
schemes. There is an open dense subset V. C X such that for all y € f(V),

dim(X,) = dim(X) — dim(Y")
and f(V') is open.
We begin by proving the following weaker statement.

Lemma. Let f : X — Y be a dominant map between finite type integral
k-schemes. There is an open dense set U C X such that for all y € f(U)

dim(Uy) = dim(X) — dim(Y").

Proof. Note that we are free to reduce Y to an affine dense open and also
U can be taken to be inside a dense affine open of X, so we can reduce to
the affine case, as we do in what follows.

Proof of the affine case. We denote by ¢ : A — B the ring map correspond-
ing to f. Note that since f is a morphism between k-schemes, ¢ is injective.
Let € := dim(X) — dim(Y).

By using the additivity of the trenscendance degree (since f is a dominant
map between finite type integral k-schemes) to the field extensions K (X) |
K(Y) | k induced by ¢, we get that

e =dim(X) — dim(Y)
— trdeg, (K (X)) — trdeg, (K ()
= trdeg(y) (K (X)).
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Let {t1,...,t.} be a transcendence basis of K(X) over K(Y). Note that
the elements t; € K(X) may be seen as fractions with numerators in A and
denominators in B therefore, by considering f to be the product of all the
denominators of the ¢;’s (which is finite since e < o0), and localizing A at
f, we get that the t;’s are elements of Ay. From there, we get the following
commutative diagram

S

which induces the following diagram on affine schemes.

Spec(B

\/

Since we are looking for a dense open subset, we sloppily rename Spec(A) :=
D(f) for the rest of the proof. By exercise 2 of sheet 8, the map ¢ : A} =
Spec(Blt1,...,t]) — Spec(B) is open, while the map n : Spec(4) — Ag
induced by j is dominant since j is injective. Morevoer, 7 is finite type
since it is a map of finite type integral k-schemes. By noting that the field
extension

K(Y)(t1...ty) C K(X) = Frac(A)

is finite, since trdegy (yy(K (X)) = e < oo, we conclude by exercise 1.2 of
sheet 8 that there exists a non-empty open set V' C A% such that the re-
striction of the morphism 1 to n~!(W) is finite and dominant since 7 is
dominant. In particular, it is closed. Then, since the map is dominant and
closed, it is surjective.

Moreover, since 7 is surjective, n(n~1(W)) = W and therefore, f(n=1(W)) =
ton(nt(W)) = «(W) which is open since ¢ is an open map. Finally, since
A is an integral domain, it is in particular irreducible and we conclude that
n~1(W) is dense.

Now for any p € f(n~t(W)) = «(W), since finitness and surjectivity of a
morphism is stable under base change, the morphism ¢ coming from the
following base change is finite and surjective.



(1 (W) n~ (W)
g n
(1) W xy k(p) y W le
k(p) Y
Therefore,
dim(n =" (W))p) = dim(W xy k(p)) < dim(Af,) = e.
Now note that Blti,...,t,] is an integral domain, hence A% is an integral

scheme. Therefore, dim(W) = dim(A%) = dim(B) + e. Furthermore, since
the restriction of the morphism 7 to n~ (W) is dominant, hence finite and
surjective, dim(n~t(W)) = dim(W).

By applying the result from question 3 to the restriction of f to n~1(W),
then for any irreducible component Z of the fibre (n=1(W)),, we get

dim(B) + e — dim(B) < dim(Z).

Since the above holds for any irreducible component, we conclude that e <
dim((nfl(W))p). Thus

dim((n " (W))y) = ¢
and we can pick U = n~1(W). O

This lemma does not yet allow to generalize to the the whole fiber X, as
the equality dim(U,) = dim(X,) might not hold for any open dense set U.
We therefore need to further refine U using the following lemma.

Lemma. Let f : X — Y be a map between finite type integral k-schemes.
Then, there exists a dense open set V C'Y such that for ally €Y, U, C X,
s dense.

Proof. Reduction to the affine case. Up to shrinking Y, we may assume that
Y is an affine scheme Y := Spec(A).

Now, suppose that we have proven the statement when X is an affine scheme.
For a general scheme X, consider an affine open cover X = (J; W; where
W, are affine schemes. For each W;, there exists an open dense set V; C Y
such that for any y € Vi, (UNW;), C (W;)y, is dense. Consier V' := |J; Vi.
Then for any y € V, U, C X is dense. Indeed, the fiber X, is a glueing of
the (W;),’s while U, is a glueing of the (U N W;)’s, where each (U NW;), is
dense in (W;),.

Proof of the affine case. Suppose that f : Spec(B) — Spec(A) is a map
between finite type integral k-schemes. Since the principal open sets form a
basis for the topology on Spec(B), up to shrinking U, we may assume that
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U is of the form D(t) with ¢ € B.
Consider the short exact sequence

2) 0 » B t B B/(t) ———— 0 .

By the Generic flatness theorem, there exists a dense open set V' C Spec(A)
such that for any y € V, the morphism B ®4 k(y) — B ®4 k(y) is injective
because B/(t) can be supposed to be flat on this open, which implies that
the morphism (D(t)), — X, is dominant. O

Let V be as in the previous lemma. By considering U’ := U N f~1(V), we
have proven the general case.

(5) (Alissa) Let f : X — Y a dominant map between finite type integral
k-schemes. For h a positive or 0 integer we define

Ex = {r € X[3Z C Xy(,) an irreducible component which contains x s.t.

Show that Ex , is closed.

We see that if A < dim X —dim Y then by part 3 we conclude that Ex j = X,
hence it is closed. Now if we consider the case h > dim X — dim Y then we
see that if take the U obtained in Part 4 then EFx ), € X \ U. We proceed
by induction on the dimension of X to prove that Ex j, is closed. (take the
version of Part 4 with X, and not only U,)

Suppose that dim X = 0. Then we see that 0 < dimZ < dimX, =
dim f~1(y) < dim X = 0. So Ex, is just (). For the induction step, suppose
that the result is true for every X of dimension d — 1 or less. Suppose that
dim X = d. Then if we consider Ex j we see that Exj € X \ U which is
closed. So now we can consider the decomposition of X \ U in a union of
irreducible closed subsets C;. The latter will have dimension strictly smaller
than X since they are irreducible in X which is itself irreducible. Since
X is a fintie type k-scheme, we see that there must be only finitely many
Ci’s. We would like to show that Ex j = (J;; Ec, . To do so, notice first
that we can endow each C; with a reduced scheme structure. Since it is
irreducible, we get that C; is integral. If we show the above equality, we
would like to use induction since the C;’s have strictly lower dimension than
d. However, to apply induction we have to be in the good conditions. So
we need an integral image and a dominant map. Furthermore, we need C;
and the image to be finite type k-schemes. So let us consider the morphism

flg, : Ci — f(C;) where we endow f(C;) with the reduced scheme structure.
Since C; is irreducible, then f(C;) is too and so is f(C;). It is direct that
the morphism is dominant. Since X and Y are finite type k-schemes, then
C; and f(C;) are finite type k-schemes. As before, f ’Ci is finite type since
it is a morphism between finite type k-schemes.

First, let € E¢, . We would like to show that |J;; Ec,» € Exp. Re-
member that we have

Cijw) = [ (f(@)NC C fH(f(2) = Xp

dim Z > h}
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Since the C;’s are closed, f~!(f(z)) N C; is a closed subset of f=1(f(z)).
Hence an irreducible component of Cj ¢(,) containing z is also an irreducible

closed subset of f~!(f(z)) containing .

Now for the other inclusion let € Ex j,. Then we notice that

Xy = [ (f(@) = Uy fH(f(2)) N G
We see that the irreducible components of X (,) are the irreducible compo-
nents of each f~!(f(z)) N C;. This is how we get Ex C UL, Ec; h-
O
(6) (Alissa) Let f : X — Y a closed map between finite type integral
k-schemes. For h € N we define

Fy, :={y € Y|3Z C X, an irreducible component s.t. dimZ > h}
Show that Fj, is closed.

To show this, we will rather prove that f(Ej) = F}. Since f is closed and
using Part 5, it follows immediately that Fj, is closed.
We will show that f(E}) = Fj, by showing each inclusion.

f(Ep) C Fy: Let y € f(ER). Then there exists x € Ej such that f(z) = y.
This implies that there exists an irreducible component of Xy, = X, of
dimension at least h. Hence f(z) € F}, by definition.

Fn, C f(Eh): Let y € Fy. If y ¢ f(X) we see that the fiber must be the

empty set since X, ~ f~!(y). Hence we see that y € f(X). We know that
there exists an irreducible component Z of X, such that it has dimension at
least h. Now we only have to prove that Z contains at least one x € f~1(y).
However, we remember that X, ~ f~!(y), hence necessarily Z contains an
element z of f~1(y) and so Z is an irreducible component of X fa) = Xy of
dimension at least h.

Exercise 6. Criterion of irreducibility. This exercise uses results of the last
exercise, see the hint for more details. Let k£ be a field.

(1) Suppose that f: X — Y is a map between finite type k-schemes,
with Y being irreducible, such that every fiber is irreducible of a
fixed dimension d > 0 (in particular f is surjective). Show that X
is irreducible if

(a) f is closed or,

(b) X is equidimensional.

Hint: write X = |J; X; the decomposition into irreducible compo-
nents of X. There is at least one irreducible component, say X1,
such that f(X1) is dense. Write Uy = X1 \ Ui?ﬂ X;. Using irre-
ducibility of fibers, show that for everyy € f(Ur) we have Xy = X 4.
Use exercise 2 and hand-in item (3) to get an open set V C f(Uy) of
Y such that every fiber at y € V' has dimension dim(X) — dim(Y").
Show also that X; \ X1 C f~1 (Y \ V). Deduce that X1 is the only
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wrreducible component with a dense image. Conclude if you suppose
(b). If you suppose (a), show that f(X1) =Y and conclude.
(2) Deduce that if X is an irreducible finite type k-scheme

X Xk]P)Z

is irreducible.
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Exercise 1. Functoriality of O(n). Let R and S be N-graded rings, where
R is generated in degree 1, so that O(n) is a line bundle for each n € Z. Let
f: R — S be an homogeneous map of degree d > 1, see Exercise 5, week 4.
Denote by g: U — Proj(R) the induced map at Proj from functoriality of
Proj. Show then that for n > 0 we have g*O(n) = O(nd)y.

Hint: check the claim on cocycles.

Solution key.

We first tacke the case where the the map is a graded ring map (homogeneous
of degree 1).

As R is genererated in degree 1, Opj(g)(1) is a line bundle. Therefore
it’s pullback to U is also a line bundle. Note that on U, because U is
covered by Dy of degree 1 elements that Opyj(s)(1) is a line bundle. To
check that they are isomorphic, we can compare cocycles. Denote by (R1)p
homogeneous elements of degree 1. Because

U Di(r) =Proj(R)
TE(Rl)h

then U = U, ¢(g,), D+(r) by definition. Write U, = D, (r). Then cocycles
of both invertible sheaves are ¢,.., = r/r’.

Another way of seeing this is by what follows. Let r € (R;),. Define the
multiplcation map

S(r) 02y R(n)(r) — S(n)(r)

which glues to a map g*Opyoj(r) (1) — Oproj(s)(1)jr is seen to be a bi-
jection sending an element s/r% (with s homegeneous of degree d 4 n) to
S/TCH_n ® T‘d+n/7°d.

Now we tackle the general case of an homegeneous map of degree d. It
suffices to address now the case of the isomorphism Proj(R) — Proj(Ry) by
the inclusion of vg: Ry — R the d-th Veronese subring. The claim follows

from the fact that a degree n element in Ry is of degree nd in R. Indeed
this leads to (Rq(n))y = R(nd) ).

Exercise 2. A principal divisor is effective where it has no poles. Let X be a

Noetherian, normal and integral scheme. Recall that for normal Noetherian

domain A, the ring A is the intersection of A, where ht(p) = 1.

Let f € K(X). Let U C X open. Show that if div(f);y > 0 then f €

Ox(U). If div(f);y = 0 then f € O(U)*.

Solution Key.

This is a local statement. So we can suppose that U = Spec(A) is affine. But

then A = Ny A, where the intersection is taken on height 1 primes concludes.
1
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Exercise 3. Divisors that are not Cartier. Let k be a field and X = V(xy—
zw) in Aﬁ. Note that X is integral and regular in codimension 1.

(1) Show that the closed subsets in X defined by = z = 0 and =z =
w = 0 are prime divisors that are not Cartier. Denote by D, and
D,, these divisors.

(2) Show that D, + D,, is a Cartier divisor.

Solution key.
Note that D, and D,, are prime Weil divisors isomorphic to Ai because

klx,y, z,w|/(xy — 2w, z, 2) = k[y,w]| [z,y,z,w]/(zy — zw, z,w) = k[y, 2].

If I, = (z,2) or I, = (x,w) where to define Cartier divisors, then these
ideals would be locally principal, in the sense that in sufficiently small affine
open sets, these ideals would be principal in the ring of functions of these
opens. In particular, in each local ring these ideals would be principal. But
at the local ring at the origin m, note that m/m? is a k-vector space of
dimension 4, and the basis is given by the images of z,y, z,w. If I, or I,
where to be generated by one element in this local ring, then the k-vector
space spanned by the images of z, z and x, y respectively in m/m? would be
of k-dimension 1, a contradiction.

On the other hand, note that V(z) = D, + D,,, implying that this divisor
is Cartier.

Exercise 4. Exact sequence for class groups. Let X be an integral separated
scheme which is regular in codimension 1. Let Z be a proper closed subset
of Xand U =X\ Z.
(1) Show that ClI(X) — Cl(U) defined by > n;D; — > n;(D; NU) is
surjective.
(2) If codim(Z, X) < 2, show that that this map is also injective.
(3) If codim(Z, X) = 1 and Z is irreducible, show that there is an exact
sequence
Z— Cl(X)—=Cl(U) =1
where Z — CI(X) send 1 to Z.
(4) Let k be a field. Let Z be the zero set of an irreducible homogeneous
polynomial of degree d in P}. Deduce that CI(P} \ Z) = Z/dZ.
Hint: You may look at chapter I1.6 of Hartshorne.
Solution key.
The last statement follows frome example seeing that that Vi (F) for F
irreducible homegenous of degree d correspond to O(d) via the identification
of Picard groups and Cartier class groups, and the O(d) is d times the
generator of the Picard group which is infinite cyclic.

Exercise 5. Let A be a ring and R, the graded ring Alx,...,z,] with
deg(z;) = 1. Show that the natural map

R, — T'(Proj(R),O(m))

is an isomorphism for m € Z. Hint: Use the usual cover and the sheaf
property.



Solution key.
Consider the cover of Proj(A) by D4 (x;) for i = 0,...,n. Recall that

O(m) D, (2:) (D (i) = 2" Rz,
First note that the natural map is given by sending f € R,,, to global section
defined by f € z]"R(y,).
By the sheaf property, a global section of O(m) corresponds to a collection
fi/x}" where deg(f;) = m+n; that agrees on intersections. Because we work
in a polynomial ring, we can suppose that x; does not divide f;. Agreeing
on intersections says that

fixy" = fiz.

Because x;,r; is a regular sequence we deduce that n; = n; = 0. There-
fore we deduce that f; = f; = f an homogeneous element of degree m,
concluding.

Exercise 6. Support of coherent sheaves. Let X be a locally Noetherian
scheme and F a coherent sheaf on X. We define

supp(F) ={z € X | F, # 0}

(1) Let A be a ring and M a finitely generated module. Show that
supp(M) is closed.

(2) In the same setup as in item (1), show that supp(M) = V(Ann(M)),
where

Amn(M) ={fe€ A| fM = 0}.

(3) Let A be a Noetherian ring, f € A and M be a finitely generated
module. Show Ann(M)¢ = Ann(Mjy).

(4) Let X be a locally Noetherian scheme and F a coherent sheaf on

X. Using the preceding point, define a quasi-coherent sheaf of ideals
Ann(F). Show that V(Ann(F)) = supp(F).

Solution key.

(1) Let my,...,m; be generators of M. Note that the complement of
supp(M) is the locus of p’s where (m;), = 0 for all 4. But if this
holds this means that there is some a € A \ p such that am; = 0.
Then m; is zero on Dy (a), showing that the complement is open
being the finite intersection of the loci where m;’s vanish.

(2) We work on complements. We want to show that the complement

of supp(M) is U e ann(ar) D(f). Note that

U D(f) € Spec(A) \ supp(M),
f€Ann(M)

because if My = 0, then any further localization is zero. For the
other inclusion, if M, = 0, then if f; € A\ p is an element killing m,,
then the product f of the f;’s is an element not in p with fM = 0.
(3) Note that Ann(M)s C Ann(My). If (g/f")My = 0, then (g/f")m; =
0, implying that g f™*m; = 0 for some n;. Taking a big enough power
shows the surjectivity of the map.
(4) Immediate from last observation.
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Remark. In this case, we then call V(Ann(F)) with it’s natural scheme
structure coming from the quasi-coherent sheaf of ideals Ann(F) the scheme
theoretic support of F.

Exercise 7. Torsion free sheaves. Let X be an integral scheme with generic
point 7. Let F be a quasi-coherent Ox-module. We say that F is torsion
free if F(U) is a torsion free O(U)-module for all opens U C X.

(1) Let F be any quasi-coherent sheaf. Show that Fiors C F, where
s € Fiors(U) if s — 0 along F — F,, is a quasi-coherent sheaf and
that F/Fiors is torsion free.

(2) Show that a map between torsion free sheaves is injective if and only
if it is injective at a stalk at some point z € X.

(3) Deduce that a map between locally free sheaves of rank 1 is injective
or Zero.

Solution key.

(1) It’s defined to be the kernel of F — 1, Ogpec(x(x)) — the map ¢,
denotes Spec(K (X)) — X. It is therefore coherent as the kernel of
a map between quasi-coherent sheaves.

Note that being torsion free is a property that can be checked at
stalks. This implies the second part of the statement.

(2) Follows from the fact that in the case the stalk map F(U) — F, is
injective.

(3) If the map is not injective, it will not be injective at the generic
point but at the generic point we have a self map of K (x)-modules
of K(X) and the only way that this map is not injective is that this
is the zero map. This concludes.

Exercise 8. Generic flatness. Let X be a reduced Noetherian scheme. Let
F be a coherent sheaf on X.

(1) Show that there is an non empty open U such that F is locally free
(possibly zero).

Use Exercise 4.(3), week 9.

(2) Show by Noetherian induction! on X that there is a finite partition
of X by locally closed subschemes (X;) with the reduced scheme
structure such that F is locally free when restricted (meaning taking
the pullback) to X;.

Solution Key.

The function ¢(z) = dimy,)(F ®oy k(x)) takes a minimal value in N (could
be zero). Because ¢ is semi-continuous, the locus where ¢ is equal to this
minimal value is open. By the last part of the exercise on this topic, we get
the claim. (Remark that there is no worry about connectedness.)

The previous claim shows the basis and the induction of Noetherian induc-
tion.

Lsee Hartshorne, 11.5.16
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Exercise 1. Tensor products, Hom and sheafification.
Give examples of sheaves of Ox-modules F, G such that the tensor product
presheaf and the presheaf

U — Homg (1) (F(U),G(U))

are not sheaves.
Hint: Play with O(—1) and O(1) on projective spaces. Recall the computa-
tion of global sections of those, exercise 5, week 10.

Solution key. Take for example O(1) ® O(—1) and Homp (O, O(1)). O

Exercise 2. Effective Cartier divisors. Let X be an integral scheme. A
Cartier divisor on X represented by (f;, U;) is said to be effective if f; €
O(U;) for every 1.

(1) Show, by looking at the ideal sheaf generated by the f;’s, that ef-
fective Cartier divisors are in one-to-one correspondence with ideal
sheaves 7 that are a locally free sheaves of rank 1. We take this
point of view in what follows.

(2) Let £ be a locally free sheaf of rank 1. Show that s: Ox — L is
non-zero if and only if the evaluation ev, : £V — Oy, defined by
LY(U) = Homo, (L, Oy) D ¢ — p(s) is injective.

(3) Fix a locally free sheaf £ of rank 1. Deduce the following bijection,

(D(X, L)\ {0}) /Ox(X)* — {Effective Cartier divisors Z on X with Z = £"}

that sends the class of a section s to Im(evy).

(4) Suppose additionally that Ox(X) is a field. Show that if £ is a
locally free sheaf of rank 1 such that £ and £V have a non zero
section, then £ & Ox.

Hint: in this case both L and LV correspond to effective Cartier
divisors.

(5) Additionally assume that X is normal, Noetherian and integral. Two
Weil divisors are called linearly equivalent if their difference is the
divisor of some rational function. Let D be a Weil divisor on X.
Show that map sending f € I'(X, Ox (D)) to div(f) + D gives a one
to one correspondence

I'(X,0x (D)) \ {0}
Ox (X)*
Careful, hypothesis does not imply that Ox (D) defined as

Ox(D)(U)={g€ K(X)|g#0,(div(g) + D)NU is effective}
1

— {Effective Weil divisors linearly equivalent to D}.



is a line bundle. So you have to prove it independently of item (3).

Solution key. (1) If (fi,U;) is an effective Cartier divisor, then we see
that defining f;Oy, C Oy, defines a sub-ideal sheaf of Ox by gluing
because f;/f; are units in functions on the intersection by assump-
tion so f;Oy,; = fjOu,;. Reciprocally given a locally free ideal sheaf
Z, we know that there is an open cover (U;) with Zy, = f;Oy,. Now,
(fi, U;) defines an effective Cartier divisor. Say we choose other gen-
erators (on a possible different open cover, but we deal with this
case by taking a common refinement) Zy, = f/Op,. Then there is
g; € OUZ.(UZ')X with fz = ngzl This irnplies that (fZ,Uz) = ( ;,UZ)
has a Cartier divisor.

(2) This is a local check, so without loss of generality £ = O and X =
Spec(A) is affine with A integral. So we are saying that a € A is
non-zero if and only if

A 229 Homy (A, A) -2 4

a
the multiplication by a is injective.

(3) We produce an inverse. Say ¢: Z = LY. Then apply the Homp(—, O)
functor gives a map sy: O — IV — L. Because an automorphism
of a line bundle is always given by an element! in Ox(X)*, it is
clear that this inverse map does not depend on the choice of the
isomorphism 1.

(4) If both £ and £¥ have non-zero global sections, then say that £ =7
an invertible ideal sheaf without loss of generality. But then Z has a
non-zero global section. Because we supposed that Ox (X)) is a field,
we see that 1 generated this ideal, concluding.

(5) About the inverse map, if D; is effective and linearly equivalent to D,
this means that there exists f € K(X) such that div(f)+D = D;. So
by definition f is a global section of O(D). Further details ommited.

O

Exercise 3. Invertible sheaves and cocycles, a first encounter. Let (X, Ox)
be a ringed space. Let £ be an invertible sheaf on X. Let (U;) be a cover of
X with trivializations ¢;: Ly, — Op,. We say that the associated cocycles
(p € Ox(Ui;)*) are defined to be ¢; o gpj.*l: Ouv,; — Ou,; that we identify
with ¢;; € Ox(U;;)*. Say L' is another invertible sheaf with associated
cocycles (1;5).
(1) Show that v;jpjr = wir and @i = 1.
(2) Show that the cocycles (cpi_jl) associated with £¥ are , and the co-
cycles associated with £ ® L' are (¢;;i;).
(3) Show that if for every ¢ there is some h; € O(U;)* such that higoijhf =
1/)1']', then £ = L'

1An automorphism £ — £ is given locally by elements in Oy, (U;)* where £ is trivial,
but these will automatically glue. Indeed on the intersection they will be both equal to
the restriction of the morphism.



We will go further in this study when introducing first Cech cohomology.

Solution key. (2) Denote suggestively 1/¢: Oy, the dual of p~!. This is
a trivialization. Restricting to U;; we see that the associated cocycle
will be the dual of the multiplication by gpi_jl by functoriality of the
dual. But the dual of the multiplication by an element identifies with

the multiplication by this element. For the tensor product claim,
mult

note that the tensor product p; ® ¥j: L& L — Ox @ Ox — Ox
is a trivialization.
(3) The condition ensures that the isomorphism ), lhicpi: Ly, — E’Ui
glues.
O

Exercise 4. Extension of coherent sheaves. The goal is to show that if X
is a Noetherian scheme, U an open subset and F is a coherent sheaf on U,
then there is a coherent sheaf G on X such that Q|U =~ F.

(1) Show that on a Noetherian scheme X and F coherent sheaf, then if
LR
i

where (F;);er are sub-coherent sheaves, then there exist a finite re-
finement J C I such that }_,; F; = F.

(2) Show that on a Noetherian affine scheme, every quasi-coherent sheaf
is the direct colimit of it’s coherent sub-sheaves. Hint: Use the
equivalence of categories with modules on global sections.

(3) Let X be affine and ¢: U — X be an open subcheme. Show the
claim in this case. Hint: Show that 1+ JF is quasi-coherent, and then
use a combination of (1) and (2) to conclude.

(4) Show the claim in the general case of the statement of the exercise by
induction on the number of open affines that are required to cover
X. (Being covered by one open affine being the base case of the
induction, and is the previous point. The rest is an induction play,
see Hint.) Hint: Say X = X1 U X2 where X; and Xy are open
subschemes that can be covered by strictly less open affines than X.
By induction extend Fx,nu to a coherent sheaf G defined on X;.
By gluing F and Gy it defines a coherent sheaf G' defined on X1 UU.
Now, extend g\/sz(XluU) to a coherent sheaf Go on Xo. Conclude by
gluing G1 and Go to a coherent sheaf on X.

As an application, show that any quasi-coherent sheaf on a Noetherian
scheme is a direct colimit of sub-coherent sheaves.

Solution key. (1) Let F be a coherent sheaf on a Noetherian scheme X.
Suppose that
IEEE
i

where (F;)ier are sub-coherent sheaves. Then there exist a finite
refinement J C I such that Zje yF; = F. Indeed, as we can cover
X by finitely many open affines, we may prove that we can find



a finite refinement for each open affine. But now this follows just
from the fact that a coherent sheaf on a Noetherian affine scheme
amounts to a finite module M. Each generator of M is a finite sum
of sections of the F;’s.

(2) Recall that a Noetherian affine scheme Spec(A), quasi-coherent sheaves
are equivalent to A-modules and coherent sheaves are equivalent to
finite A-modules. Therefore to check that

UFa=7F

it suffices to check it on global sections. But it amounts to say that
an A-module is the union of it’s sub finite A-modules.

(3) Cover U by finitely many open affine schemes (U;);. Note that
because an affine scheme is separated, intersections U;; are also
affine. We may use that affine morphism preserves quasi-coherence,
and that quasi-coherent sheaves are stable by kernels. Denote by
ti: Uy — X and ;;: U;j — X inclusions. Now remark that

wF =ker | @ 1inF = @) rijuF
i ij

where the map sends (f;) — (fi — fj)-
We therefore know that this sheaf is the union of it’s coherent
subsheaves by (a)

U Fl =1 F.
Because Fy is coherent, by the compacity remark, there exists finitely
many o, ..., a, such that Fy is the sum of the ]:(;l_ u- If we set F’

to be the sum of these we get the claim.
(4) G is the union of it’s coherent sub-modules, say G,. By the compacity
remark above, we may sum finitely many such that >, Go, v = F.
(d) We proceed by induction on the number of affine schemes that can
cover X. If X is affine, we are done. Otherwise, we can write

X =X1UXy

with X7 and X5 open subschemes that can be written as union of
stricly less open affines. Find a coherent sheaf on X; that we denote
by F1 C Gx, that extends F|x,ny from X3 NU to X by induction.
Note that this defines a coherent sheaf on X; U U by gluing F;
and F. Denote this sheaf by Fi. Now extend F7j v -, from

XoN (U U X;) to Xy by induction to a coherent sheaf 5. Now
remark that 7, and Fj glue to the desired sheaf F'.
(5) Let s € F(U). Consider the coherent sheaf generated by s on U.
Extend it to a coherent sheaf on X.
U

Exercise 5. Divisors on regular curves. Let k be an algebraically closed
field. We say that C' is a reqular k-curve over k is a one dimensional sep-
arated, integral and regular scheme over k. Weil (=Cartier in this case)



divisors are then of the form
D= Z n;xT;
i

for x; being closed points of C. We define the degree of a divisor D = ), n;z;
to be

deg(D) = an € Z.

Let f: C' — C afinite k-morphism between regular k-curves. We define the
pullback of an irreducible divisor (=closed point)

fFr= Y ().

yeCl, st x=f(y)

where f% denotes the induced map at the local ring. Here, t, denotes a
generator of m, — this well defined because the choice of a generator is up
to a unit. We extend f* by linearity to div(C).
(1) Show that the pullback of a principal divisor is principal, implying
that f* factors through

£ C1(C) = C1(C).

(2) Show that if the degree of the map (= [K(C’): K(C)]) is d, then
deg(f*D) = ddeg(D). Hint: it suffices to show the claim for D = x
a closed point by linearity.

(3) Assume now that C' is also proper. Using the equivalence of cate-
gories seen in lecture on curves (that you can assume) between k-
fields of k-transcendence degree 1 and regular proper k-curves, show
that for every t € K(C)\k we have a map f;: C — P} from the inclu-
sion k(t) C K(C) such that f*(0 — oo) = (f) where 0 denotes V()
in Spec(k[f]) C P} and oo denotes V(1/f) in Spec(k[1/f]) C Pj.
deduce that deg((f)) = 0, and that therefore deg factor through

deg: Cl(C) — Z.

Solution key. (1) One sees that the pullback of div(g) for some g € K(C)
is given by div(f*(g)) where here f* denotes the induced map at field
of fractions.

(2) The fiber at x is a finite k-algebra of dimension d. Because k is
algebraically closed, such algebras are isomorphic to

1T %/ )7
which has much factors has the set theoretic cardinality of the fiber
and necessarily > n; = d.
(3) If t € K(C) \ k, because k is algebraically closed, t is transcendent.
So k(t) — K(C) induces a map C' — P} by the equivalence of
categories. Now, it amounts to noticing that div(t) = 0 — oo and

using the preceding point.
O

Exercise 6. Segre viewed with line bundles. Fix an algebraically closed
field k. Denote the projection of P! x; P! to the first and second factor



6

by p1 and py respectively. View the first and second copy of P! in the
product as Proj(k[xo,z1]) and Proj(k[yo, y1]) respectively. Show that the
global sections pj(x;) ® p5(y;) for 0 < i,j < 1 of pj(Op1(1)) @ p3(Op1(1))
give a closed embedding of P! xj, P! in P3.

Solution key. Affine locally this is a Segre embedding. O
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Exercise 1. Homotopy invariance of class groups. Let X be integral, Noe-
therian, separated and regular in codimension 1.

(1) Show that X x Al is also integral, Noetherian, separated and regular
in codimension 1.

(2) Show that the projection 7 to the first component induces a mor-
phism 7*: C1(X) — CI(X x Al).

(3) Show that 7* is an isomorphism.

You may look at 11.6.6 in Hartshorne.

Exercise 2. A Kiinneth formula for class groups. Let X be an integral,
separated, Noetherian and locally factorial scheme. Let n > 1. Show that
P% = X x Py also satisfies the above and that

Cl(X x P2) = CI(X) x Z.
Hint: Consider ¢: IP”;((X) — X xP%. Show that ¢*: Pic(P%) — Pic(P’}((X)) =

Z gives a retraction of the first arrow in the exact sequence (exercise 8, week
9)
Z — Cl(P%) — Cl(A%) =0

coming from the divisor V(Xo) in CI(P%).

Exercise 3. Very ample divisors. Let k be a field. Let S be a N-graded
ring finitely generated in degree 1 with Sy = k. Denote by X = Proj(5).
Suppose that X is integral and Ox (X) = k.1

(1) Show that Ox (1) is k-very ample.

(2) If dim(X) > 1, show that Z Ox), Pic(X) is injective.

Hint: If Ox(1) is torsion, it would imply that Ox is k-very ample.
(3) If X is normal, deduce that if 0 # s € Ox(1)(X), then div(s) €
Cl(X) has infinite order.

Solution key. (1) Denote by sg,...,s, degree 1 elements that Sy = k

generates S as an algebra. Note that k[xo,...,z,] — S sending

x; — s; is a graded surjection and therefore induces a closed immer-

sion ¢: X = Proj(S) — P}. Note that by construction ¢*Opr (1) =
Ox(1). The claim now follows.

(2) If Ox(1) is torsion, meaning that Ox(n) = Ox, it would mean

that Ox is k-very ample. As we suppose that Ox(X) = k, this

IThis condition follows from previous assumptions if k is algebraically closed.
1



would imply that X is a point, a contradiction with the dimension
hypothesis.

(3) Follows from the injection Pic(X) — CI(X) (normal) and the previ-
ous point.

O

Exercise 4. Projective Cone. This exercise is a follow-up to exercise 2,
week 7.

Let S be a N-graded ring finitely generated in degree 1 over Sy. Consider
the N-graded ring S[t] with elements of S keeping their grading and with ¢
placed in degree 1. We call Proj(S[t]) with this grading the projective cone.

(1) Show that this grading comes from the product action

(.US Prig;Hal Pr13)

Gm,s, X5, Spec(S) xg, AISO Spec(S) xg, A}S‘o

where pr;; denote projections, p15 the action on Spec(S) and pi41 the
usual G,,-action on Al

(2) Show that there are natural identifications Vi (¢t) = Proj(S) and
D, (t) = Spec(S). Show furthermore that V(S ) (taken in Proj(S[t]))
identifies to the vertex (see exercise 6, week 10) in Spec(S). We
therefore denote this closed subscheme by v.

(3) Let so, ..., s be generators of S in degree 1. Show that Proj(St])\v
is covered by the open sets D (s;) and that each open set is isomor-
phic to Spec(S(s,)[t]). Deduce that we have a natural map

p: Proj(S[t]) \ v — Proj(5).

(4) Let k be an algebraically closed field, and suppose Sy = k. Sup-
pose that S is integral, Noetherian and normal. Suppose that X =
Proj(S) is of dimension > 1. Show that p* induces an isomorphism
on class groups. Deduce that, if C' = Spec(S) denotes the cone of X
then we have an exact sequence

1-Z—Cl(X)—-ClC)—1

where the first morphism sends 1 to the class of Ox(1), and the
second is the composition of p* and the restriction to C.

Proof. (1) Analyze that degree 1 elements are still of degree 1.

(2) The V. (t) asserion is immediate. For the D, (¢) it amounts to realiz-
ing that degree zero elements of S; are just S. For the last assertion,
note that Proj(Sy[t]) identifies with Spec(Sp).

(3) Note that (sg,...,s,) generates Sy as an ideal. Therefore the claim
on the cover follows. Note that the degree zero part of S[t],, identifies
to S(s;)[£] which gives the claim.

si
(4) We denote by X the projective cone.
We show that p* induces an isomorphism on class groups. The
previous point shows that K(X) = K(X)(T) for T = t/s; for some
1. From this observation, one can actually apply the same proof as
proposition chapter 2, 6.6 in Hartshorne. We give a bit more details.

We use the terminology this proof in what follows. We can separate



3

the codimension points of X \ v in two distinct families. Type 1
points will be points such that the image in X is of codimension 1.
Type 2 are points such that the image is generic. These points are in
one to one correspondence with codimension points of A}(( X) along

the dominant map A}(( x) ™ X \ v. We can define 7* exactly as in
proposition 6.6 at the level of divisors, and it gives a surjection to
the subgroup of CI(X \ v) generated by type 1 points. Note that
the exact same proof as the one in proposition 6.6 shows that any
type 2 points are linearly equivalent to type 1 points. This shows
surjectivity. Injectivity also is proven with the exact same argument.

Note also that by exercise 2.3 and the exercise 4, week 10 we have
an exact sequence (where 1 € Z is sent to Ox (1) seen as V, (t), which
is prime because X is integral)

1—Z— Cl(X)—ClC) =1

because as argued above D (t) = Spec(S) = C.

Note that because v € X is at least of codimension 2, we have
Cl(X) = CI(X \v). We can now use that p* induces an isomorphism
to conclude.

U

Exercise 5. Computations of class groups on quadric hypersurfaces. Sup-
pose that k is algebraically closed and char(k) # 2. Let 2 < r < n. Consider
the ring (equipped with the standard grading)

S, = klzo,..., o]/ (23 + -+ 22).

You can assume that this ring is normal. (See Hartshorne, exercise 6.4 for
a proof).

(1) Show that up to a linear change of variable, we can suppose that
S, = k[zo, ..., x,)/(xoxs + 23 + 22).

Denote by C, = Spec(S,;) and X, = Proj(S,).

(2) Show that CI(C;) is cyclic when r # 3
Hint: Consider the prime divisor V(y/(x1)) and the exact sequence
of week 9, exercise 8.

(3) Show that Cl(Cq) = Z/2Z.
Hint: Consider the same exact sequence. See Hartshorne example
6.5.2.

(4) Show that Cl(C3) = Z.
Hint: show that after a suitable change of variable we see that X, =
IP’,lf X ]P’,lg. Then use exercise 1 and the exact sequence of the last point
of the above exercise.

(5) Show that CI1(C,) = 0 of r > 4. In particular, S, is factorial.
Hint: show that (z1) is prime in this case and conclude.

(6) Use the exact sequence of the last point of the above exercise to
compute Cl(X,) for all r > 2.



4

Solution key. (1) Note that 23 + 22 = (z¢ + iz1) (7o — iw1) where i € k
is a root of —1 in k. Because char(k) # 2 we can set yo = xo + iz
and y; = x¢ — ix1 two different variables.

(2) If r # 3 note that V(x1) is irreducible. We can then use the same
strategy as in example 6.5.2 in Hartshorne.

(3) See example 6.5.2 in Hartshorne.

(4) Up to a change of variable we recognize the Segre embedding of
]P’/,lC Xk ]P’/,lC in ]P’i. We may work with

Sr = k‘[l’o, T1,T2, 133]/($0l’1 — 1'21'3)

Note that in the exact sequence from the previous exercise, 1 € Z
is sent to the Cartier corresponding to p7O(1) ® p30(1) when we
view this in the product. In other words, this is the class of (1,1) €
CI(P}. xj, P{) = Z & Z. The result follows.

(5) V(x1) is principal and prime.

(6) Follows from the exact sequence.
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Exercise 1. Separable extensions and differentials. Let k be a field and [ a
finite extension. Show that Qll| , = 0 if and only if [ is a separable extension.

Solution key. If [ is separable and finite then | = k(«) for some algebraic
and separable element «. But then | = k[t]/(f(t)) and f/(¢) is not zero
in the quotient by separability. This concludes one way by the conormal
sequence. For the other direction, if [ is not separable, then there is some
a € [ such that I'(ar) = [ for some sub-extension !’ such that the extension is
not separable implying that [ = I'[¢]/(f(t)) with the derivative vanishing in
this quotient. Therefore € = [ by the conormal sequence. But if ;;, =0
then €y = 0 by the fundamental sequence of cotangent sheaves, which is a
contradiction.

O

Exercise 2. Derivations on an elliptic curve. Let R be a ring, P =
R[z1,...,z,) and P — A a surjection, with kernel /. Recall that by the
conormal sequence, if d: I/1* — @} Adz; is given by sending a polyno-
mial to the image of it’s derivative then we have an exact sequence

1/ — P Adw; — QY 5 — 0.
i=1
We denote by T114|R = HomA(Q}MR,A) = Derg(A, A), the A-module of R-
derivations of A.
(1) Let
E = Proj(C[X,Y, Z]/(Y?Z — (X3 + Z3))).
Denote by z,y the images of %, % in Az := Op(D4(Z)) and s,t
the images of %, % in Ay := Og(D4(Y)). Show using the sequence
recalled above that (meaning that any derivation is a scalar multi-
plication of the written generator)

0 0 9 P
Thote = AzQuge +32°50) Thye = Av(B8 — 1)z = 35°5).

(2) Moreover show that the generators displayed above agree on the
intersection D4 (Y Z), giving a non-vanishing global section 7 of
Tgc:= HomoE(QlE‘(C7 Og) implying that

TE'|(C = OE\(CW'
Solution key. (1) We write functions on D4 (Z) and D4 (Y). They are

Cla’,y)/(y* = (a® +1)) Cls' ¢]/(t' —1° = s?)
1



X

where 2/, ¢/, ', denotes %, % and 3+, £ before taking the quotient.

By the conormal sequence we have
Azdwl ® Azdy, N Adel ) Aydt,
—322da’ + 2ydy T Z352ds + (1 — 362)dt!

Qayn =

We are interested in the dual of both these modules. We see the dual
as a submodule of the dual of Azdx’ ® Azdy’ and Ayds' @ Aydt’ re-
spectively. Using the identification with derivations, we write the
dual basis (da',dy’) and (ds',dt') as (£, %) and (§,%). The
claimed generators are indeed in this submodule. We want to show
that they generate. So let fi, fo € Ay such that

f1(=32%) + fr2y = 0.

So f132% = f22y. But Ayz/y = C[2']/(2"® + 1) and 322 is invertible
in this ring (it’s not a root of the polynonial). So we see that 2y | fi.
Also Ay /x? = Cl[2',y']/(2?,4*> — 1) and a similar argument holds
to conclude that 3z2 | f2. So we have f; = 2yA; and fo = 32 \g.
Therefore 2y\;322 = 322X\22y. We can simplify to get A\ = Ao,
which concludes. The reasoning for the second module is similar.
Also, note that because rings that we are dealing with are integral,
we necessarily have that the map Ay — AZ% & Aza% sending 1 to
the generator is injective. Same holds for the second module. We
have therefore concluded that
0 0 0 0
Th,ic = AZ(Zy% + 39;2@) Tl ic = Ay ((3¢° - 1)% — 38%)

are free sheaves of rank 1.

(2) It suffices to show that both derivations agree on the intersection.
Note that z = st~ and y = t~. Now,

0 0 3t2 -1  3s°
2 Y a20¢9 1y _ 95
<(3t 1) S 3s t) (st™) = ; + 2

But this equals, because s3 =t — 3, to 2/t = 2y. Also

0 0 3s?
2 _ _ a2 1y _ _ 9.2
<(3t 1)88 3s 815) (t) = 2 3z,

which concludes that derivations indeed agree on the intersection.
Last statement follows because T}l;' i 18 an invertible sheaf by the
first point and that we found a global nowhere vanishing global sec-

tion.
O

Exercise 3. Relative Spec. Let S be a scheme. Let A be a quasi-coherent
Og-algebra. This means that it is a sheaf (Og-algebras which is quasi-
coherent as an Og-module.



(1) Let V.C U C S two open affines. Show that the diagram
Spec(A(V)) —— Spec(A(U))

| |

|4 U

is cartesian.
(2) Let X = |JU; be an affine cover. Deduce that we can glue the
schemes (Spec(A(U;))) to an S-scheme

Spec (A) = S.

(3) Show that Spec S(.A) satisfies the following universal property in the
category of S-schemes. If f: T — S is an S-scheme then a S-
morphism 7" — Spec(A) is the same as a morphism of Or-algebras
f*A = Or. Deduce that Spec,(A) is independent of the affine cover
for the construction.

(4) Let f: X — Y be an affine morphism of schemes. Show that there
is a natural isomorphism of Y-schemes X = Spec,.(f.Ox).

(5) Let £ be a locally free sheaf of finite rank on S. We define

V(€) = Spec(Sym(£"))

where the Og-algebra Sym(€Y) denotes the free O-algebra on £V.!
Show that a S-morphism from f: T — S to V(£) is the same as a
global section of f*(£), i.e an element of f*(&)(T).

(6) Show that there is always a canonical section of p: V(€) — S which
correspond to 0 € £(S) which defines a closed subscheme of V(&)
isomorphic to S. We call this closed subscheme the zero section of
V(E).

Solution key. (1) We may cover V by principal opens affine to prove
the isomorphism locally. In this case it is clear that it follows from
quasi-coherence.

(2) Using the above we see that Spec(A(U;;)) — Spec(A(U;)) are open
immersions, being locally pullbacks of open immersions. It follows
that we can glue this to a scheme.

(3) Cover S by affine schemes U;. It induces an open cover of T' by
open subschemes T;. Suppose we are given f: T — Spec S(.A). Note
that this corresponds by gluing to a collection of maps of U;-schemes
f: T; — Spec(A(U;)) that appropriately glues. This correspond one
to one to a collection of O(U;)-algebra maps A(U;) — O(T;) which
correspond one to one to morphisms of Og-algebras A — f,Op, from
which the claim follows by adjunction.

(4) As f is affine, note that f,Ox is quasi-coherent. Note also that for
an open affine U C Y, we have a natural identification f~1(U) =
Spec(O(f~1(U))) = Spec(f«Ox (U)) from which the claim follows.

(5) By the above, such a morphism is the same as the data of an Op-
algebra morphism Sym(f*£Y) — Op. Therefore this the same as an

ps a gluing of the usual construction in liner algebra.



(6)

Op-module morphism f*€Y — Op. By duality, this is the same as
a section of f*&.
Affine locally on S, say on some affine Spec(R), we can assume that
£ = R" is finite free, and the zero section correspond to the origin
of A%.

O

Remark. If S = Spec(k) and V a finite-dimensional vector space, then
V(V) is the scheme-theoretic incarnation of the k-vector space V.

Exercise 4. Projective bundles. Let S be a scheme. Let A be a quasi-
coherent sheaf of graded Og-algebras. Let £ be a locally free sheaf of finite
rank on S.

(1)

Let V C U C S two open affines. Show that the diagram
Proj(A)(V)) —— Proj(A)(U))

| |

V » U

is cartesian.
Let X = |JU; be an affine cover. Deduce that we can glue the
schemes (Proj(.A)(U;))) to an S-scheme (the relative Proj)

7: Proj(A) — S.

When A = Sym(€Y) we denote Proj(Sym(&Y)) = P(E), the projec-
tive bundle associated to &. o

Show that P(E) satisfies the following universal property in the cat-
egory of S-schemes. If f: T'— S is an S-scheme then a S-morphism
T — P(£) is the same as a sub-line bundle? £ C f*€.

Hint: Show that the line bundles O(1) on Proj(Sym(EV)(U)) glue

naturally to a line bundle O(1) with a surjection
&Y — O(1).
The identity correspond therefore to the dual inclusion O(—1) C *&.
Recall that for locally free sheaves of finite rank, pullback and dual
naturally commute.
Show that the surjection
Sym(€Y @ Og) — Sym(&EY)
induces a closed immersion
PE) - PE®O)
and that the open complement identifies to V(&), leading to an open-
closed decomposition
P(E®O)=V(E)UPE).

Remark. This generalizes the open closed decomposition ]P’ZJrl =
AZ“ UPY. We can therefore interpret P(£®O) as a compactification

2a subsheaf which is a line bundle, and such that frE/L is locally free.
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of V(&) where we add an oo-point to each line in V(E), namely the
corresponding point in P(£).

(5) Show that O C €@ O defines a section of P(€ ® Q) — S which leads
to an open-closed decomposition

V(OQ) LS = P(E & O).

Remark. This generalizes

Pt = (CJ D+(:1:Z')> Uo:...0:1].
=0

Solution key. (1) Analogous to the above.

(2) Same.

(3) We give a proof that does not use the proposition about morphism
to P} case. In fact, it is a reformulation of this proof in other terms
and a more general setup. We try take profit as much as we can
of the known properties of the Proj construction, in particular it’s
functoriality studied in a previous exercise.

(a) Some facts on Proj,. Let F be a finite locally free sheaf on 5.
We denote by 7: Proj (Sym(F)) — S the structure map.

Claim. We have a canonical map F — m,O(1) which is an
isomorphism. By adjunction, we get a canonical map 7*F —
O(1). This last map is surjective.

Proof. Note first that for F = (9?", the claim follows from
the calculation of the global sections of O(1) on the projective
space, namely it is it’s natural reinterpretation. We are going
construct a map F — W*Oprojs(sym( 7)) (1) which is functorial in
F and this will allow to conclude as in exercise 2, week 9, the
exercise on duals.
We may define the natural map F — m,.0O(1) affine locally on S,
because it will readily glue. So say S is affine, where F is finite
free. We may cover Proj(Sym(F)) by D4(f) for f € F(S). We
have

O(M)(D+(f)) = Sym(F)(1)(p)-
Therefore we can define the natural map F — m,O(1) by send-
ing g € F(S) to the unique global section of O(1) that restricts
locally to (g € O(1)(D+(f)))ser- Because this map is natural®
we can conclude using the local free case that we already know
as explained above.
Affine locally on S, and on an open D (f) the surjection 7*F —
O(1) reads as

Sym(]:)(f) QR F — Sym(f)(l)(f) 1® f — f
3If some reader want some language, we are defining a natural transformation

between the identity functor on locally free sheaves and the functor sending F to
W*OMS(Sym(}_))(l)'



which is surjective.
Taking duals of the previous point, we get,
Corollary. On P(£), we have a natural inclusion Op(gy(—1) C
m*E.
See the next exercise for more on this inclusion.
U
(b) Let £ be a line bundle on S.
Claim. The map 7: Proj(Sym(L)) — S is an equality. More-
over if s € L(S) is a global section, then D (s) in Proj (Sym(L))
correspond to D(s) in S. Moreover L corresponds to OProj _(Sym(£)) (1)
by point (a).
We may work locally on S where £ = Ogt for a generator
t € L(S). So Sym(L) = Oglt]. But then Proj (Sym(£)) =
Specg(Osltl) = Specy(Os). Indeed, the natural inclusion
Os C O[t](y) is an equality. The claim about D, (s) and D(s)
also follows from the previous inspection.
(¢c) We now proceed to the proof of the statement of the exercise.

Let T 2 S be an S-scheme. We define a functor Schy’ — Set

P(T ER S)={L C f*€ | L is a line bundle, and f*E/L is locally free}
The functoriality is defined as follows. Let f: T — S and
f':T" — S be S-schemes. If g: T — T is a morphism of
S-schemes we define P(g) to be Im(¢*L — f*£) that we may
abbreviate as ¢g*L C f*€.
We may write P(T) and let f: T — S implicit. We want to
show that there is a natural bijection

P(T) = Schg (T, P(€)).

AsTxgsP(E) = P(f*E), we have Schg(T,P(E)) = Schp (T, P(f*E))
by sending a map 7' — P(f*E) to T — P(f*E) — P(E) so we
can suppose that T'= 5 and f =id. We now define a map

a: P(S) — Schg(S,P(£))

by sending £ — (S = P(£) — P(£)). The first arrow is the
equality explained in point (b) and the second arrow comes from
the surjection &Y — LV (dual to the given inclusion £ C &) and
the functoriality of Proj < We want to show that this is a bijec-
tion. To this end we define an inverse map (. Given a section
g: S — P(E), we get using the natural inclusion O(—1) C ©*&
an inclusion ¢*O(—1) C &€. This is our f.

e Note that Boa = id because the natural surjection 7Y —
O(1) pullback via (S = P(L) — P(£)) to &Y — LY by
functoriality of Proj and (a) and (b) above.

e We now show that cvo 8 = id, this will conclude the proof.
Let g: S — P() a section, meaning an S-scheme map,
meaning 7 o g = id. We want to show that the following




diagram commutes

P(g*O(-1))

= |

ST 5 PE)

which basically means that we can identify g to the map
obtained by functoriality of Proj. This is actually a direct
consequence of the definition of pullback os Og-modules
and the functoriality of Proj, but we try to write it down
carefully in what follows.
To see that it is the case, we may work affine locally on
S; let’s write then F(S) = M. The map induced by
Proj comes from the pullback by ¢ of the natural map
7* M"Y — O(1), which is a map MY — ¢g*O(1). We denote
the image by this map of some ¢ € MY by g*¢. The map
g is given locally by compatible ring maps

g Sym(MY)4) = Os((D(g*9))).
Note that on D(g*¢) the line bundle g*O(1) is trivial.
Indeed on D (¢) it is equal to Sym(M") )¢, so the pull-
back is equal to Og(D(g*¢))g*¢. Also note that gﬁ(%)g*gb =
g*Yin g*O(1)(D(g*¢)) because %gf) = in Sym(M") ¢ =
O(1)(D+(¢)). But now, it immediately follows that the
map induced by Proj is locally given by

Sym(M ") g — Sym(g*O(1))(g+¢) = Os(D(g°9))[g* D] (g+0) = Os(D(g"®))

o (g
g*¢ —  g*¢

which sends % to

= gﬁ(%), which con-
cludes.

Remark. If S = Spec(k) and V a finite-dimensional vec-
tor space, then P(V') is the scheme-theoretic incarnation
of the projective space of V.

Remark. If £ = (9%9"“, then we get a generalization of
statement seen in class over an affine base of the universal
property of PS. Let T' — P be a map. Because we have
chosen a basis, we have a canonical identification between
sub-line bundles £’ ¢ O2"*! and quotients OF"*! — £
— this second interpretation is therefore the same as the
choice of n + 1 globally generating sections of £(T') (up
to Og). We explain why it is a very good idea to then
denote the induced morphism by

fo Lol g
Let x € T be a point. Then f(z) € Pz Which is the set
of lines in k(x)®"*1. We claim that

[so(z): ... sp(x)]



(4)

()

defines a line in k(x)®"*!. Note that by definition s;(x) €
L(z) which is not canonically identified with k(x), so we
need to explain how to interpret s;(x) as an element of
k(z). Actually we will not claim that this is a well defined
element, however we claim that [so(z): ...: s,(x)] is a
well defined line. Because the sections globally generate,
x € D(s;) for some i say i = 0. So we may triviliaze on
this open é: Lp(ss) = Op(sy)- Using this trivialization
we interpret

s s
[so(z): ...t su(x)] as [1:t(z): ...: 2(a)].
S0 S0
This indeed defines a line in k(x)®"*! and one can check
that it does not depend on the trivialization. Also note
that to understand the image of the dual

k:(s)@"""l (so(z): ...t sn(x)) ﬁ(l’),

one can use the above trivialization around z, and then
dualize, and the one finds that the line f(z) in question
is indeed the one [so(x): ...s,(x)] whose construction is
explained above.
The open complement is given by D, (t), if ¢t designates the global
section (0,1) € £® Og. More precisely, we identify Sym(EY @ Og) =
Sym(EY)[t]. Therefore the degree zero part of the localization by ¢
identifies with Sym(&Y).
We precise that V(O(1)) designates the bundle on P(E).

Note first that the closed subscheme corresponding to Og C EHOg
is given by the graded ideal sheaf (£V) C Sym(EV)[t]. Indeed the
above inclusion correspond by duality to the surjection &Y @ Og —
Og and the closed subscheme corresponding is given by the graded
ideal sheaf generated by the kernel of this map.

Note that the the graded inclusion Sym(€Y) — Sym(EVY)[t] in-
duces by functoriality of Proj a morphism U — P(£) where U is
the open subscheme complement of the closed subscheme mentioned
above.

Our goal is now to show that U — P(€) is isomorphic as P(&)-
scheme to V(O(1)) — P(€). To this end we view these as functors
on P(&)-schemes via the Yoneda embedding. It suffices therefore to
construct a natural isomorphism of their respective functor of points.
Recall that a P(€)-scheme is the data of a morphism g: T — P(E)
and therefore the data of a sub-line bundle L C f*&,if f: T — S
denotes the composition of g with the projection to S. When we
write T in what follows, we carry implicitly the above information.
The points of U are then

U(T)={MC f*€®0Or | Masub-lb. and Mg = Lr}.
The points of V(O(1)) are
V(OM))NT) = Lp(T).



9
To see that these two functors are isomorphic, note that sending
M eU(T) to
dppm: LCMC f*EDOp — Op
and ¢ € LY.(T) to the sub-line bundle generated by
((v,0(0))vecr € [FESOr

is an isomorphism.

O

Exercise 5. Tautological line bundle. This exercise is a direct follow-up to
the preceding one. We call

O(-1) € 7€

the tautological line bundle. We gather in this exercise various properties of
this universal line bundle.

Say U

is an affine of S, M = E(U) and ¢ € MV. Let ¢ € M ® MY

be the canonical element (corresponding to the identity along the natural
isomorphism M ® MV = Homy (M, M)).

(1)

(2)

Show that O(—1) can be realized as the sub-line bundle of 7*E gen-
erated on D, (¢) by

¢/ € 7 M(Ds(p)) = Sym(M ")) @ M.

Let f: T — S an S-scheme. From the previous exercise, deduce that
if T — P(E) is the map of S-schemes corresponding to an £ C 7*&,
then the following square

V(L) —— V(O

(
| |

T — P(€&)

1))

is Cartesian.

Remark. The above says that P(€) is the moduli space of sub-line
bundles of £, and that O(—1) is the universal line bundle on the
moduli.

Show that V(O(—1)) is a closed subscheme of V(7*E) = V(&) xg
P(£). This comes from the surjection 7*€Y — O(1).

Let f: T — S an S-scheme. Show that a map of S-schemes T' —
V(E) xg P(E) which corresponds to a pair (£,v) with £ C f*&€ and
v e f*E(T) factors through V(O(—1)) if and only if v € L(T).
Remark. In particular if S = Spec(k) where k is a field, and
& = k™" the bundle V(O(—1)) is realized as a closed subscheme of
AT PR

Solution key. (1) A local claim suffices. So say S = Spec(A) is affine

and &£ can be identified with a finite projective A-module M. The
built-in surjection 7*M" — O(1) reads on D, () as the surjective
map

a: Sym(M¥)y) @ MY = O(1)(D4 ()
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determined by 1 ® ¥ — . We want to dualize it to understand the
claim. Namely we want to understand the image of the dual. Note
that to determine that, we can post compose by an isomorphism the
above map, so we can trivialize by é: O()(D+(p)) = O(D4(9)).
Therefore we want to analyze the dual of the map

Sym(Mv)(g,) QMY — Sym(Mv)(v)

determined by sending 1 ® ¢ — %
Recall that (because M is finite projective) we have an isomor-
phism

Sym(Mv)(w) QM — Homsym(Mv)(w (Sym(Mv)(w) (= MV, Sym(Mv)(W))

via the map determined by sending m € M to the map determined
by sending v € M to ¢(m). The image of the dual of « on the
right side is given, as explained above by the map determined by
1® Y — %. So it suffice to check that é is sent to this map. Recall
that if ¢ = Y, ¢; ® my, it has the property that for every ¢ € MY
we have

b = Zw<mi)¢i.

Therefore the claim follows.

(2) By construction in the situation of the previous exercise f*O(—1) =
L. The claim follows.

(4) For the two last items, one notes that translating the factorization
into the closed subscheme V(O(—1)) amounts to the existence of a

factorization
f*g\/
ﬁv ****** > OT

which amounts by dualizing to the claim.
Remark. Yet another perspective on V(O(—1)) is that it is the blow-up of
V(&) at the zero section.
O

Exercise 6. Stability properties of (very-)ample sheaves under tensor prod-
uct. Let X be a Noetherian scheme. Let £ and M be invertible sheaves on
X.

(1) If £ is ample and M is globally generated, show that £ ® M is
ample.
(2) If £ is ample and M is arbitrary, deduce that there is a n such that
L ® M is ample.
(3) Show that if £ and M are ample, then £ ® M is ample.
Now suppose that X is an A-scheme where A is a Noetherian ring.

(4) If £ is A-very ample and M is globally generated, then £ ® M is
A-very ample.
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(5) If £ is ample, then there is a ng > 0 such that £" is A-very-ample
for all n > ny.

Solution key. (1) First note that if 7 and G are globally generated and
then F ® G is also because all pure tensors of global sections f ® ¢
because this is a local claim and the tensor product of two surjective
map is surjective. The claim follows.

(2) Follows.

(3) Same.

(4) Choose sections sg,...,s, € L£(X) which defines an A-immersion
X — P and mog,...,m,; € M(X) that defines an A-morphism
X — P%. Then the product X — P x4 P} is an immersion as
immersions are closed under base-change. Now conclude using a
Segre embedding.

(5) Follows from previous point and the proposition shown in class that

there exists some ng with £ being A-very ample.
O
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Exercise 1. A short exact sequence. Let ¢: D — X be an effective Cartier
divisor on a integral scheme X. Show that there is a short exact of sheaves

0— O(—D) = Ox — 1.0p — 0.
Deduce that there is a long exact sequence in cohomology,
(...) = H(X,0(-D)) = H(X,0x) = H(D,0p) — (...)

Solution key. O(—D) is the ideal sheaf associated to the closed subscheme
D.
O

Exercise 2. Let ¢ : Z — X be a closed immersion of schemes, where Z and
X are not necessarily noetherian schemes.

(1) Show that the functors R’i. : Modp, — Modp, are zero for all
j>o. | |

(2) Conclude that for an F € Modp,, H(Z,F) = H'(X, ,F) for all
1€ N.

Solution key. The functor j, is exact, which can be checked at stalks. The
assertion on higher pushforwards follows.
Consider morphisms of ringed spaces (the right one is the terminal ringed
space)

(Z,02) % (X,0x) & (. Z).
It holds in general that R(pot), = Rp.o Ru, at the level of derived categories
of O-modules.

As the first point shows that Rts = t4, this concludes.
O

Exercise 3. A geometric perspective on the FEuler sequence. Let A be a
ring and M a locally free of finite rank A-module.

(1) Directional derivative. For a v € M, show that there is a unique
A-derivation
0
e Sym(M"Y) — Sym(M")
v
which is equal to the evaluation at v on elements of degree 1. If M
is free, if (e;) and (z;) denotes a basis and a dual basis respectively,

and v = Y A;e;, show that

) )
50 = Z)\&E
1



(2) For ¢ € MY, show that % uniquely extends to an A-derivation

%: Sym(M"), — Sym(MY),.

Deduce that % defines an A-derivation

0
%: Sym(MV)(gD) — Sym(Mv)(—l)(

®)

Y
(3) Denote by 7: P(M) — Spec(A) and 71'P}(M)|A = (Ql%”(M)M) . Deduce
that there is a Op(yp-linear map

9(-)
Hint: IEP}(M)|A(_1) = Hom@P(M)(Q]%D(M)‘A,(9(—1))1. Use the univer-
sal property of Q]%D(M”A on affines Dy (p).
(4) Euler sequence. Let S be a scheme and £ a locally free sheaf of finite

rank on 5. Show that there is an exact sequence of Op(g)-locally free
sheaves

s M — %I(M)‘A(—l).

_9
0= O(=1) » 7€ 25 Tlg5(—1) = 0

where the first arrow is the canonical inclusion O(—1) — 7*€ and
the second is a globalization of the arrow above. Hint: Use the
naturality of the construction to reduce to a case where the base is
affine and & is free. We are now working in P"y. Choose a basis and
write the matrices of maps in question on opens D4 (z;).

Solution key. (1) Because of the Leibniz rule, it suffice to determine an
A-derivation on degree 1 elements.
(2) Note that because of the Leibniz rule, the following is forced.

o1 190
0= 5g T pou P
Therefore, we define
01 1 0 1
Bup = o ?) = @)

By the Leibniz rule, it extends. The second claim follows because
such a derivation decreases the degree by 1.
(3) On an affine D, (p) we define

M ® Sym(MV)(¢) — DerA(Sym(Mv)(W), Sym(MV)(¢)(—l))

by sending v ® W to the derivation Wa%' This glues because
this only depends on where to send M.

1Because in general if F is finite locally free and G is a sheaf of O-modules, then
F¥Y®G=Homo(F,G)
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(4) Working locally is enough. Indeed the sequence is functorial in &,
so this is sufficient. Let’s say that & = A"l Fix an i € {0,...,n},

Ly

without loss of generality say ¢ = 0. Denote by t; = o Note that
(we just need to choose where to send each t;)

1 1
Dera(Alty, ..., to], —Alt1, ... tn]) = ED Altr, ..., ta] —.
o i>1 o
In term of the above basis, we have 6%0 = (—i—é, el —fc—g), because
6 l‘]’ - —.’Ej o 1 —J,‘j
81'0 Zo N :C(% _l‘o CL’O.
Also we have % =e;. As e; € (Alto, ..., t,))®" T is sent to 8%1- we
get that the martix of the map is
I |
o
—Zno ]

It follows that the map is surjective and that the kernel is generated
by

n
xj c
D oe®t=—
= To  To
which proves the claim. (We used the notation ¢ from the exercise
on the tautological line bundle).

O

Exercise 4. Cohomology and affine maps. Let X — Y be an affine map of
schemes and F a quasi-coherent sheaf on X.

(1) Show that the natural map f. — Rf. is an isomorphism, meaning
that R'f, = 0if i > 0.
(2) Deduce that
HY (X, F) = H(Y, f.F).
(3) Let E be again the curve from the above exercise. Let f: E — PL be
the restriction of the partially defined projection IP’% --» }P’}} on the

first two components. Show that this is well defined and compute
the cohomology of f.O(nFy) for n € Z.

Solution key. Recall that R'f, is the sheafification of U — Hi(f~1(U), F).
Because f is affine, the latter vanishes, the first claim therefore follows.

Consider morphisms of ringed spaces (the right one is the terminal ringed
space)

(X,0x) L (v,0v) & (x,2).

It holds in general that R(gof). = Rg.oRf. at the level of derived categories
of O-modules.
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The first point of the exercise shows that when F is quasi-coherent, then
Rf.(F) = f«F. Using this and the above we get R(go f).F = RgsoRf.F =
Rg.(f«F), which concludes.

If we work on Noetherian schemes, we can use that any injective quasi-
coherent is flasque. By the previous point f, sends an injective quasi-
coherent resolution of F, to a flasque resolution (by exactness on quasi-
coherent sheaves) of f.F. The second claim also follows this way in this
case.

O

Exercise 5. Curves in P2. Let k be a field. Let C = Vi (F) for F €
Op2 (d)(P2) for a d > 1.

(1) Show that HO(C,O¢) = k.

(2) Deduce that any C; and Cy of the above form intersect.

(3) Suppose that C' does not contain [0 : 0 : 1] (this can always be
arranged up to an automorphism of IP’%) Calculate the Cech complex
associated to the cover CN D4 (Y)UCN D4 (X) explicitly and deduce

that H'(C, O¢) is a k-vector space of dimension W%M.

Solution key. For the first item, use that H'(PZ, O(—d)) = 0. For the second
item, suppose by contradiction that two curves Vi (F) and V,(G) do not
intersect. Then the union is not connected. But the union is described
as V1 (FG). Being disconnected, they would be non trivial idempotents in
the global sections, a contradiction. We could conduct a Cech cohomology
computation to get the last result, but we indicate that it follows from the
long exact sequence in cohomology of

0 — Op2(—d) = Op2 — Oc — 0.

O

Remark. We say that (dfléﬁ is the arithmetic genus of C'. Curves of

degree 3 are of arithmetic genus 1. Smooth ones are called elliptic curves.
Any smooth curve C over an algebraically closed field k with H!(E, Og) = 1
can be realized as a smooth cubic in IP)%, see for example Harthshorne 111,4.6.

Exercise 6. A Cech cohomology computation. Let k be a field. Let U =
A2\ 0. Compute the cohomology of Oy on U. After showing that Oy is
ample, deduce that Serre vanishing does not hold for U.

Solution key. The Cech complex of Oy with respect to the open cover U =
{D(2), D(y)} is



co( d y CH(Oy) ———— C2(Oy) —> ...
Ou(D(x)) x Oy(D(y)) Ou(D(zy))
klz, 271 y] x klz,y,y™Y klz, 27t y,y7 Y
(s,t) s—t
Thus we have

; klz, 271y, y7! klz, 2™y, y~ -

1 _ ) y I _ ) v — i,
HU00) = =10 et ko] - DV

Note that Oy is k-very-ample. Indeed viewing U in IPZ, the pullback of O(1)
on U is trivial. It now follows that Oy is k-very ample.

O

Exercise 7. Coherence of derived pushforward: Let f : X — Y be a projec-
tive morphism between two noetherian schemes. For a coherent O x-module
F, show that R'f.F is coherent for all .

Solution key. Recall that if j: (U, Oy) — (X, Ox) is an inclusion of an open,
then j* sends injective Ox-modules to Oy-modules because it admits j; is
an exact left adjoint. Therefore if U = Spec(A) C Y is open, if we consider
the pullback

U’LX

b
U=y
then we have ' '
(R'fF)w = (R fiFjor)-
So the conclusion follows from the affine case which was seen in class as a
consequence of the computation of the cohomology of line bundles O(n) on
", and of the theory of ample invertible sheaves.
O



