
Krylov subspace methods: GMRES

L. Grigori

EPFL and PSI

November 26, 2024

Plan

Sparse linear solvers
Sparse matrices and graphs
Classes of linear solvers

Orthogonalization techniques: deterministic and randomized
Gram-Schmidt, CholeskyQR and their randomized versions

Krylov subspace methods
Arnoldi process and application to GMRES

Communication avoiding in iterative methods

2 of 43

Plan

Sparse linear solvers
Sparse matrices and graphs
Classes of linear solvers

Orthogonalization techniques: deterministic and randomized

Krylov subspace methods

Communication avoiding in iterative methods

3 of 43

Sparse matrices and graphs

■ Most matrices arising from real applications are sparse.
■ A 1M-by-1M submatrix of the web connectivity graph, constructed from

an archive at the Stanford WebBase.

Figure: Nonzero structure of the matrix

4 of 43

Sparse matrices and graphs

■ Most matrices arising from real applications are sparse.

■ GHS class: Car surface mesh, n = 100196, nnz(A) = 544688

Figure: Nonzero structure of the matrix
Figure: Its undirected graph

Examples from Tim Davis’s Sparse Matrix Collection,

http://www.cise.ufl.edu/research/sparse/matrices/

5 of 43

http://www.cise.ufl.edu/research/sparse/matrices/

Sparse matrices and graphs

■ Semiconductor simulation matrix from Steve Hamm, Motorola, Inc.
circuit with no parasitics, n = 105676, nnz(A) = 513072

Figure: Nonzero structure of the matrix
Figure: Its undirected graph

Examples from Tim Davis’s Sparse Matrix Collection,

http://www.cise.ufl.edu/research/sparse/matrices/

6 of 43

http://www.cise.ufl.edu/research/sparse/matrices/

Computing with sparse matrices - guiding principles

■ Store nonzero elements

A =


1.1 1.3

2.2 2.4
3.2 3.5

4.1 4.4
5.1 5.3 5.5


□ Compressed sparse formats by columns (CSC), rows (CSR), or coordinates
□ For A of size n × n, CSC uses one aray of size n + 1 and two arrays of size

nnz(A):

ColPtr
(

1 4 6 8 10 12
)

RowInd
Vals

(
1 4 5 2 3 1 5 2 4 3 5
1.1 4.1 5.1 2.2 3.2 1.3 5.3 2.4 4.4 3.5 5.5

)
■ Compute flops only on nonzeros elements

■ Identify and exploit parallelism due to the sparsity of the matrix

7 of 43

Sparse linear solvers

Direct methods of factorization
■ For solving Ax = b, least squares problems

□ Cholesky, LU, QR, LDLT factorizations

■ Limited by fill-in/memory consumption and scalability

Iterative solvers
■ For solving Ax = b, least squares, Ax = λx , SVD

■ When only multiplying A by a vector is possible

■ Limited by accuracy/convergence

Hybrid methods
As domain decomposition methods

8 of 43

Krylov subspace methods

Solve Ax = b by finding a sequence x1, x2, ..., xm that minimizes some
measure of error over the corresponding spaces

x0 +Ki (A, r0), i = 1, ...,m

.

They are defined by two conditions:

1. Subspace condition: xm ∈ x0 +Km(A, r0)

2. Petrov-Galerkin condition: rm ⊥ Lm

⇐⇒ (rm)
ty = 0, ∀ y ∈ Lm

where
■ x0 is the initial iterate, r0 is the initial residual, rm = b − Axm

■ Km(A, r0) = span{r0,Ar0,A2r0, ...,Am−1r0} is the Krylov subspace of dimension m

■ Lm is a well-defined subspace of dimension m

■ For stability, the vectors of the Krylov basis are orthogonalized

9 of 43

One of Top Ten Algorithms of the 20th Century

From SIAM News, Volume 33, Number 4:
Magnus Hestenes, Eduard Stiefel, and Cornelius Lanczos, all from the
Institute for Numerical Analysis at the National Bureau of Standards, initiate
the development of Krylov subspace iteration methods.

■ Russian mathematician Alexei Krylov writes first paper, 1931.

■ Lanczos - introduced an algorithm to generate an orthogonal basis for
such a subspace when the matrix is symmetric.

■ Hestenes and Stiefel - introduced CG for SPD matrices.

Other Top Ten Algorithms: Monte Carlo method, decompositional approach to

matrix computations (Householder), Quicksort, Fast multipole, FFT.

10 of 43

Choosing a Krylov method

Source slide: J. Demmel

11 of 43

Challenge in getting efficient and scalable solvers

■ A Krylov solver finds xm from x0 +Km(A, r0) where

Km(A, r0) = span{r0,Ar0,A2r0, ...,A
m−1r0},

such that the Petrov-Galerkin condition b − Axm ⊥ Lm is satisfied.
■ Does a sequence of sparse matrix vector products to get vectors

[x1, ..., xm]
■ Finds best solution xm as linear combination of [x1, ..., xm−1]
■ For numerical stability, an (A)-orthonormal basis {q1, q2, ..., qm} for

Km(A, r0) is computed (CG, GMRES, BiCGstab,...).

Typically, each iteration requires

■ Sparse matrix vector product
→ point-to-point communication

■ Dot products for orthogonalization
→ global communication

12 of 43

Challenge in getting efficient and scalable solvers

■ A Krylov solver finds xm from x0 +Km(A, r0) where

Km(A, r0) = span{r0,Ar0,A2r0, ...,A
m−1r0},

such that the Petrov-Galerkin condition b − Axm ⊥ Lm is satisfied.
■ Does a sequence of sparse matrix vector products to get vectors

[x1, ..., xm]
■ Finds best solution xm as linear combination of [x1, ..., xm−1]
■ For numerical stability, an (A)-orthonormal basis {q1, q2, ..., qm} for

Km(A, r0) is computed (CG, GMRES, BiCGstab,...).

Typically, each iteration requires

■ Sparse matrix vector product
→ point-to-point communication

■ Dot products for orthogonalization
→ global communication

12 of 43

Ways to improve performance

■ Improve the performance of sparse matrix-vector product

■ Improve the performance of MPI communication

■ Change numerics - reformulate or introduce Krylov subspace algorithms
to:
□ reduce communication,
□ increase arithmetic intensity - compute sparse matrix-set of vectors product

■ Use preconditioners to decrease the number of iterations till convergence.

13 of 43

Plan

Sparse linear solvers

Orthogonalization techniques: deterministic and randomized
Gram-Schmidt, CholeskyQR and their randomized versions

Krylov subspace methods

Communication avoiding in iterative methods

14 of 43

Gram-Schmidt (GS) orthogonalization process

Given set of linearly independent vectors W = [w1, . . . ,wm], W ∈ Rn×m.
Construct an orthogonal basis Q = [q1, . . . , qm] such that W = QR.

For each wj do
1. Given Pj−1 projector on span(Qj−1)

⊥, compute qj ⊥ q1, . . . , qj−1 as

qj = Pj−1wj

2. Normalize qj
End For

15 of 43

Projectors Pj used in Gram-Schmidt

■ Classical Gram-Schmidt (CGS): BLAS-2 matrix-vector operations
□ one synchronization, assume c2(m, n)κ2(W)u < 1,

Pj−1 = I − Qj−1Q
T
j−1, ∥I − QTQ∥ = c1(m, n)κ2(W)u, c1, c2 = O(nm2)

→ good efficiency, but stability issues

■ Modified Gram-Schmidt (MGS) : BLAS-1 vector-vector operations
□ (j − 1) synchronizations, assume c3(m, n)κ(W)u < 1,

Pj−1 = (I − qj−1q
T
j−1) . . . (I − q1q

T
1), ∥I − QTQ∥ = c3(m, n)κ(W)u, c3 = O(nm)

→ better numerical stability, but poor efficiency

Note: u machine precision, W ∈ Rn×m, bounds from [Giraud et al., 2005].

16 of 43

Projectors Pj used in Gram-Schmidt

■ Classical Gram-Schmidt (CGS): BLAS-2 matrix-vector operations
□ one synchronization, assume c2(m, n)κ2(W)u < 1,

Pj−1 = I − Qj−1Q
T
j−1, ∥I − QTQ∥ = c1(m, n)κ2(W)u, c1, c2 = O(nm2)

→ good efficiency, but stability issues

■ Modified Gram-Schmidt (MGS) : BLAS-1 vector-vector operations
□ (j − 1) synchronizations, assume c3(m, n)κ(W)u < 1,

Pj−1 = (I − qj−1q
T
j−1) . . . (I − q1q

T
1), ∥I − QTQ∥ = c3(m, n)κ(W)u, c3 = O(nm)

→ better numerical stability, but poor efficiency

Note: u machine precision, W ∈ Rn×m, bounds from [Giraud et al., 2005].

16 of 43

Cholesky QR

■ CholeskyQR : BLAS-3 matrix-matrix operations
Compute W = Q̃R̃ as:

1. Compute the Cholesky factorization of W TW as W TW = R̃T R̃
2. Compute the orthogonal factor as Q̃ = WR̃−1

■ Numerical stability: assume O(u)κ2(W) < 1, then

∥I − Q̃T Q̃∥ = O(u)κ2(W)

17 of 43

Recap on ε-subspace embedding property

For a given subspace V ⊂ Rm and ε ∈ (0, 1), a sketching matrix Ω ∈ Rl×m

is an ε-embedding for V if for all xi , xj ∈ V, we have

|⟨Ωxi ,Ωxj⟩ − ⟨xi , xj⟩| ≤ ϵ∥xi∥2∥xj∥2 (1)

Let W be a matrix whose columns form a basis for V. For simplicity, we
refer to an ε-subspace embedding for V as an ε-embedding for W .

Corollary (Corollary 2.2 in [Balabanov and Grigori, 2022])
If Ω ∈ Rl×m is an ε-embedding for W , then the singular values of W are
bounded by

(1 + ε)−1/2σmin(ΩW) ≤ σmin(W) ≤ σmax(W) ≤ (1− ε)−1/2σmax(ΩW).

18 of 43

Randomized orthogonalization processes

Main underlying idea:
If sketching matrix Ω is OSE(m, ϵ, δ), hence preserves geometry (inner
products) for span(Q) with high probability (w.h.p.), then

κ(Q) ≤
√

1 + ε

1− ε
κ(ΩQ)

→ orthogonalize ΩQ instead of Q.

19 of 43

Randomized Cholesky QR

For simplicity, assume W ∈ Rn×m is nonsingular

Randomized Cholesky QR

■ Compute Ws = ΩW , Ws ∈ Rl×m, Ω ∈ Rl×n

■ Compute the QR factorization Ws = QsRs where Qs ∈ Rl×m has
orthonormal columns (if W is ill-conditioned, one could use the rank
revealing QR factorization)

■ Compute Q = WR−1
s

20 of 43

Randomized Cholesky QR

In infinite precision we have:

Q = WR−1
s

ΩQ = ΩWR−1
s = WsR

−1
s = Qs

and hence, if sketching matrix Ω is OSE(m, ϵ, δ) for span(Q), with h.p.:

κ(Q) ≤
√

1 + ε

1− ε
κ(ΩQ) =

√
1 + ε

1− ε

21 of 43

Randomized Gram-Schmidt (RGS) orthogonalization

For a more stable procedure, avoid using R−1
s , instead use the previously

computed j − 1 columns of Q to compute a new column j

■ P r
j−1 is an orthogonal projector wrt ⟨Ω·,Ω·⟩

P r
j−1 = I − Qj−1(ΩQj−1)

†Ω

■ ΩW = SR, with S = ΩQ ℓ2-orthonormal

■ Obtain W = QR factorization such that Q is unit-orthogonal wrt
sketched inner product ⟨Ω·,Ω·⟩

Reference: [Balabanov and Grigori, 2022, Balabanov and Grigori, 2020]

22 of 43

Randomized Gram-Schmidt orthogonalization (contd)

■ Compute W = QR using P r
j−1 orth. projector with respect to ⟨Ω·,Ω·⟩.

P r
j−1 = I − Qj−1(ΩQj−1)

†Ω

For each wj do

Given Wj−1 = Qj−1Rj−1, j > 1, compute [Wj−1,wj] =
[
Qj−1, qj

] [Rj−1 r1:j−1,j

rjj

]

1. Compute the sketch Ωwj

2. Compute qj = P r
j−1wj by solving a small least-squares problem:

r1:j−1,j = [Sj−1]
†Ωwj , where Sj−1 = ΩQj−1

qj = wj − Qj−1r1:j−1,j

2. Sketch the new vector sj = Ωqj
3. Normalize rj,j = ∥sj∥2 and qj = qj/rj,j , sj = sj/rj,j

End For

23 of 43

Randomized Gram-Schmidt orthogonalization (contd)

■ Compute W = QR using P r
j−1 orth. projector with respect to ⟨Ω·,Ω·⟩.

P r
j−1 = I − Qj−1(ΩQj−1)

†Ω

For each wj do

Given Wj−1 = Qj−1Rj−1, j > 1, compute [Wj−1,wj] =
[
Qj−1, qj

] [Rj−1 r1:j−1,j

rjj

]

1. Compute the sketch Ωwj

2. Compute qj = P r
j−1wj by solving a small least-squares problem:

r1:j−1,j = [Sj−1]
†Ωwj , where Sj−1 = ΩQj−1

qj = wj − Qj−1r1:j−1,j

2. Sketch the new vector sj = Ωqj
3. Normalize rj,j = ∥sj∥2 and qj = qj/rj,j , sj = sj/rj,j

End For

23 of 43

Randomized Gram-Schmidt orthogonalization (contd)

■ Compute W = QR using P r
j−1 orth. projector with respect to ⟨Ω·,Ω·⟩.

P r
j−1 = I − Qj−1(ΩQj−1)

†Ω

For each wj do

Given Wj−1 = Qj−1Rj−1, j > 1, compute [Wj−1,wj] =
[
Qj−1, qj

] [Rj−1 r1:j−1,j

rjj

]

1. Compute the sketch Ωwj

2. Compute qj = P r
j−1wj by solving a small least-squares problem:

r1:j−1,j = [Sj−1]
†Ωwj , where Sj−1 = ΩQj−1

qj = wj − Qj−1r1:j−1,j

2. Sketch the new vector sj = Ωqj
3. Normalize rj,j = ∥sj∥2 and qj = qj/rj,j , sj = sj/rj,j

End For

23 of 43

Stability of randomized Gram-Schmidt

Assumptions:
■ Sketching Ω is OSE(m, ϵ, δ), and preserves inner products for span(W) with h.p.

■ Backward-stable least-squares solver for solving

(Ŝj−1)
†p̂j = argmin

x̂
∥Ŝj−1x − p̂j∥, where p̂j = Ωwj

■ Mixed precision model with ufine/c4(n,m) < ucrs < 1/c5(m), c4(n,m) = O(m1/2n3/2),

c5(m) = O(m2κ(W)) (in practice better constants)

□ Fine precision ufine for low dim. operations and random projections
□ Coarse precision ucrs for expensive high-dim. operations

Stability result with probabilistic rounding and mixed precision
Let Q̂, R̂ be the computed QR factors of W ∈ Rn×m in finite precision.
With high probability:

∥W − Q̂R̂∥F ≤ O(ucrsm
3/2)∥W ∥F ,

κ(Q̂) =

√
1 + ε

1− ε
(1 + ucrsc5(m)), c5(m) = O(m2κ(W))

24 of 43

Stability of randomized Gram-Schmidt

Assumptions:
■ Sketching Ω is OSE(m, ϵ, δ), and preserves inner products for span(W) with h.p.

■ Backward-stable least-squares solver for solving

(Ŝj−1)
†p̂j = argmin

x̂
∥Ŝj−1x − p̂j∥, where p̂j = Ωwj

■ Mixed precision model with ufine/c4(n,m) < ucrs < 1/c5(m), c4(n,m) = O(m1/2n3/2),

c5(m) = O(m2κ(W)) (in practice better constants)

□ Fine precision ufine for low dim. operations and random projections
□ Coarse precision ucrs for expensive high-dim. operations

Stability result with probabilistic rounding and mixed precision
Let Q̂, R̂ be the computed QR factors of W ∈ Rn×m in finite precision.
With high probability:

∥W − Q̂R̂∥F ≤ O(ucrsm
3/2)∥W ∥F ,

κ(Q̂) =

√
1 + ε

1− ε
(1 + ucrsc5(m)), c5(m) = O(m2κ(W))

24 of 43

Stability of randomized Gram-Schmidt

Assumptions:
■ Sketching Ω is OSE(m, ϵ, δ), and preserves inner products for span(W) with h.p.

■ Backward-stable least-squares solver for solving

(Ŝj−1)
†p̂j = argmin

x̂
∥Ŝj−1x − p̂j∥, where p̂j = Ωwj

■ Mixed precision model with ufine/c4(n,m) < ucrs < 1/c5(m), c4(n,m) = O(m1/2n3/2),

c5(m) = O(m2κ(W)) (in practice better constants)

□ Fine precision ufine for low dim. operations and random projections
□ Coarse precision ucrs for expensive high-dim. operations

Stability result with probabilistic rounding and mixed precision
Let Q̂, R̂ be the computed QR factors of W ∈ Rn×m in finite precision.
With high probability:

∥W − Q̂R̂∥F ≤ O(ucrsm
3/2)∥W ∥F ,

κ(Q̂) =

√
1 + ε

1− ε
(1 + ucrsc5(m)), c5(m) = O(m2κ(W))

24 of 43

Randomized Gram-Schmidt vs. CGS and MGS

Classical Gram-Schmidt (CGS):

■ BLAS-2 matrix-vector operations

■ One synchronization

→ good efficiency, but stability issues
whatever

Modified Gram-Schmidt (MGS) :

■ BLAS-1 vector-vector operations

■ (j − 1) synchronizations

→ better numerical stability, but poor
efficiency

Randomized Gram-Schmidt (RGS):

■ BLAS-2 matrix-vector operations

■ Twice less flops than CGS and MGS (could be computed in lower
precision)

■ One synchronization

■ Numerical stability similar (or better) to MGS

25 of 43

Randomized GS for synthetic function

Cond number of Qi (Matlab)

50 100 150 200 250 300

iteration

10
0

10
1

10
2

10
3

10
4

c
o
n
d
.
n
u
m

b
e
r

sqrt(cond(W))

CGS

MGS

CGS2

u.p. RGS, k=1500

u.p. RGS, k=5000

m.p. RGS, k=5000

Results in Julia (with V. Lederer)

F32/F32 F64/F32 F64/F64

C
G

S

M
G

S

R
G

S

C
G

S

M
G

S

R
G

S

C
G

S

M
G

S

R
G

S

0

200

400

Process

T
im

e
(s

ec
) Time (sec)

CGS

MGS

RGS

Computation time
 Precision model

■ Unique precision (u.p.): fp32 for all arithmetic operations, i.e., ucrs = ufine ≈ 10−8

■ Mixed precision (m.p.): fp32/fp64 formats, i.e. ucrs ≈ 10−8 and ufine ≈ 10−16

■ Synthetic function:

fµ(x) =
sin(10(µ+ x))

cos(100(µ− x)) + 1.1
, x ∈ [0, 1], µ ∈ [0, 1],

W (i , j) = fµj (xi), 1 ≤ i ≤ 106, 1 ≤ m ≤ 300

26 of 43

Plan

Sparse linear solvers

Orthogonalization techniques: deterministic and randomized

Krylov subspace methods
Arnoldi process and application to GMRES

Communication avoiding in iterative methods

27 of 43

Krylov subspace methods for solving Ax = b

Finds a sequence x1, x2, ..., xm that minimizes some measure of error over
the spaces x0 +Ki (A, r0), i = 1, ...,m, by satisfying two conditions:

1. Subspace condition: xm ∈ x0 +Km(A, r0)

2. Petrov-Galerkin condition: rm ⊥ Lm ⇐⇒ (rm)
ty = 0, ∀ y ∈ Lm

where
- x0 initial iterate, r0 initial residual, Lm well-defined subspace of dimension m

- Km(A, r0) = span{r0,Ar0,A2r0, ...,Am−1r0} is the Krylov subspace of dimension m.

Two instances of Krylov projection method:

Conjugate gradient [Hestenes, Stieffel, 52], A is SPD, Lm = Km(A, r0),

■ finds xm by minimizing ∥x − xm∥A over x0 +Km(A, r0)

GMRES [Saad, Schultz, 86], A is unsymmetric, Lm = AKm(A, r0),

■ finds xm by minimizing ∥Ax − b∥2 over x0 +Km(A, r0).

28 of 43

Krylov subspace methods for solving Ax = b

Finds a sequence x1, x2, ..., xm that minimizes some measure of error over
the spaces x0 +Ki (A, r0), i = 1, ...,m, by satisfying two conditions:

1. Subspace condition: xm ∈ x0 +Km(A, r0)

2. Petrov-Galerkin condition: rm ⊥ Lm ⇐⇒ (rm)
ty = 0, ∀ y ∈ Lm

where
- x0 initial iterate, r0 initial residual, Lm well-defined subspace of dimension m

- Km(A, r0) = span{r0,Ar0,A2r0, ...,Am−1r0} is the Krylov subspace of dimension m.

Two instances of Krylov projection method:

Conjugate gradient [Hestenes, Stieffel, 52], A is SPD, Lm = Km(A, r0),

■ finds xm by minimizing ∥x − xm∥A over x0 +Km(A, r0)

GMRES [Saad, Schultz, 86], A is unsymmetric, Lm = AKm(A, r0),

■ finds xm by minimizing ∥Ax − b∥2 over x0 +Km(A, r0).

28 of 43

Arnoldi process

■ Basis Qm = {q1, . . . qm} of Km(A, r0) obtained through Gram-Schmidt
(CGS or MGS), that is by computing the QR fact. of Arnoldi matrix
[r0,AQm] [Paige et al, 06]

■ Produces a Hessenberg matrix H̄m ∈ R(m+1)×m and Hm ∈ Rm×m

obtained from H̄m by deleting its last row:

H̄m =


h11 h12 . . . h1n
h21 h22 . . . h2n
0 h32 . . . h3n

0 0
. . .

...

 (2)

Algorithm 1 Arnoldi with CGS

1: r0 = b − Ax0, β = ∥r0∥2, q1 = r0/β

2: Define H̄m ∈ R(m+1)×m, H̄m = {hij}1≤i≤m+1,1≤j≤m. Set H̄m = 0
3: for j = 1 : m do
4: wj+1 = Aqj
5: Compute hij = ⟨wj+1, qi ⟩ for i = 1, 2, . . . , j

6: w̄j+1 = wj+1 −
∑j

i=1 hijqi // CGS to orthogonalize wj+1 against {q1, . . . , qj},
7: hj+1,j = ∥w̄j+1∥2

8: If hj+1,j = 0 then Stop
9: qj+1 = w̄j+1/hj+1,j

10: end for

29 of 43

Properties of Arnoldi process

Proposition (see Proposition 6.4 in [Saad, 2003]) Assume Algorithm 1 does
not stop before m-th step. Then the vectors {q1, . . . , qm} form an
orthonormal basis for the Krylov subspace

Km(A, r0) = span{q1,Aq1,A2q1, ...,A
m−1q1}

Sketch of the proof: Show by induction that each vector qj = pj−1(A)q1,
where pj−1 is a polynomial of degree j − 1.
True for j = 1 since q1 = p0(A)q1. Suppose true for all q2, . . . qj and
consider qj+1,

hj+1,jqj+1 = Aqj −
j∑

i=1

hijqi = Apj−1(A)q1 −
j∑

i=1

hijpi−1(A)q1 = pj(A)q1

30 of 43

Properties of Arnoldi process (contd)

Proposition (see Proposition 6.5 in [Saad, 2003]) Let Hm be formed from
H̄m by deleting its last row. Then we have:

AQm = QmHm + w̄m+1e
T
m (3)

= Qm+1H̄m, (4)

QT
mAQm = Hm (5)

Eq. (4) is obtained since from Arnoldi, we have that:

Aqj =

j+1∑
i=1

hijqi , j = 1, 2, . . . ,m (6)

The other equations follow since Qm is formed by orthonormal columns.

31 of 43

GMRES: derivation of the algorithm

By the subspace condition, we look for a vector x in x0 +Km(A, r0), which
can be written as:

x = x0 + Qmy , y ∈ Rm (7)

Define (where β = ∥r0∥2):

J(y) = ∥b − Ax∥2 = ∥b − A(x0 + Qmy)∥2 (8)

= ∥r0 − AQmy∥2 = ∥βq1 − Qm+1H̄my∥2 (9)

= ∥Qm+1(βe1 − H̄my)∥2 = ∥βe1 − H̄my∥2 (10)

GMRES obtains a new solution by minimizing (8) that is:

xm = x0 + Qmym, where (11)

ym = argminy∥βe1 − H̄my∥2 (12)

which requires solving an (m + 1)×m least squares problem

32 of 43

GMRES

■ Basis Qm = {q1, . . . qm} of Km(A, r0) obtained through GS, QR fact. of
Arnoldi matrix [r0,AQm] [Paige et al, 06]

■ Produces orthonormal Qm satisfying

AQm = Qm+1H̄m

■ At iteration j of GMRES, GS computes: [r0,AQj] = Qj+1[∥r0∥2e1, H̄j]

Algorithm 2 GMRES with MGS

1: r0 = b − Ax0, β = ∥r0∥2, q1 = r0/β
2: for j = 1 : m − 1 do
3: wj+1 = Aqj
4: MGS to orthogonalize wj+1 against {q1, . . . , qj}
5: Obtain [r0,AQj] = Qj+1[∥r0∥2e1, H̄j]
6: end for
7: Solve ym = argminy∥βe1 − H̄my∥2

8: x = x0 + Qmym

33 of 43

Arnoldi process and GMRES

■ Basis Qm = {q1, . . . qm} of Km(A, r0) obtained through Gram-Schmidt
(GS) QR fact. of Arnoldi matrix [r0,AQm]

■ Produces orthonormal Qm and upper Hessenberg Hm satisfying

AQm = Qm+1H̄m

Randomized Arnoldi

■ Basis Qm = {q1, . . . qm} of Km(A, r0) obtained through randomized
Gram-Schmidt (RGS) QR fact. of Arnoldi matrix [r0,AQm]

■ Q orthonormal with respect to the sketched product ⟨Ω·,Ω·⟩ and upper
Hessenberg Hm satisfy

AQm = Qm+1H̄m

34 of 43

Arnoldi process and GMRES

■ Basis Qm = {q1, . . . qm} of Km(A, r0) obtained through Gram-Schmidt
(GS) QR fact. of Arnoldi matrix [r0,AQm]

■ Produces orthonormal Qm and upper Hessenberg Hm satisfying

AQm = Qm+1H̄m

Randomized Arnoldi

■ Basis Qm = {q1, . . . qm} of Km(A, r0) obtained through randomized
Gram-Schmidt (RGS) QR fact. of Arnoldi matrix [r0,AQm]

■ Q orthonormal with respect to the sketched product ⟨Ω·,Ω·⟩ and upper
Hessenberg Hm satisfy

AQm = Qm+1H̄m

34 of 43

GMRES

■ Basis Qm = {q1, . . . qm} of Km(A, r0) obtained through (randomized) GS,
QR fact. of Arnoldi matrix [r0,AQm] [Paige et al, 06]

■ Produces (sketch) orthonormal Qm satisfying

AQm = Qm+1H̄m

Algorithm 3 GMRES with GS

1: r0 = b − Ax0, β = ∥r0∥2, q1 = r0/β
2: for j = 1 : m do
3: wj+1 = Aqj
4: MGS to orthogonalize wj+1 against

{q1, . . . , qj}
5: Obtain [r0,AQj] = Qj+1[∥r0∥2e1, H̄j]
6: end for
7: Solve ym = argminy∥βe1 − H̄my∥2

8: x = x0 + Qmym

Algorithm 4 GMRES with randomized GS

1: r0 = b − Ax0, β = ∥r0∥2, q1 = r0/β
2: for j = 1 : m do
3: wj+1 = Aqj
4: Randomized GS to orthogonalize wj+1

against {q1, . . . , qj}
5: Obtain [r0,AQj] = Qj+1[∥r0∥2e1, H̄j]
6: end for
7: Solve ym = argminy∥βe1 − H̄my∥2

8: x = x0 + Qmym

Cost per iteration MGS
flops = 4mn
synchronizations = j − 1

Cost per iteration randomized GS
flops = 2mn + 4nlog2n
synchronizations = 1

35 of 43

GMRES

■ Basis Qm = {q1, . . . qm} of Km(A, r0) obtained through (randomized) GS,
QR fact. of Arnoldi matrix [r0,AQm] [Paige et al, 06]

■ Produces (sketch) orthonormal Qm satisfying

AQm = Qm+1H̄m

Algorithm 5 GMRES with GS

1: r0 = b − Ax0, β = ∥r0∥2, q1 = r0/β
2: for j = 1 : m do
3: wj+1 = Aqj
4: MGS to orthogonalize wj+1 against

{q1, . . . , qj}
5: Obtain [r0,AQj] = Qj+1[∥r0∥2e1, H̄j]
6: end for
7: Solve ym = argminy∥βe1 − H̄my∥2

8: x = x0 + Qmym

Algorithm 6 GMRES with randomized GS

1: r0 = b − Ax0, β = ∥r0∥2, q1 = r0/β
2: for j = 1 : m do
3: wj+1 = Aqj
4: Randomized GS to orthogonalize wj+1

against {q1, . . . , qj}
5: Obtain [r0,AQj] = Qj+1[∥r0∥2e1, H̄j]
6: end for
7: Solve ym = argminy∥βe1 − H̄my∥2

8: x = x0 + Qmym

Solution ym (step 7) minimizes
∥A(x0 + Qmy)− b∥2

Solution ym (step 7) minimizes
∥Ω(A(x0 + Qmy)− b)∥2

35 of 43

GMRES numerical experiments

Condition number of Qi

50 100 150 200

iteration

10
0

10
2

10
4

c
o
n
d
.
n
u
m

b
e
r

CGS cond(Q)

MGS cond(Q)

CGS2 cond(Q)

RGS cond(Q), k=1500

RGS cond(Q), k=5000

RGS sqrt(cond(W)), k=5000

RGS omega, k=5000

Residual ||Axi−1 − b||

50 100 150 200

iteration

10
-8

10
-4

10
0

e
rr

o
r

CGS

MGS

CGS2

RGS, k=1500

RGS, k=5000

■ Matrix SiO2 (pseudopotential method) from Tim Davis’s collection, dimensions
155331× 155331, preconditioned with ILU(0)

■ Results obtained in Matlab, Wi = [AQi−1, b]

■ Hessenberg least-squares problem and products with A in fp64

■ GS iterations in fp32

36 of 43

Plan

Sparse linear solvers

Orthogonalization techniques: deterministic and randomized

Krylov subspace methods

Communication avoiding in iterative methods

37 of 43

CA solvers based on s-step methods: main idea

To avoid communication, unroll k-steps, ghost necessary data,

■ generate a set of vectors W for the Krylov subspace Kk(A, r0),

■ (A)-orthogonalize the vectors using a communication avoiding
orthogonalization algorithm (e.g. TSQR(W)).

References
■ Van Rosendale ’83, Walker ’85, Chronopoulous and Gear ’89, Erhel ’93, Toledo ’95, Bai, Hu,

Reichel ’91 (Newton basis), Joubert and Carey ’92 (Chebyshev basis), etc.

■ CA references: J. Demmel, M. Hoemmen, M. Mohiyuddin, K. Yellick ’2009, Carson, Demmel,
Knight (2013, 2015other Krylov solvers, preconditioners)

38 of 43

CA-GMRES

GMRES: find x in span{v ,Av , ...,Akv} minimizing ||Ax − b||2
Cost of k steps of standard GMRES vs new GMRES

Slide source: J. Demmel

39 of 43

CA-GMRES

GMRES: find x in span{v ,Av , ...,Akv} minimizing ||Ax − b||2
Cost of k steps of standard GMRES vs new GMRES

Slide source: J. Demmel

39 of 43

Matrix Powers Kernel

■ Generate the set of vectors {Ax ,A2x , . . .Akx} in parallel
■ Ghost necessary data to avoid communication
■ Example: A tridiagonal, n = 32, s = 3
■ Shaded triangles represent data computed redundantly

Ax =


∗ ∗
∗ ∗ ∗

∗ ∗ ∗
∗ ∗ ∗

. . .
. . .

. . .

 ·


∗
∗
∗
∗
...

 =


∗
∗
∗
∗
...



40 of 43

Matrix Powers Kernel

■ Generate the set of vectors {Ax ,A2x , . . .Akx} in parallel
■ Ghost necessary data to avoid communication
■ Example: A tridiagonal, n = 32, s = 3
■ Shaded triangles represent data computed redundantly

Ax =


∗ ∗
∗ ∗ ∗

∗ ∗ ∗
∗ ∗ ∗

. . .
. . .

. . .

 ·


∗
∗
∗
∗
...

 =


∗
∗
∗
∗
...



40 of 43

Matrix Powers Kernel

■ Generate the set of vectors {Ax ,A2x , . . .Akx} in parallel
■ Ghost necessary data to avoid communication
■ Example: A tridiagonal, n = 32, s = 3
■ Shaded triangles represent data computed redundantly

Ax =


∗ ∗
∗ ∗ ∗

∗ ∗ ∗
∗ ∗ ∗

. . .
. . .

. . .

 ·


∗
∗
∗
∗
...

 =


∗
∗
∗
∗
...



40 of 43

Matrix Powers Kernel

■ Generate the set of vectors {Ax ,A2x , . . .Akx} in parallel
■ Ghost necessary data to avoid communication
■ Example: A tridiagonal, n = 32, s = 3
■ Shaded triangles represent data computed redundantly

Ax =


∗ ∗
∗ ∗ ∗

∗ ∗ ∗
∗ ∗ ∗

. . .
. . .

. . .

 ·


∗
∗
∗
∗
...

 =


∗
∗
∗
∗
...



40 of 43

Matrix Powers Kernel

■ Generate the set of vectors {Ax ,A2x , . . .Akx} in parallel
■ Ghost necessary data to avoid communication
■ Example: A tridiagonal, n = 32, s = 3
■ Shaded triangles represent data computed redundantly

Ax =


∗ ∗
∗ ∗ ∗

∗ ∗ ∗
∗ ∗ ∗

. . .
. . .

. . .

 ·


∗
∗
∗
∗
...

 =


∗
∗
∗
∗
...



40 of 43

Matrix Powers Kernel

■ Generate the set of vectors {Ax ,A2x , . . .Akx} in parallel
■ Ghost necessary data to avoid communication
■ Example: A tridiagonal, n = 32, s = 3
■ Shaded triangles represent data computed redundantly

Ax =


∗ ∗
∗ ∗ ∗

∗ ∗ ∗
∗ ∗ ∗

. . .
. . .

. . .

 ·


∗
∗
∗
∗
...

 =


∗
∗
∗
∗
...



40 of 43

Matrix Powers Kernel (contd)

Ghosting works for structured or well-partitioned unstructured matrices, with
modest surface-to-volume ratio.

■ Parallel: block-row partitioning based on (hyper)graph partitioning,

■ Sequential: top-to-bottom processing based on traveling salesman
problem.

41 of 43

Challenges and research opportunities

Length of the basis k is limited by

■ Size of ghost data

■ Loss of precision

□ replace W with
x , p1(A)x , . . . pk(A)x !A!different!polynomial!basis!does!converge:!

 [p1(A)x,…,pk(A)x]

42 of 43

References (1)

Balabanov, O. and Grigori, L. (2020).

Randomized gram-schmidt process with application to gmres.

Balabanov, O. and Grigori, L. (2022).

Randomized gram–schmidt process with application to gmres.
SIAM Journal on Scientific Computing, 44(3):A1450–A1474.

Demmel, J., Hoemmen, M., Mohiyuddin, M., and Yelick, K. (2009).

Minimizing communication in sparse matrix solvers.
In Proceedings of the ACM/IEEE Supercomputing SC9 Conference.

Giraud, L., Langou, J., Rozložńık, M., and Eshof, J. v. d. (2005).

Rounding error analysis of the classical gram-schmidt orthogonalization process.
Numerische Mathematik, 101(1):87–100.

Saad, Y. (2003).

Iterative Methods for Sparse Linear Systems.
Society for Industrial and Applied Mathematics, second edition.

43 of 43

	Sparse linear solvers
	Sparse matrices and graphs
	Classes of linear solvers

	Orthogonalization techniques: deterministic and randomized
	Gram-Schmidt, CholeskyQR and their randomized versions

	Krylov subspace methods
	Arnoldi process and application to GMRES

	Communication avoiding in iterative methods

