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Sparse matrices and graphs

= Most matrices arising from real applications are sparse.
= A 1M-by-1M submatrix of the web connectivity graph, constructed from
an archive at the Stanford WebBase.

4 5 6 7
nz = 3105536 5

Figure: Nonzero structure of the matrix
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Sparse matrices and graphs

Most matrices arising from real applications are sparse.
GHS class: Car surface mesh, n = 100196, nnz(A) = 544688

Figure: Its undirected graph

Figure: Nonzero structure of the matrix

Examples from Tim Davis's Sparse Matrix Collection,

http://www.cise.ufl.edu/research/sparse/matrices/
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Sparse matrices and graphs

Semiconductor simulation matrix from Steve Hamm, Motorola, Inc.
circuit with no parasitics, n = 105676, nnz(A) = 513072

Figure: Its undirected graph

Figure: Nonzero structure of the matrix

Examples from Tim Davis's Sparse Matrix Collection,

http://www.cise.ufl.edu/research/sparse/matrices/
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Computing with sparse matrices - guiding principles

= Store nonzero elements

1.1 1.3
2.2 2.4
A= 3.2 3.5
4.1 4.4
5.1 53 55

0 Compressed sparse formats by columns (CSC), rows (CSR), or coordinates
o For A of size n x n, CSC uses one aray of size n+ 1 and two arrays of size

nnz(A):
ColPtr (1 4 6 8 10 12)

Rowlnd 1 4 5 2 3 1 5 2 4 3 5
Vals 1.1 41 51|22 32|13 53|24 44|35 55

= Compute flops only on nonzeros elements

= |dentify and exploit parallelism due to the sparsity of the matrix
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Sparse linear solvers

Direct methods of factorization

= For solving Ax = b, least squares problems
01 Cholesky, LU, QR, LDLT factorizations

® Limited by fill-in/memory consumption and scalability

Iterative solvers
= For solving Ax = b, least squares, Ax = Ax, SVD
® When only multiplying A by a vector is possible

® Limited by accuracy/convergence

Hybrid methods

As domain decomposition methods
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Krylov subspace methods

Solve Ax = b by finding a sequence xi, X2, ..., Xp, that minimizes some
measure of error over the corresponding spaces

Xo + ’C,‘(A, ro), i=1..,m

They are defined by two conditions:

1. Subspace condition: x, € xo + Km(A, ro)
2. Petrov-Galerkin condition: r,, L %,

<:>(rm)ty:07 VyeZ,

where

B Xxp is the initial iterate, rp is the initial residual, r,, = b — Axm

B KCm(A, ro) = span{ry, Arg, A’rg, ..., A" 1rp} is the Krylov subspace of dimension m
B %, is a well-defined subspace of dimension m
]

For stability, the vectors of the Krylov basis are orthogonalized
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One of Top Ten Algorithms of the 20th Century

From SIAM News, Volume 33, Number 4:

Magnus Hestenes, Eduard Stiefel, and Cornelius Lanczos, all from the
Institute for Numerical Analysis at the National Bureau of Standards, initiate
the development of Krylov subspace iteration methods.

= Russian mathematician Alexei Krylov writes first paper, 1931.

® Lanczos - introduced an algorithm to generate an orthogonal basis for
such a subspace when the matrix is symmetric.

m Hestenes and Stiefel - introduced CG for SPD matrices.

Other Top Ten Algorithms: Monte Carlo method, decompositional approach to
matrix computations (Householder), Quicksort, Fast multipole, FFT.
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Choosing a Krylov method

A symmetric?

Is storage Is A well- Is A well- Largest and smallest
expensive? conditioned? conditioned? eipenvalues known?
No  Yes No Yes Yes No No Yes
Try GMRES | | Try CGS or Try QMR Try CG on Try MINRES Try CG Try CG with
Bi-CGStab or normal equations | | ora method for Chebyshev Accel.
GMRES(k) nonsymmetric A

All methods (GMRES, CGS,CG...) depend on SpMV (or variations...)
See www.netlib.org/templates/Templates.html for details

Source slide: J. Demmel
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Challenge in getting efficient and scalable solvers

m A Krylov solver finds x,, from xo + KCrn(A, ro) where
Km(A, 1) = span{ry, Arg, A’rg, ..., A" 1o},

such that the Petrov-Galerkin condition b — Ax,, L %, is satisfied.

= Does a sequence of sparse matrix vector products to get vectors
[X1y -eey Xm]

® Finds best solution x,, as linear combination of [xi, ..., Xm—1]

® For numerical stability, an (A)-orthonormal basis {q1, g2, ..., gm } for
Km(A, ro) is computed (CG, GMRES, BiCGstab,...).

10
Overall runtime
° Communication
E
5
Computation
1 1t With Myg .
1 It with Moy
102 FNTxV,
PTxV,+ (MPl-AlReduce) ~ =e=-v
PxV,
100 E'xV,
32 64 128 256 512 1024

Number of MPI processes
Map making, with R. Stompor, M. Szydlarski
Results obtained on Hopper, Cray XE6, NERSC
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Challenge in getting efficient and scalable solvers

m A Krylov solver finds x,, from xo + KCrn(A, ro) where
Km(A, 1) = span{ry, Arg, A’rg, ..., A" 1o},

such that the Petrov-Galerkin condition b — Ax,, L %, is satisfied.
= Does a sequence of sparse matrix vector products to get vectors
[X1y -eey Xm]
Finds best solution x,, as linear combination of [x, ..., Xm—1]
For numerical stability, an (A)-orthonormal basis {q1, g2, ..., gm} for
Km(A, rp) is computed (CG, GMRES, BiCGstab,...).

Typically, each iteration requires i JE P
m Sparse matrix vector product * Gommunicaton

Time [s]

— point-to-point communication w0’ e =P —Computon
® Dot products for orthogonalization 10 éﬁ"’,{ﬁi'fj:,_m%m) o
— global communication s LETxY

32 64 128 256 512 1024
Number of MPI processes
Map making, with R. Stompor, M. Szydlarski
Results obtained on Hopper, Cray XE6, NERSC
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Ways to improve performance

Improve the performance of sparse matrix-vector product

Improve the performance of MPl communication

= Change numerics - reformulate or introduce Krylov subspace algorithms
to:
o reduce communication,
0 increase arithmetic intensity - compute sparse matrix-set of vectors product

Use preconditioners to decrease the number of iterations till convergence.
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Plan

Orthogonalization techniques: deterministic and randomized
Gram-Schmidt, CholeskyQR and their randomized versions
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Gram-Schmidt (GS) orthogonalization process

Given set of linearly independent vectors W = [wy, ..., wy], W € R™™.
Construct an orthogonal basis Q = [g1, ..., gm] such that W = QR.

For each w; do
1. Given P;_; projector on span(Q;_1)t, compute g; L q1,...,qj_1 as

9 = Pj1v

2. Normalize g;
End For
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Projectors P; used in Gram-Schmidt

m Classical Gram-Schmidt (CGS): BLAS-2 matrix-vector operations
{1 one synchronization, assume c(m, n)x*(W)u < 1,

Pia=1-Q-1Ql:, [I1-Q7Ql=a(m )k (W), a,c=0(nm?)

— good efficiency, but stability issues
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Projectors P; used in Gram-Schmidt

m Classical Gram-Schmidt (CGS): BLAS-2 matrix-vector operations
{1 one synchronization, assume c(m, n)x*(W)u < 1,

Pia=1-Q-1Ql:, [I1-Q7Ql=a(m )k (W), a,c=0(nm?)
— good efficiency, but stability issues

= Modified Gram-Schmidt (MGS) : BLAS-1 vector-vector operations
0 (j — 1) synchronizations, assume cz(m, n)x(W)u < 1,

P = (I = gi-1g1) ... (I = quai ), 1 = Q" Qll = es(m, M)x(W)u, es = O(nm)

— better numerical stability, but poor efficiency

Note: u machine precision, W € R"*™  bounds from [Giraud et al., 2005].
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Cholesky QR

= CholeskyQR : BLAS-3 matrix-matrix operations
Compute W = @R’ as:
1. Compute the Cholesky factorization of W W as WTW = RTR
2. Compute the orthogonal factor as Q=wWR!

® Numerical stability: assume O(u)x?(W) < 1, then

I = QT Qll = O(u)x*(W)
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Recap on e-subspace embedding property

For a given subspace V C R™ and ¢ € (0, 1), a sketching matrix Q € R/*X™
is an e-embedding for V if for all x;, x; € V, we have

(€2, €)= (xi, x7)| < €l|xil2]|x]]2 (1)

Let W be a matrix whose columns form a basis for V. For simplicity, we
refer to an e-subspace embedding for V as an e-embedding for W.

Corollary (Corollary 2.2 in [Balabanov and Grigori, 2022] )

If Q € R'*™ is an e-embedding for W, then the singular values of W are
bounded by

(1 + 5)_1/20min(QW) < Umin(W) < Umax(W) < (1 - 5)_1/20max(QW)~
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Randomized orthogonalization processes

Main underlying idea:
If sketching matrix Q is OSE(m, €, d), hence preserves geometry (inner
products) for span(Q) with high probability (w.h.p.), then

K@) < 1/ {or(2Q)

— orthogonalize QQ instead of Q.
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Randomized Cholesky QR

For simplicity, assume W € R"*™ is nonsingular

Randomized Cholesky QR
» Compute W, = QW, W, € RI*m Q e R/*"

m Compute the QR factorization W, = QsRs where Qs € R'*™ has
orthonormal columns (if W is ill-conditioned, one could use the rank
revealing QR factorization)

= Compute Q = WR;!
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Randomized Cholesky QR

In infinite precision we have:

Q = WR™
QQ = QWR'=W,R;!'=Q

and hence, if sketching matrix Q is OSE(m, ¢, §) for span(Q), with h.p.:

1+ 1+
CRNE O RNE
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Randomized Gram-Schmidt (RGS) orthogonalization

For a more stable procedure, avoid using R; !, instead use the previously
computed j — 1 columns of @ to compute a new column j

= P[_, is an orthogonal projector wrt (-, Q)
Py =1~ Q-1(2Q-1)'Q
B QW = SR, with S = QQ /¢>-orthonormal

= Obtain W = QR factorization such that @ is unit-orthogonal wrt
sketched inner product (Q-,Q-)

Reference: [Balabanov and Grigori, 2022, Balabanov and Grigori, 2020]
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Randomized Gram-Schmidt orthogonalization (contd)

= Compute W = QR using PJ-QI orth. projector with respect to (Q-,Q-).

P =1-Q1(Q1)'Q
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Randomized Gram-Schmidt orthogonalization (contd)

= Compute W = QR using PJ-QI orth. projector with respect to (Q-,Q-).
P =1-Q1(Q1)'Q
For each w; do

. . Ri— 1.
Given Wj_1 = Qj—1Rj—1,j > 1, compute [W;_1, wj] = [Q-1, ;] [ i1 ’”r,,“]
o
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Randomized Gram-Schmidt orthogonalization (contd)

= Compute W = QR using PJ-Ql orth. projector with respect to (Q-,Q-).

Pli=1-Q1(2Q-1)'Q

For each w; do

. . Ri— 1.
Given Wj_1 = Qj—1Rj—1,j > 1, compute [W;_1, wj] = [Q-1, ;] [ i1 ’”r,,“]
o

1. Compute the sketch Qw;
2. Compute g; = Pj_yw; by solving a small least-squares problem:

-1y = [Sj-1]'Qu;, where 51 = QQ;
g = wi— Q11
2. Sketch the new vector s; = Qg;

3. Normalize rj; = ||sjll2 and q; = q;/rjj, 5 = $j/1; j
End For
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Stability of randomized Gram-Schmidt

Assumptions:
B Sketching Q is OSE(m, €, §), and preserves inner products for span(W) with h.p.
B Backward-stable least-squares solver for solving

(5-1)"8; = argmin | 3;_1x — pjl|, where p; = Qu;

B Mixed precision model with ufine/ca(n, m) < ugs < 1/cs(m), ca(n, m) = O(m'/2n3/2),
cs(m) = O(m?k(W)) (in practice better constants)
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Stability of randomized Gram-Schmidt

Assumptions:
B Sketching Q is OSE(m, €, §), and preserves inner products for span(W) with h.p.
B Backward-stable least-squares solver for solving

(5-1)"8; = argmin | 3;_1x — pjl|, where p; = Qu;

B Mixed precision model with ufine/ca(n, m) < ugs < 1/cs(m), ca(n, m) = O(m'/2n3/2),
cs(m) = O(m?k(W)) (in practice better constants)

0 Fine precision ufize for low dim. operations and random projections
1 Coarse precision ucrs for expensive high-dim. operations
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Stability of randomized Gram-Schmidt

Assumptions:
B Sketching Q is OSE(m, €, §), and preserves inner products for span(W) with h.p.
B Backward-stable least-squares solver for solving
(5-1)"8; = argmin | 3;_1x — pjl|, where p; = Qu;
B Mixed precision model with ufine/ca(n, m) < ugs < 1/cs(m), ca(n, m) = O(m'/2n3/2),
cs(m) = O(m?k(W)) (in practice better constants)

0 Fine precision ufize for low dim. operations and random projections
1 Coarse precision ucrs for expensive high-dim. operations

Stability result with probabilistic rounding and mixed precision

Let @ R be the computed QR factors of W € R"*™ in finite precision.
With high probability:

W — QR||F < O(uqsm®?)|W/|F,

K(Q) = /1o (Lt tscs(m)), cs(m) = O(mPw(W))
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Randomized Gram-Schmidt vs. CGS and MGS

Classical Gram-Schmidt (CGS): Modified Gram-Schmidt (MGS) :

® BLAS-2 matrix-vector operations ® BLAS-1 vector-vector operations

® One synchronization ® (j — 1) synchronizations

— good efficiency, but stability issues =~ — better numerical stability, but poor
efficiency

Randomized Gram-Schmidt (RGS):

BLAS-2 matrix-vector operations

Twice less flops than CGS and MGS (could be computed in lower
precision)

= One synchronization

® Numerical stability similar (or better) to MGS
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Randomized GS for synthetic function

Cond number of Q; (Matlab) Results in Julia (with V. Lederer)
Computation time
4 Precision model
10 sqrt(cond(W)) [ Fours2 Fourrss
cas
—5—MGs
——cas2
108 —o—u.p. RGS, k=1500
] —5—u.p. RGS, k=5000
2 —6—m.p. RGS, k=5000 1
=]
2 10 e
2 2 B e
] = I s
© 1 200
10
10068 umxmﬁg I
50 100 150 200 250 300 i —— —— E——
iteration [ g &2 g ¢ 2

Process

® Unique precision (u.p.): fp32 for all arithmetic operations, i.e., Ugs = Ufine ~ 1078
B Mixed precision (m.p.): fp32/fp64 formats, i.e. tes ~ 1078 and ufpe ~ 10716

B Synthetic function:

sin(10(p + x))
f, 0,1 0,1
() cos(100(p — x)) + 1.1’ x€[0.1], pelol,
W(i,j) = fu(x),1<i<10%1<m<300
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Plan

Krylov subspace methods
Arnoldi process and application to GMRES
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Krylov subspace methods for solving Ax = b

Finds a sequence xi, x, ..., X, that minimizes some measure of error over
the spaces xg + Ki(A, rp), i =1,..., m, by satisfying two conditions:

1. Subspace condition: x, € xo + Km(A, ro)

2. Petrov-Galerkin condition: rp, L % <= (rm)'y =0, V y € %n

where
- xp initial iterate, ry initial residual, .2, well-defined subspace of dimension m

- Km(A, ro) = span{ry, Arg, A%rg, ..., A""1rg} is the Krylov subspace of dimension m.
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Krylov subspace methods for solving Ax = b

Finds a sequence xi, x, ..., X, that minimizes some measure of error over
the spaces xg + Ki(A, rp), i =1,..., m, by satisfying two conditions:

1. Subspace condition: x, € xo + Km(A, ro)

2. Petrov-Galerkin condition: rp, L % <= (rm)'y =0, V y € %n

where
- xp initial iterate, ry initial residual, .2, well-defined subspace of dimension m

- Km(A, ro) = span{ry, Arg, A%rg, ..., A""1rg} is the Krylov subspace of dimension m.

Two instances of Krylov projection method:

Conjugate gradient [Hestenes, Stieffel, 52], A is SPD, %, = Kn(A, n),

® finds x, by minimizing ||x — x|l over xo + Km(A, ro)

GMRES [Saad, Schultz, 86], A is unsymmetric, % = AKn(A, r),
® finds x, by minimizing ||Ax — b||2 over xg + Km(A, ro).
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Arnoldi process

® Basis Qm = {41, gm} of Kn(A, ro) obtained through Gram-Schmidt
(CGS or MGS), that is by computing the QR fact. of Arnoldi matrix
[0, AQn] [Paige et al, 06]

» Produces a Hessenberg matrix H,, € R(™t1)xm and H,, € R™*m

obtained from H, by deleting its last row:

hi ha ... i,

_ hot hx ... ho,

Hm = 0 hs2 ... h3, (2)
0 0

Algorithm 1 Arnoldi with CGS
1 rg=b—Ax,B=|rnl q=rn/8

2: Define F/ S R(m+1)xm’ Fl'm = {h/‘j}lgigm+1,1§j§m- Set Flm =0

3 for j=1:mdo

wir1 = Ag;j

Compute hj = (wjy1,q;) for i =1,2,...,j

Wit1 = Wjy1 — Zle hiiqi // CGS to orthogonalize wj;1 against {q1,...,q;},
hj1j = W11 ll2

If hj11,; = 0 then Stop

Q1 = W1/ hji,

10 end for

29 of 43 1
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Properties of Arnoldi process

Proposition (see Proposition 6.4 in [Saad, 2003]) Assume Algorithm 1 does
not stop before m-th step. Then the vectors {q1, ..., qn} form an
orthonormal basis for the Krylov subspace

Km(A, 1) = span{qi, Aqi, Aq1,.... A" a1}

Sketch of the proof: Show by induction that each vector g; = pj_1(A)gx,
where pj_1 is a polynomial of degree j — 1.

True for j = 1 since g1 = po(A)g1. Suppose true for all g, ... q; and
consider qj41,

J J
hiy1,qj+1 = Aqj — Z hijqi = Apj—1(A)q1 — Z hijpi—1(A)qr = pj(A)q
i—1 i—1
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Properties of Arnoldi process (contd)

Proposition (see Proposition 6.5 in [Saad, 2003]) Let Hy, be formed from
H,, by deleting its last row. Then we have:

AQm = QmHm_+ V_Vm+ler-1,1— (3)
= Qm+1 Hma (4)
QrAQm = Hnm (5)

Eq. (4) is obtained since from Arnoldi, we have that:
j+1
quzzhqulu./:lvzaum (6)

i=1

The other equations follow since Q,, is formed by orthonormal columns.

3or43 1



GMRES: derivation of the algorithm

By the subspace condition, we look for a vector x in xo + K (A, rp), which
can be written as:

x=x0+ Qumy, y €ER" (7)
Define (where 8 = ||r]|2):
Hy) = lIb— Axla = llb— Ao+ Quy)l ®)
= i = AQmyll2 =[G = Qu1Hmy |2 (9)
= [ Qmi1(Ber — Hmy)ll2 = [|Ber — Hmy/2 (10)

GMRES obtains a new solution by minimizing (8) that is:

Xm = Xo+ QmYm, where (11)
Ym = argmin||Ber — Fnyll (12)

which requires solving an (m + 1) x m least squares problem

20143 1



GMRES

® Basis Qn = {q1,-..gm} of Kn(A, rp) obtained through GS, QR fact. of
Arnoldi matrix [ry, AQn] [Paige et al, 06]

= Produces orthonormal @, satisfying

AQm - Qm+1 I:Im

= At iteration j of GMRES, GS computes: [, AQ;] = Q;+1[||roll2e1, H;]

Algorithm 2 GMRES with MGS

tro=b—Ax,B=|nl2 q=r/s
cforj=1:m—1do
wit1 = Ag;j
MGS to orthogonalize wj;1 against {q1,...,q;}
Obtain [r, AQj] = Qjna[llrollzer, Hjl
end for _
Solve y, = argminy||Ber — Hmyl|2
X = X0 + Qmym

NGO WM
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Arnoldi process and GMRES

® Basis Qn = {q1,...qm} of Kn(A, ro) obtained through Gram-Schmidt
(GS) QR fact. of Arnoldi matrix [ry, AQp]

® Produces orthonormal Qp, and upper Hessenberg H,, satisfying

AQm - Qm+1 I:Im
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Arnoldi process and GMRES

® Basis Qn = {q1,...qm} of Kn(A, ro) obtained through Gram-Schmidt
(GS) QR fact. of Arnoldi matrix [ry, AQp]

= Produces orthonormal @, and upper Hessenberg H,, satisfying

AQm - Qm+1 Flm

Randomized Arnoldi

® Basis Qn = {g1,-..qm} of Kin(A, rp) obtained through randomized
Gram-Schmidt (RGS) QR fact. of Arnoldi matrix [ry, AQm]

® Q orthonormal with respect to the sketched product (Q-,Q-) and upper
Hessenberg H,, satisfy B
AQm - Qm+1Hm
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GMRES

® Basis Qm = {q1,..-qm} of Km(A, ro) obtained through (randomized) GS,
QR fact. of Arnoldi matrix [ry, AQm] [Paige et al, 06]

® Produces (sketch) orthonormal Qp, satisfying

AQm = Qm+1Hm
Algorithm 3 GMRES with GS Algorithm 4 GMRES with randomized GS
1:rp=b—Ax, = |nll2 q1 =rn/B 1:n=>b—Ax,B = |nl2 a1 =r/8
2: for j=1: mdo 2: for j=1: mdo
3: wjs1 = Agj 3 wjr1 = Ag;
4: MGS to orthogonalize w;j;; against 4: Randomized GS to orthogonalize wji;
{q1,...,q} ~ against {q1,...,q;} _
5: Obtain [I‘o,AQj] = Qjﬂ[Hronel, Hj] 5: Obtain [rg,AQj] = Qj+1[”l‘c|‘|26‘17 Hj]
6: end for ~ 6: end for ~
7: Solve ym, = argminy||Be1 — Hny||2 7: Solve yn = argminy||Ber — Hnyl|2
8: x=x0+ QmYm 8: x =x0 + Qmym
Cost per iteration MGS Cost per iteration randomized GS
# flops = 4mn # flops = 2mn + 4nlogsn
# synchronizations = j — 1 # synchronizations =1
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GMRES

® Basis Qm = {q1,..-qm} of Km(A, ro) obtained through (randomized) GS,
QR fact. of Arnoldi matrix [ry, AQpm] [Paige et al, 06]

® Produces (sketch) orthonormal Qp, satisfying

AQm = Qm+1Hm
Algorithm 5 GMRES with GS Algorithm 6 GMRES with randomized GS
1: n = b— AX(),ﬁ = Hr[)”z, qL = ro/B 1: n = b— AXg,ﬂ = Hrol‘Q, qL = rg/ﬁ
2: for j=1: mdo 2: for j=1:mdo
3: wjis1 = Agj 3: wj1 = Ag;
4: MGS to orthogonalize wj;1 against 4: Randomized GS to orthogonalize wjy;
{q1,---, g} ~ against {q1,...,q;} ~
5: Obtain [I’g7 AQJ] = Qj+1[”l’o”2€1, Hj] 5: Obtain [f0> AQJ] = Qj+1[”r0“2617 Hj]
6: end for _ 6: end for _
7: Solve y,, = argminy||Be1 — Hny||2 7: Solve y, = argminy||Ber — Hpyl|2
8: x=x0+ Qmym 8: x =x0 + Qmym
Solution y,, (step 7) minimizes Solution y,, (step 7) minimizes
[A(x0 + Qmy) — bll2 12(A(x0 + Qmy) — b)|2
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GMRES numerical experiments

Condition number of Q; Residual [|Ax;—1 — bl|
T

4 ‘con 100
10 T oS cond@) —e—cas
—o— CGS2 cond(Q) i —=-MGS
—O6—RGS cond(Q), k=1500 ——CGS2
—B— RGS cond(Q), k=5000 Q —e—RGS, k=1500
g e §-o-o-6-6-6-6|—5—RGS, k=5000
2
€10 =
E 10
_U- [0}
c
o
o
10° s oooooa
DH*E—E—EB—EE—EEEE*E—E"EEEE A A
B
-8
50 100 150 200 10 50 100 150 200
iteration iteration
B Matrix SiO2 (pseudopotential method) from Tim Davis's collection, dimensions
155331 x 155331, preconditioned with ILU(0)
B Results obtained in Matlab, W, = [AQ;_1, b]

B Hessenberg least-squares problem and products with A in fp64

® GS iterations in fp32
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Plan

Communication avoiding in iterative methods
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CA solvers based on s-step methods: main idea

To avoid communication, unroll k-steps, ghost necessary data,
m generate a set of vectors W for the Krylov subspace Kk (A, r),

m (A)-orthogonalize the vectors using a communication avoiding
orthogonalization algorithm (e.g. TSQR(W)).

References

¥ Van Rosendale '83, Walker '85, Chronopoulous and Gear '89, Erhel '93, Toledo '95, Bai, Hu,

Reichel '91 (Newton basis), Joubert and Carey '92 (Chebyshev basis), etc.

CA references: J. Demmel, M. Hoemmen, M. Mohiyuddin, K. Yellick '2009, Carson, Demmel,
Knight (2013, 20150ther Krylov solvers, preconditioners)
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CA-GMRES

GMRES: find x in span{v, Av, ..., Akv} minimizing ||Ax — b||,
Cost of k steps of standard GMRES vs new GMRES

Standard GMRES
fori=1tok
w=A"-v(i-1)
MGS(w, v(0),...,v(i-1))
update v(i), H
endfor
solve LSQ problem with H

Sequential: #words_moved =
O(k-nnz) from SpMV
+ 0(k?n) from MGS
Parallel: #messages =
O(k) from SpMV
+0(k? - log p) from MGS

Slide source: J. Demmel
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CA-GMRES

GMRES: find x in span{v, Av, ..., Akv} minimizing ||Ax — b||,
Cost of k steps of standard GMRES vs new GMRES

Standard GMRES Communication-avoiding GMRES
fori=1to k W =]y, Ay, A2y, ..., Akv ]
w=A - v(i-1) [Q,R] = TSQR(W) ... “Tall Skinny QR”
MGS(w, v(0),...,v(i-1)) Build H from R, solve LSQ problem
update v(i), H
endfor

solve LSQ problem with H

Sequential: #words_moved = Sequential: #twords_moved =
O(k-nnz) from SpMV 0O(nnz) from SpMV
+ O(k?n) from MGS +O(k-n) from TSQR
Parallel: #messages = Parallel: #messages =
O(k) from SpMV 0O(1) from computing W
+0(k? - log p) from MGS + O(log p) from TSQR

Slide source: J. Demmel
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Matrix Powers Kernel

= Generate the set of vectors {Ax, A%x, ... Akx} in parallel
= Ghost necessary data to avoid communication
® Example: A tridiagonal, n =32, s =3

* * *
* ok ok * *
* k% * *

AX: =
* ok * * *

A3.X o 6 0 0 0 0 0 0 0 0 0 0 0 o o 0 0 0 0 0 0 o o
A2.X o 06 0 0 0 0 0 06 0 0 0 o o A o 6 0 0 0 0 o o
A'X o 0 ' O 0 0 0 0 0 0 0 0 0 06 0 0 0 0 0 0 0 0 0 0
X ¢ ® 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
123 4.
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Matrix Powers Kernel

= Generate the set of vectors {Ax, A%x, ... Akx} in parallel
® Ghost necessary data to avoid communication
= Example: A tridiagonal, n =32, s =3

* * * *
* * * k *
* % % * *
Ax = =
* * * * *

AS.XOOOOOO..O..

AZ.X e 06 0 0 0 0 0 0 0 0 0
A.x o 0 o 0 0 0 0 0 0
X [ ] A o o 0 0 o0 o0 o

123 4..
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Matrix Powers Kernel

= Generate the set of vectors {Ax, A%x, ... Akx} in parallel
= Ghost necessary data to avoid communication
® Example: A tridiagonal, n =32, s =3

* ok * *
* ok * *

Ax — * ok % * | _ | *

* * * *

A3.X...O... o o o
AZ.X....... o o o
A.X....... o o o
X.'..... o o 0
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Matrix Powers Kernel

= Generate the set of vectors {Ax, A%x, ... Ax} in parallel

= Ghost necessary data to avoid communication
® Example: A tridiagonal, n=32, s =3

* * *
* ok %k *
Ax — * %k * *
* * *
Proc 1 Proc 2
AS.XQ.OO...OO..I.O...IO..

Xll........ll....ll...

400r 43 1
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Matrix Powers Kernel

= Generate the set of vectors {Ax, A%x, ... Akx} in parallel

= Ghost necessary data to avoid communication
= Example: A tridiagonal, n =32, s =3

* * *
* * * *
* ok * *
Ax =
* * * *
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Matrix Powers Kernel

= Generate the set of vectors {Ax, A%x, ... AFx} in parallel
= Ghost necessary data to avoid communication

= Example: A tridiagonal, n =32, s =3

= Shaded triangles represent data computed redundantly

* ok * *
* % ok * *
Ax — * %k L I
* * *

o o o o

o 0 o o

e o o o

e 0 o o

1 23 4..
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Matrix Powers Kernel (contd)

Ghosting works for structured or well-partitioned unstructured matrices, with
modest surface-to-volume ratio.

® Parallel: block-row partitioning based on (hyper)graph partitioning,

= Sequential: top-to-bottom processing based on traveling salesman
problem.
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Challenges and research opportunities

Matrix diag-cond-1.000000e~11: rel. 2-nm resid.
T T T T

Nonrestarted GMRES

v Restarted GMRES{192)
© Monomial-GMRES(24,8)
A Newton-GMRES(24,8)

Length of the basis k is limited by -

B Size of ghost data
B Loss of precision

0 replace W with
%, pr(A)X, . pu(A)x

Log10 of 2-norm relative residual
&

A different polynomial basis does converge:
[pi(A)X,....p(A)x]

L n L n L L L L
100 200 300 400 500 600 700 800 900 1000
Inner iteration number
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