Introduction to MPI

https:/sites.google.com/Ibl.gov/cs267-spr2023/

Slides from the CS267 collection

https://sites.google.com/lbl.gov/cs267-spr2023/

Outline
Programming Distributed Memory Machines
using Message Passing
* Overview of MPI
* Basic send/receive use
* Non-blocking communication
* Collectives

2/7/23 2

Programming
Distributed Memory Machines
with
Message Passing

Slides by
Aydin Buluc, Jonathan Carter, Jim Demmel,
Bill Gropp, Kathy Yelick

2/7/23

Message Passing Libraries

° All communication, synchronization require subroutine calls
* No shared variables
 Program run on a single processor just like any uniprocessor program,
except for calls to message passing library
Subroutines for

« Communication
- Pairwise or point-to-point: Send and Receive
- Collectives all processor get together to

— Move data: Broadcast, Scatter/gather

— Compute and move: sum, product, max, prefix sum, ... of data on many
processors

« Synchronization
- Barrier

- Initial version: no locks because there are no shared variables to
protect

* Enquiries

»75; HOw many processes? Which one am |I? Any messages waiting?

Novel Features of MPI

(o]

Communicators encapsulate communication
spaces for library safety

° Datatypes reduce copying costs and permit
heterogeneity

° Multiple communication modes allow precise buffer
management

" Extensive collective operations for scalable global
communication

" Process topologies permit efficient process
placement, user views of process layout

° Profiling interface encourages portable tools

2/7/23 5

MPI References

° The Standard itself:

 at http://www.mpi-forum.org

 All MPI official releases, in both postscript and HTML
« Latest version MPI 4.0, released June 2021

° Other information on Web:

« at
http://www.mcs.anl.gov/research/projects/mpi/index.ht
m

* pointers to lots of stuff, including other talks and
tutorials, a FAQ, other MPI pages

2/7/23 6

http://www.mpi-forum.org/
http://www.mcs.anl.gov/research/projects/mpi/index.htm
http://www.mcs.anl.gov/research/projects/mpi/index.htm

Finding Out About the Environment

° Two important questions that arise early in a
parallel program are:

 How many processes are participating in
this computation?

* Which one am I?

o

MPI provides functions to answer these
questions:

MPI Comm_size reports the number of processes.

MPI Comm_rank reports the rank, a number

between 0 and size-1, identifying the calling
process

2/7/23 7

Hello (C)

#include "mpi.h"
#include <stdio.h>

int main(int argc, char *argv[])

{
int rank, size;
MPI Init(&argc, &argv);
MPI Comm rank(MPI COMM WORLD, é&rank);
MPI Comm size(MPI COMM WORLD, é&size);
printf("I am %d of %d\n", rank, size);
MPI Finalize();

return 0;

2/7/23

Notes on Hello World

° All MPI programs begin with MPI_Init and end with
MPI_Finalize

> MPI_COMM_WORLD is defined by mpi.h (in C) or
mpif.h (in Fortran) and designates all processes in
the MPI “job”

° Each statement executes independently in each
process

* including the printf/print statements

o

The MPI-1 Standard does not specify how to run an
MPI program, but many implementations provide

mpirun —-np 4 a.out

2/7/23 9

MPI Basic Send/Receive

° We need to fill in the details in

Process 0 Process 1

Send (data) —

\

Receive (data)

° Things that need specifying:
- How will “data” be described?
 How will processes be identified?
 How will the receiver recognize/screen messages?
 What will it mean for these operations to complete?

2/7/23 10

Some Basic Concepts

» Processes can be collected into groups

= Each message is sent in a context, and must be
received in the same context

* Provides necessary support for libraries

= A group and context together form a communicator

» A process is identified by its rank in the group
associated with a communicator

» There is a default communicator whose group contains
all initial processes, called MPI COMM WORLD

2/7/23 11

MPI Datatypes

* The data in a message to send or receive is described
by a triple (address, count, datatype), where

= An MPI datatype is recursively defined as:

» predefined, corresponding to a data type from the language (e.g.,
MPI_INT, MPI_DOUBLE)

a contiguous array of MPI datatypes

a strided block of datatypes

an indexed array of blocks of datatypes

an arbitrary structure of datatypes

* There are MPI functions to construct custom datatypes,
In particular ones for subarrays

* May hurt performance if datatypes are complex

2/7/23 12

MPI Tags

*» Messages are sent with an accompanying user-
defined integer tag, to assist the receiving
process in identifying the message

» Messages can be screened at the receiving end
by specifying a specific tag, or not screened by
specifying MPl_ANY_TAG as thetag in a
receive

» Some non-MP| message-passing systems have
called tags “message types”. MPI calls them
tags to avoid confusion with datatypes

2/7/23 13

MPI Basic (Blocking) Send

A

I CON

MPI Recv(B, 20, MPI DOUBLE, 0, ...)

MPI Send(A, 10, MPI DOUBLE, 1, ...)

MPI SEND (start, count, datatype, dest, tag,
comm)

 The message buffer is described by (start, count,
datatype).

* The target process is specified by dest, which is the rank of
the target process in the communicator specified by comm.

* When this function returns, the data has been delivered to
the system and the buffer can be reused. The message

may not have been received by the target process.
2/7/23 14

MPI Basic (Blocking) Receive

A

I CON

MPI Recv(B, 20, MPI DOUBLE, 0, ...)

MPI RECV(start, count, datatype, source, tag,
comm, status)

MPI Send(A, 10, MPI DOUBLE, 1, ...)

» \Waits until a matching (both source and tag) message is
received from the system, and the buffer can be used

" source Iis rank in communicator specified by comm, or
MPI ANY SOURCE

" tag is a tag to be matched or MPI ANY TAG

» receiving fewer than count occurrences of datatype is OK, but
receiving more is an error

" status contains further information (e.g. size of message) "

A Simple MPI Program

#include “mpi.h”
#include <stdio.h>
int main(int argc, char *argv][])
{
int rank, buf;
MPI Status status;
MPI Init(&argv, &argc);
MPI Comm rank(MPI_COMM WORLD, &rank);

/* Process 0 sends and Process 1 receives */
if (rank == 0) {
buf = 123456;
MPI_Send(&buf, 1, MPI_INT , 1, 0, MPI_COMM_WORLD) ;
}
else if (rank == 1) {
MPI_Recv(&buf, 1, MPI INT, O, O, MPI_ COMM WORLD,
&status) ;
printf(“Received %d\n”, buf);
}

MPI Finalize();
return O;

}

2/7/23

16

Retrieving Further Information

o

Status is a data structure allocated in the user’s
program.

° In C:

int recvd tag, recvd from, recvd count;
MPI Status status;

MPI Recv(..., MPI ANY SOURCE, MPI ANY TAG,
recvd tag = status.MPI TAG;

recvd from = status.MPI_ SOURCE;

., &status)

MPI Get count(&status, datatype, &recvd count);

2/7/23 17

MPI can be simple

Claim: most MPI applications can be written with
only 6 functions (although which 6 may differ)

» Using point-to-point: * Using collectives:
e MPI_INIT e MPI_INIT
« MPI_FINALIZE e MPI_FINALIZE
e MPI_COMM SIZE « MPI_COMM SIZE
e MPI_COMM RANK e MPI_COMM RANK
« MPI_SEND « MPI_BCAST
« MPI_RECEIVE « MPI_REDUCE

> You may use more for convenience or performance

2/7/23 18

Pl redux: Numerical integration

F(x) = 4.0/(1+x3)

2/7/23

4.0 =

20

0.0

1.0

Mathematically, we know that:

1
J‘ 4.0

(1+x2) dx =TT
0

We can approximate the integral as a
sum of rectangles:

N
Z F(X,)AXx = TT

=0

Where each rectangle has width Ax and
height F(x;) at the middle of interval i.

19

Example: Calculating Pi

E.g., in a 4-process run, each
process gets every 4t interval.
Process 0 slices are in red.

I\?I!,rlnple program written in a data parallel style in

 E.g., for a reduction (recall “data parallelism” lecture), each
process will first reduce (sum) its own values, then call a
collective to combine them

Estimatesfpl by approximating the area of the
quadrant of a unit circle

Each process gets 1/p of the intervals (mapped

round robin, i.e., a cyclic mapping)

2/7/23 20

Example: Plin C -1/2

#include "mpi.h”
#include <math.h>
#include <stdio.h>

int main(int argc, char *argv|[])

{

int done = 0, n, myid, numprocs, i, rc;
double PI25DT = 3.141592653589793238462643;
double mypi, pi, h, sum, x, a;
MPI Init (&argc, &argv) ;
MPI_Comm size (MPI_COMM WORLD, &numprocs) ;
MPI Comm rank (MPI COMM WORLD, &myid) ;
while ('done) { N
if (myid == 0) {
printf ("Enter the number of intervals: (0 quits) ");
scanf ("%d", &n) ;
}
MPI Bcast(&n, 1, MPI INT, 0, MPI COMM WORLD) ;
if (n == 0) break; - N

2/7/23 21

Example: Plin C - 2/2

h = 1.0 / (double) n;

sum = 0.0;

for (1 = myid + 1; i <= n; i += numprocs) {
x = h * ((double)i - 0.5);
sum += 4.0 / (1.0 + =x*x);

}

mypi = h * sum;

MPI_ Reduce (émypi, &pi, 1, MPI DOUBLE, MPI SUM, O,

MPI COMM WORLD) ;

if (myid == 0)
printf ("pi is approximately %.16f, Error is
pi, fabs(pi - PI25DT));

}
MPI Finalize();

return O;

2/7/23

.16£\n",

22

Buffers

° When you send data, where does it go? One possibility is:

Process 0O Process 1

2/7/23 Slide source: Bill Gropp, ANL 54

Avoiding Buffering

° Avoiding copies uses less memory

May use more or less time

Process O

F

Process 1

oy

=

This requires that MPI_Send wait on delivery, or
that MPI_Send return before transfer is complete,

and we wait later.

2/7/23

Slide source: Bill Gropp, ANL 54

Blocking and Non-blocking Communication

So far we have been using blocking
communication:

- MPI_Recv does not complete until the buffer is full (available for
use).

- MPI_Send does not complete until the buffer is empty (available
for use).

o

Completion depends on size of message and
amount of system buffering.

2/7/23 25

Sources of Deadlocks

Send a large message from process 0 to process 1

* If there is insufficient storage at the destination, the send must
wait for the user to provide the memory space (through a
receive)

° What happens with this code?

Process 0 Process 1
Send (1) Send (0)
Recv (1) Recv (0)

e This is called “unsafe” because it depends on the
availability of system buffers in which to store the data
sent until it can be received

2/7/23 26

Some Solutions to the “unsafe” Problem

° Order the operations more carefully:

Process 0 Process 1
Send (1) Recv (0)
Recv (1) Send (0)

« Supply receive buffer at same time as send:

Process 0O Process 1

Sendrecv (1) Sendrecv (0)

2/7/23

27

More Solutions to the “unsafe” Problem

Supply own space as buffer for send

Process 0 Process 1
Bsend (1) Bsend (0)
Recv (1) Recv (0)

Use non-blocking operations:

Process 0 Process 1
Isend (1) Isend (0)
Irecv(1l) Irecv (0)

Waitall Waitall

2/7/23

28

MPI’ s Non-blocking Operations

o

Non-blocking operations return (immediately) “request
handles” that can be tested and waited on:

MPI Request request;
MPI Status status;

MPI Isend(start, count, datatype,
dest, tag, comm, &request);

MPI Irecv(start, count, datatype,
dest, tag, comm, &request);

MPI Wait (&request, &status);

(each request must be Waited on)

One can also test without waiting:

MPI Test(&request, &flag, &status);

° Accessing the data buffer without waiting is undefined

2/7/23 29

Multiple Completions

It is sometimes desirable to wait on multiple
requests:

MPI Waitall (count, array of requests,
array of statuses)

MPI Waitany(count, array of requests,
&index, &status)

MPI Waitsome (count, array of requests,
array of indices, array of statuses)

° There are corresponding versions of test for
each of these.

2/7/23 30

Communication Modes

o

MPI provides multiple modes for sending
messages:

« Synchronous mode (MPI_Ssend): the send does not complete
until a matching receive has begun. (Unsafe programs deadlock.)

- Buffered mode (MPI Bsend): the user supplies a buffer to the

system for its use. (User allocates enough memory to make an
unsafe program safe.

- Ready mode (MPI_Rsend): user guarantees that a matching
receive has been posted.

- Allows access to fast protocols
- undefined behavior if matching receive not posted

o

Non-blocking versions (MPI_Issend, etc.)

o

MPI_ Recv receives messages sent in any mode.

See www.mpi-forum.org for summary of all flavors
of send/receive

2/7/23 31

http://www.mpi-forum.org/

