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TSQR Factorization and matrix multiplication

Exercise 1 TSQR

Remember that communication refers to messages between processors. In the recent years we’ve
seen trends causing floating point to become faster than communication. This is why it’s important
to minimize communication when dealing with parallelism. The TSQR, “Tall Skinny QR” algorithm
is a communication avoiding algorithm for matrices with many more rows than columns. In this
exercise we are going to assume we’re using P = 4 processors and the matrix we want to factorize
is A ∈ Rm×n with m ≥ n. The computation can be expressed as a product of intermediate
orthonormal factors in a binary tree like structure. We scatter row wise our matrix A along 4
processors A1, A2, A3, A4 ∈ Rm/4×n. At the leaves of the binary tree, we perform in parallel 4
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where R
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l ∈ Rn×n. In the second level of the binary tree we combine the upper triangular matrices
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This can be written as
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Finally at the root of the tree we compute the last QR factorization
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Q̂ is represented implicitly as the product of the intermediate orthogonal matrices.

a) Suppose that you are given the implicit representation of Q as a product of orthogonal matri-
ces. This representation is a tree of sets of Householder vectors, {Q̂d

r,k}. Here, k indicates the
processor number (both where it is computed and where it is stored), and d indicates the level
in the tree. How would you get Q̂ explicitly? We only need the “thin” Q̂, meaning only its
first n columns. Note that we can do this by applying the intermediate factors {Q̂d

r,k} to the
first n columns of the m×m identity matrix. Write a Python script using MPI that does this
(assume you are using 4 processors). (Hint: looking at the graphical representation of parallel
TSQR might help.)

b) Optional: consider more processors. How would you change your code? Do you have a
restriction on the number of processors you can use?

c) Suppose you want to use the QR factorization to solve the following least squares problem

min
x

∥Ax− b∥2, (1)

where x ∈ Rn, A ∈ Rm×n, b ∈ Rm. Write down the algebra for solving this problem using the
QR factorizaiton.
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d) Assume you are in the situation where you have an implicit representation of Q as a product
of orthogonal matrices and R from the TSQR algorithm. This means that each processor ends
up with different information. Write down the algebra from solving the least squares problem
1 using the implicit representation of Q.

Exercise 2 Matrix multiplication

Recall the SUMMA algorithm for parallelizing matrix matrix multiplication, A,B ∈ Rn×n to get
C = AB. Implement this algorithm in P = 4, 16 processors. Compare this to numpy’s standard
matrix matrix multiplication.
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