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Randomized low rank approximation on MNIST data
set

The Radial Basis Function (RBF) applications can be found in neural networks, data visualization,
surface reconstruction, etc. These techniques are based on collocation in a set of scattered nodes,
the computational cost of these techniques increase with the number of points in the given
dataset with the dimensionality of the data.

For RBF approximation we assume that we have an unordered dataset {xi}n1 , each point associated
with a given fi ∈ Rp. We are going to consider fi ∈ R i.e. each point in the dataset is associated
with a label. The approximation scheme can be written as follows:

s(x) =
n∑

i=1

λiϕ (∥x− xi∥2) ,

where:

• xi are the data points

• x is a free variable at which we wish to evaluate the approximation

• ϕ is the RBF

• λi are the scalar parameters

The λi’s are chosen so that s approximates f in a desired way. One of the simplest ways of computing
these parameters is by forcing the interpolation to be exact at xi i.e. s(xi) = f(xi) = fi. Define a
matrix A ∈ Rn×n such that Aij = ϕ(∥xi−xj∥2), let λ = [λ1, ..., λn]

⊤ ∈ Rn and f = [f1, ..., fn]
⊤ ∈ Rn

(both column vectors). In order to compute the scalar parameters we need to solve the following
linear system:

Aλ = f. (1)

Before computing A, answer the following questions:
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a) How does the computational cost of solving (1) scale in both the number of data points and
the dimension of such points?

b) What would it mean if A is nearly singular?

c) What would be the effect on A if ϕ has compact support? What would be the disadvantage
of using such RBF?

The MNIST data set contains pictures of handwritten digits. It contains 60’000 training images
and 10’000 testing images. You can download this database from here: https://www.csie.ntu.

edu.tw/~cjlin/libsvmtools/datasets/. You can also download the labels for the training and
testing images (these are going to be our fi’s. We are going to use the following RBF:

ϕ (∥xi − xj∥2) = e−∥xi−xj∥2/c,

with c > 0.

d) We are going to start by taking a relatively small sample of the training set (i.e. n being
“small”). Download the data set (both the test and training sets). From the training set (and
labels) pick the n top rows.

e) Write a Python scrip that computes A using the subsampled data set and optionally saves it
to memory (try using the pickle package on Python). Test different values of c to solve (1).
(Optional: write a parallel implementation of the function to build A)

f) Explain Nyström approximation and why it would be useful in this setting.

g) Given a sketching matrix Ω use your code from last week for different values of l and compute
ANyst = (AΩ)(Ω⊤AΩ)†(Ω⊤A).

h) Test the accuracy of the previously computed Nyström approximation. Provide graphs that
show the error of the approximation using the nuclear norm. Compare these errors with the
best rank k approximation of A.

i) (Optional) Try solving (1) using ANyst
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https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/
https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/
https://docs.python.org/3/library/pickle.html

