
The questions are independent of each other in the sense that one can admit previous
answers to treat the next questions. One need not solve all questions to get the maximal
grade, and questions can be solved in any order. Good luck! Bonne chance ! Viel Erfolg!

Exercise 1 (Calderón’s theorem). In this exercise, we will prove Calderón’s following result.

Theorem. Let d ≥ 2, and Ω ⊂ Rd be a bounded open connected domain. Then, the vector space space
spanned by products of real-valued harmonic functions is dense in L2(Ω,R).

Recall that a real-valued function u ∈ C∞(Ω,R) is said harmonic if ∆u = 0, where

∆ =
d∑

j=1

∂2

∂x2
j

is the Laplacian operator.
We let H = C∞(Ω,R) ∩ {u : ∆u = 0 in Ω}, Π = Span {u v : (u, v) ∈ H × H }.

(1) Let

A = Cd ∩

ζ : ζ · ζ =
d∑

j=1
ζ2

j = 0

 .

Show that for all ζ ∈ A, the function u : Ω → C, u(x) = ei x·ζ is harmonic.

(2) Fix some f ∈ L2(Ω,R), and assume that∫
Ω

f w dx = 0 for all w ∈ Π.

Using well-chosen functions defined in (1), show that F (f 1Ω) = 0, where 1Ω is the indicator
function of Ω, and F is the Fourier transform. What can you deduce about f?

(3) Conclude the proof of the theorem.

Exercise 2 (Basic estimates for the Schrödinger equation). (1) Let d ≥ 1, and α > 0 be a fixed real
number. Using the formula

F
(
Rd → R, x 7→ e−αx2

)
(ξ) =

(π

α

) d
2

e− |ξ|2
4α

for all ξ ∈ Rn, show that the function gα : Rn → C, x 7→ e−iα|x|2 is a tempered distribution (an
element of S ′(Rd)), and show that its Fourier transform is given by

ĝα(ξ) =
( π

i α

) d
2

ei
|ξ|2
4α .

(2) Let f ∈ S (Rd), and consider the following partial differential equation:i
∂

∂t
u + ∆u = 0 in (0, ∞) × Rd

u(0, x) = f(x)
, (1)

where we recall that the Laplacian ∆ is defined by

∆ =
d∑

j=1

∂2

∂x2
j

,

and u ∈ C1((0, ∞), S ′(Rd)). Using the previous question, show that the following representation
formula holds for u:

u(t, x) = 1
(2π i t) d

2

∫
Rd

e
i|x−y|2

4t f(y)dy for all (t, x) ∈ R∗
+ × Rd.
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(3) Show that u ∈ C∞((0, ∞) × Rd), and that for all t > 0,

∥u(t · )∥L∞(Rd) = sup
x∈Rd

|u(t, x)| ≤ 1
(2πt) d

2
∥f∥L1(Rd) ,

and that for all t > 0, we have

∥u(t, · )∥L2(Rd) = ∥u(0, · )∥L2(Rd) = ∥f∥L2(Rd) .

More generally, estimate for all s ∈ R the following norm ∥u(t, · )∥Hs(Rd) (t > 0) in terms of
∥f∥Hs(Rd).

(4) Let 2 ≤ p ≤ ∞. By a scaling argument, show that provided that the inequality

∥u(t, · )∥Lp(Rd) ≤ C

tα
∥f∥Lp′ (Rd)

holds for all f ∈ S (Rd) and all solution u of (1) (with initial data f), then α = d

(
1
2 − 1

p

)
. One

may introduce the following function uλ(t, x) = u(λ2 t, λ x) for λ > 0 in the proof.
This estimate is one of the basic ingredients of the proof of the space-time Strichartz estimates:

∥u∥Lp(R+,Lq(Rd)) ≤ C(p, q, d) ∥f∥L2(Rd)

for all 2
p

+ d

q
= d

2 , (p, q) ̸= (2, ∞), p ≥ 2.

Exercise 3 (Elliptic Regularity). This exercise aims at generalising the elliptic estimates on the harmonic
functions. Namely, ∆u = f ∈ C∞(Ω) implies that u ∈ C∞(Ω). Here, we will prove the main step that
shows that weak solution of elliptic partial differential equation are continuous.

Let Ω ⊂ Rd be a connected open subset. Recall that for all 1 ≤ p, q ≤ ∞, for all u ∈ W 1,p(Ω,Rd)
and φ ∈ W 1,q

0 (Ω) such that u∇φ ∈ L1(Ω) and φ∇u ∈ L1(Ω), we have for all 1 ≤ j ≤ d∫
Ω

u ∂xj φ dx = −
∫

Ω

(
∂xj u

)
φ dx.

Restricting to Ω = B(0, 1) from now on, we let A = (ai,j)1≤j≤d ∈ L∞(B(0, 1),Rd) be a space-dependent
uniformly elliptic matrix, i.e. there exists 0 < Λ < ∞ such that

Λ−1|ξ|2 ≤ ξtA(x)ξ =
d∑

i,j=1
ai,j(x)ξiξj ≤ Λ|ξ|2 ∀x ∈ B(0, 1), ∀ξ ∈ Rd. (1)

We now let u ∈ W 1,2(B(0, 1)) be a weak solution (in D ′(B(0, 1))) of the linear partial differential equation

div (A(x)∇u) = 0. (2)

Important note: all inequalities can be proven with “worse” constants than stated, provided that they
are universal constants (only depend on the ambient dimension and the parameter Λ), unless stated
otherwise.

(1) For d = 1, show directly that u ∈ C0(B(0, 1)).

(2) Show that for all φ ∈ D(B(0, 1)) = C∞
c (B(0, 1)), the following identity holds∫

B(0,1)
A(x)∇u · ∇φ dx = 0.

Notice that for all u, v ∈ H1(B(0, 1)), we have∫
B(0,1)

A(x)∇u · ∇v dx =
d∑

i,j=1

∫
B(0,1)

ai,j(x)∂xiu ∂xj v dx.
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(3) (Caccioppoli inequality) Let u ∈ W 1,2(B(0, 1)). Show that for all η ∈ D(B(0, 1)), and c ∈ R, we
have ∫

B(0,1)
|∇u|2η2dx ≤ Λ2

∫
B(0,1)

|u − c|2|∇η|2dx.

One can use the following test function φ = (u − c)η2.

(4) By choosing an appropriate test function η, show that for all 0 < r1 < r2 < 1, we have for some
universal constant 0 < C < ∞,∫

B(0,r1)
|∇u|2dx ≤ C

(r2 − r1)2

∫
B(0,r2)\B(0,r1)

|u − c|2dx (3)

This is the Caccioppoli inequality.

(5) Using the Poincaré-Wirtinger inequality and a scaling argument, show that for all for all 0 < r < ∞
if A(r) = B(0, 2r) \ B(0, r) and u ∈ W 1,2(B(0, r)), we have∫

A(r)
|u − ur|2dx ≤ Cr2

∫
A(r)

|∇u|2dx,

where ur = −
∫

A(r)
u dx = 1

cd rd

∫
A(r)

u dx (for some universal constant cd) is the mean of u on A(r),

and 0 < C < ∞ is a universal constant independent of r.

(6) Deduce from the previous questions that there exists a universal contant 0 < θ < 1 such that for
all 0 < r <

1
2 , we have ∫

B(0,r)
|∇u|2dx ≤ θ

∫
B(0,2r)

|∇u|2dx.

By induction, deduce that there exists 0 < α < 1 and 0 < C < ∞ such that for all 0 < r <
1
2 , we

have ∫
B(0,r)

|∇u|2 ≤ Crα

∫
B(0,1)

|∇u|2dx.

Hint: use a dyadic argument.

(7) With the help of another optimal Poincaré-Wirtinger inequality, deduce that there exists a universal
constant 0 < C < ∞ such that for all 0 < r <

1
2 ,∫

B(0,r)
|u − ũr|2dx ≤ Cr2+α

∫
B(0,1)

|∇u|2dx,

where ũr = −
∫

B(0,r)
u dx = 1

c′
drd

∫
B(0,r)

u dx is the mean of u on B(0, r).

(8∗) In the special case d = 2, show with the help of Lebesgue differentiation theorem and a translation
argument that u ∈ C0,β(B(0, 1

4 )) for some 0 < β < 1. Recall that the Lebesgue differentiation
theorem shows that for all u ∈ L1

loc(B(0, 1)), and for all x ∈ B(0, 1), we have∗

−
∫

B(x,r)
u(y) dy = 1

πr2

∫
B(x,r)

u(y) dy −→
r→0

u(x).

∗Notice that the theorem is stated on R2.
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Furthermore, recall that the space of β-Hölder functions is defined by

C0,β(Ω) = C0(Ω) ∩

u : ∥u∥C0,β(Ω) = ∥u∥L∞(Ω) + sup
x,y∈Ω
x ̸=y

|u(x) − u(y)|
|x − y|β

< ∞


and equipped with the ∥u∥C0,β(Ω) norm defined above. On may first prove the following estimate

|ux0,r − ux0,s| ≤ C
r1+ α

2

s

∫
B(0,1)

|∇u|2dx

for all x0 ∈ B(0, 1
2 ), and 0 < s < r <

1
2 , where ux0,r = −

∫
B(x0,r)

u dx = 1
πr2

∫
B(x0,r)

u dx.

(9) Assume from now on that d ≥ 3. We say that u ∈ H1(B(0, 1)) is a weak sub-solution if for all
φ ∈ D(B(0, 1)), we have ∫

Ω
A(x)∇u · ∇φ dx ≤ 0, (4)

or in other words
d∑

i,j=1

∫
Ω

ai,j(x)∂xiu ∂xj v dx ≤ 0.

Using the chain rule and the product formula for Sobolev functions, show that for all convex,
increasing function Φ ∈ C2(R,R+) such that Φ′′(t) = 0 for all |t| ≥ R (for some fixed R > 0), then
for any sub-solution u ∈ H1(B(0, 1)), the function Φ(u) ∈ H1(B(0, 1)) is a sub-solution.
From now on, we assume that the previous result holds for any increasing, convex function Φ : R →
R+ (not necessarily C2 or satisfying the extra hypothesis on the second derivative).

(10) (Moser iterations) Fix some 0 < 2r < 1, and for all j ∈ N, let Bj = B(0, r + 2−jr), so that
Bj+1 ⊂ Bj ⊂ B(0, 2r) and

B∞ =
⋂
j∈N

Bj = B(0, r).

Show that for all 1 ≤ λ ≤ d

d − 2 , there exists 0 < γ < ∞ such that for all j ∈ N, for all
v ∈ H1(Bj+1), we have ∥∥|v|λ

∥∥2
L2(Bj+1) ≤ γ ∥∇v∥2λ

L2(Bj+1) + γ ∥v∥2λ
L2(Bj+1) .

(11) Fix 1 < λ ≤ d
d−2 , and let u ∈ H1(Bj) a positive weak sub-solution. With the help of the Caccioppoli

inequality (explain why it holds true for a sub-solution), show that uλ ∈ H1(Bj+1), that uλ is a
positive weak sub-solution, and show the inequality∥∥uλ

∥∥2
L2(Bj+1) ≤ C(22λj + 1) ∥u∥2λ

L2(Bj) ,

where C only depends on d, Λ, r > 0.

(12) Let u ∈ H1(B(0, 1)) be a positive weak sub-solution. Define for all j ∈ N the function uj = uλj .
Explain why

∥u∥L∞(B(0,r)) = lim sup
j→∞

∥u∥L2λj (Bj) ,

and prove the following inequality

∥u∥L∞(B(0,r)) ≤ C(d, Λ, r) ∥u∥L2(B(0,2r)) .
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