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Introduction

The theory of distributions, introduced by Laurent Schwartz in 1945, gives the modern suitable framework
to think of partial differential equations, and has had a considerable success ever since. We will not
cover the most subtle aspects of this enormous theory, but mention suitable references to study the
most immediate generalisation, such as the Sobolev spaces. Distributions permit to give meaning to
expressions that have a very low regularity. Distributions are generalised functions that should rather
be thought of generalised measures, and they notably permitted to obtain very deep geometric results
after Federer and Fleming introduced, following previous contributions of de Rham and Whitney ([39]),
the notion of normal and integral currents ([16], [15]). Indeed, one can think of currents as generalised
surfaces that have good compactness properties. One easily solves generalisation of the Plateau problem
or obtains minimal surfaces in any dimension and codimension thanks to a very fine theory of Almgren
and Pitts ([33]). If existence is relatively easy, regularity is extremely challenging (especially in higher
codimension, see [5] and [6]), but extensions of this theory by Codd Marques and Neves permitted to solve
the Willmore conjecture in codimension 1 ([30], [31]) and other conjectures ([29]). Let us mention en
passant that distribution theory permits one to think of Willmore surfaces in a very weak setting ([34]),
which has many applications to calculus of variation and geometry. The best references on geometric
distributions or current remains Federer’s treatise ([15]), and Whitney’s classical reference ([40]).

A function belongs to a Sobolev space if its “weak derivatives” belong to some LP space. Sobolev’s
major advance was to show that a distribution whose derivative belongs to some LP space (1 < p < c0)
was in fact a function from some L9 space (where ¢ depends on p and the ambient dimension). More than
half of the lectures will be centred on these spaces and the obtention of their basic properties. Another
classical idea going back to the work of Hadmard on fractional derivatives will allow us to introduce
Sobolev spaces of fractional order, such that some s-derivative of a given function (where 0 < s < oo is
not necessarily integer) belongs to some LP spaces. Contrary to what one may be thinking, those spaces
are nothing but arbitrary, and we will notably mention the classical link between harmonic functions of
finite Dirichlet energy on the (unit) disk D = C N {2 : |2| < 1} and functions f : S' — R whose Fourier
coefficients {c,}, _, belong to Hz, i.e. satisfy

> |nllen]? < oo

neZ

neE”Z

We note that those ideas were not especially new as Schwartz recognised it himself (he also claimed that
his discovery would have very likely been made in the decade following his work), and Sobolev spaces had
already been used implicitly in the work of many, including the one of Leray on Navier-Stokes equations.

In these lecture notes, our main references will be Schwartz’s original treatise ([35]), and the classical
books of Brezis ([11], [12]), Adams and Fournier ([1]), Gilbarg and Trudinger ([17]), Evans ([14]), and
Katznelson ([28]) amongst others. On distributions, we will mainly follow Bony ([10]), Schwartz ([35]),
and Edwards ([13]). Another useful references for rather advanced topics is Tartar’s lecture notes ([38]).
We will not refer to much more advanced references like Héormander ([23, 24, 25, 26]) or Alinhac-Gérard
([4]). This course is an introductory lecture on distribution theory that mainly focuses on basic properties
of Sobolev spaces: topics such as micro-local analysis (including pseudo-differential operators, wave front
set, wavelets, etc) will not even be mentioned.

The course will be divided into three parts. We will first spend a couple of lectures reminding the
attendee about fundamental results of functional analysis—the course Functional I (MATH-302) is not
a mandatory prerequisite—define distributions, give their fundamental properties, introduce the notion



of Fourier transform of tempered distribution, before moving on to Sobolev spaces, and end the lecture
with applications and fractional Sobolev spaces, that will motivate the concept of interpolation spaces,
though one may define those spaces directly in practice.

You are welcome to use the above email address to tell me about typos in those notes!



Chapter 1

Topology and Functional Spaces

1.1 Basic definitions

We assume the reader familiar with the basic notions of topology, and only recall a few basic definitions.

Definition 1.1.1. Let X be an arbitrary set. We say that 7 C £?(X) is a topology if the following
properties are verified:

L. If {Us};c; C 7 is an arbitrary family of elements of .7, then U U; € 7 (stability by arbitrary
iel
union)

2. IfUy,---,U, € 7, then m U; € J (stability by finite intersection).
i=1

Elements of 7 are called open sets, and complements of open sets are called closed sets. We say that
such a couple (X, ) is a topological space.

Remark 1.1.2. Notice that a set may be closed and open. Taking an empty union and empty inter-
section, we deduce that both @ and X are open sets, which implies by definition that they are closed
too.

On a non-empty set X, there are always at least two topologies: the trivial topology given by 7 =
{2, X}, and the discrete topology given by 7 = Z(X).

We will need of the notion of basis of topology later.
Definition-Proposition 1.1.3. Let 9 = {U;},.; be a non-empty collection of sets of a non-empty

set X. The smallest topology & that contains Jy is given by the following construction. Let J; be the
family of finite intersection of Fy. Then, T is given by

T =PX)NW:W=|]JV;,V;€F forall jeJ . (1.1.1)
jedJ
Proof. Notice that an arbitrary intersection of topologies is a topology. Indeed, let {ﬂj}j ¢ be a family
of topologies, and consider .7 = ﬂ Tj, and {U;},c; C 7. In particular, we have U U; € J; for all
JEJ el
j € J, which implies that U U; € . Therefore, 7 is well-defined and given by
icl
yl _ m y//’

T topology JoC T

7



which is a topology by the above proof. Now, we need to show that .7 = .7’. Notice that we trivially
have .7 C .7’ by using both defining properties of topologies. Therefore, we need only show that .7 is
a topology to conclude the proof. By construction, .7 is stable by arbitrary unions, so we only have to

check that 7 is stable under finite intersection. Let Wy,--- W, € 7. Then, there exists sets Ji,- -, J,
and V; ;, € 1 (ji € Ji, 1 < i < n) such that
Wi= | Vi
Ji€Ji

Furthermore, we have V; ;, =U}. N---N U‘k?i for some Ui’fji € 7. Finally, we deduce that

,Ji 2]

k
win--nW, =] U (U

n i

i=1j;€J; k=1

Let x € Wy N ---NW,. Then, for all 1 <i < n, there exists j; € J; such that = € Ui{ji N---N Uf; In
particular, we have

n ki

k
T € ﬂ (ﬂ Ui,ji> ,

i=1 \k=1

and
n k;
Win--NW, eW = U ﬂ(ﬂU@Je%.
(J1,+ 5dn)EJL XX Jp i=1 \k=1

Likewise, if x € W, then there exists (41, ,jn) € J1 X -+ X J,, such that

n k;

k
ce()( o)

=1 \k=1

A fortiori, we have
n k;
ze) UF, =Win.-- nWw,,
i=1j,€J; k=1

which proves that W =W;N---NW, € 9] and that .7 is a topology on X. O

Let us also recall the fundamental notion of neighbourhood.

Definition 1.1.4. Let (X, .7) be a topological space. We say that a (non-empty) set N is a neighbour-
hood of a point € X if there exists an open set U containing x such that U C N.

Finally, we also need the basic notion of interior, closure and frontier of a set.

Definition 1.1.5. Let (X,.7) be a topological space. Let A C X. Its interior, denoted by int(A) or A,
is the largest open set contained in A, given explicitly by

int(A)=|J U,

UCcAUeT

whilst the closure of A, denoted by clos(A) or A, is the smallest closed set containing A, given explicitly
by

clos(4) = ﬂ F.

FDOAX\FeZ

The frontier (or boundary) of A is given by 94 = A\ int(A).

8



The defining properties of a topology trivially imply that those notions are well-defined for the
arbitrary intersection of closed sets is closed. Those definitions show that arbitrary unions are in general
needed to perform basic operations that mimic the classical notions in Euclidean spaces and manifolds.

The following notion will prove crucial in many a proof of those lectures. Indeed, proofs are typically
much easier for smooth or more regular functions, and when those functions are dense in a given (Banach)
space of functions, a standard argument typically allows one to extend the proof from smooth functions
to arbitrary functions in the said Banach space.

Definition 1.1.6. We say that a subset A C X of a topological space (X,.7) is dense if A = X.
We say that X is separable if it admits a countable dense set.
Finally, recall the notion of continuity.

Definition 1.1.7. Let (X, ), (Y,.) be two topological spaces. We say that a map f : X — Y is
continuous if for all open set V € ., we have f~1(V) € 7.

We can finally move to the familiar concept of metric spaces (all spaces encountered in this lecture
are metrisable).

Definition 1.1.8. Let X be an arbitrary set. We say that a map d : X x X — Ry is a metric if the
following three properties are satisfied

1. d(z,y) = 0 if and only if y = = (definiteness).
2. d(z,y) = d(y,z) for all z,y € X (symmetry).

3. d(z,y) < d(x,2) +d(z,y) for all z,y,2 € X (triangle inequality).

If d is a metric on X, the open ball of centre x € X and radius r > 0 is defined by B(z,r) = XN
{y : d(z,y) < r}, and the closed ball by B(z,r) = X N{y : d(z,y) < r}.

Definition 1.1.9. A metric space (X, d) is a topological space whose basis of open sets is given by the

sets of all open balls {B(z, T)}xeX,r>O'

Remark 1.1.10. Notice that metric spaces are always separated. It is quite unfortunate choice of
terminology, for the closed ball in an arbitrary metric is not always closed. However, the closed ball is
always closed in a normed space.

Theorem 1.1.11. Let (X,d) and (Y, h) be two metric spaces. Then f: X — Y is continuous if and only
if f is sequentially continuous, i.e. for all x € X and for all sequences {x,},cy such that v, — x, we
n—oo

have f(xy,) vd f(z)eY.

We can now move on to the definition of normed space, Banach space, and Hilbert space.

Definition 1.1.12. 1. Let X be a vector space on a field K (where K = R or K = C). We say that
amap ||-||y : X = R is a norm if the following associated map d : X — X — R, such that
dx(z,y) = ||z — y|lx is a distance on X, and for all A € K, we have

Aallx = (Al -
The metric space (X, dx) is called a normed space and denoted (abusively) (X, |- y)-
2. We say that (X, || || ) is a Banach space if the metric space (X, | - || y) is a complete metric space.
In the following, K will denote either R or C.
Remarks 1.1.13. 1. Notice that we have by the triangle inequality for all z,y € X
Iz +yll = d(z, —y) < d(z,0) + d(0, —y) = [lz]| + [lyll.

9



2. In reality, there are no abuses of notations for the distance associated to a norm is defined bi-
univocally.

We can now move to the definition of Hilbert spaces. We first need to remind the definition of scalar
product.

Definition 1.1.14. Let E be a vector space on K. A scalar product (-, -) : E x E — R is a positive-
definite symmetric bilinear functional. In other words, it satisfies the following properties:

1. (z,z) >0 for all z € E\ {0} (positive-definiteness).

2. (x,y) = (y,z) for all z,y € E (conjugate symmetry).

3. Au+v,w) = Nu,w) + (v,w) for all u,v,w € E and A € K (linearity in the first variable).
Remark 1.1.15. Since (-, -) is symmetric, we need only check the linearity in the first variable.

Definition 1.1.16. We say that a Banach space (H, || - ||) is a Hilbert space if the following functional

1 2 2
@y) =7 (le+ylP ~llz—yl?), ayen
is a scalar product on H.

We do not recall here the useful properties of Hilbert spaces (Riesz-Fréchet representation theorem,
Hilbertian basis, and spectral decomposition that will not play a role immediately).

Remark 1.1.17. It may seem that we are replacing a definition by a theorem, but the polarisation
formula shows that it is a trivially equivalent definition.

Before mentioning the notion of dual space of a normed space and weak topology, let us recall a
statement of the Hahn-Banach theorem (see [11]).

Theorem 1.1.18 (Hahn-Banach). Let X be a real vector space and N : X — R be a sub-linear homoge-
nous map of degree 1, i.e. a map such that

1. N(Az) = AN(x) for allz € X and A > 0.
2. N(z+y) < N(z)+ N(y) for all z,y € X.

Let Y C X be a sub-vector space, and f:Y — R be a linear map such that f < N)y. Then, there exists
an extension f: X — R—i.e. such that ﬂy = f—such that f < N on X.

The proof uses the axiom of choice, and more precisely, the equivalent formulation known as the
Zorn’s lemma.* First introduce the following definitions.

Definition 1.1.19. (i) A partial order on a set X is a binary relation < on X x X that satisfies the
following properties:

1. x <z for all x € X (reflexivity).
2. Forall z,y € X, if x <y and y < z, then = y (anti-symmetry).

3. For all z,y, z, if ¢ <y and y < z, then z < z (transitivity).

(ii) We say that a subset Y C X is totally ordered (by <) if for all z,y € Y, we have either x < y, or
y < z—in which case, we say that < is a total order (on Y).

(iii) We say that an element x € X is an upper bound of Y is y < z for all y € X.
(iv) Finally, we say that € X is a maximal element if for all y € X such that « <y, we have y = «.

* Another equivalent statement for the axiom of choice is Zermelo’s Theorem, that asserts that any set can be well-
ordered. This terminology is rather poorly chosen for what is called either a lemma or a theorem is nothing else than an
axiom. However, more than a century of usage will not be erased easily.

10



Lemma 1.1.20 (Zorn’s lemma). Let (X, <) be a non-empty inductive set, i.e. a set such that every
totally ordered subset admits an upper bound. Then, X admits a mazximal element.

We can finally prove the Hahn-Banach theorem.

Proof. (Of Theorem 1.1.18)
Step 1. Finite-dimensional case.

The theorem is true in finite dimension without the axiom of choice, so let us first prove that a linear
map f: R¥ C R® — R (where k < n) always admits an extension f to RF+1 gatisfying f < N on R*TL,
Seeing R* as R* x {0} C R", we extend f by f: R¥ x R — R by

flz,t) = f(x) + at for all (z,t) € RF x R,
for some a € R to be determined later. For all (z,t) € R*¥*! we must have
flz)+at < N(x,t),

where we identify by abuse of notation (x,t) with («,,¢,0) € R™. For ¢ > 0, by homogeneity of N, the
inequality is equivalent to

(fx) +at <IN(E '2,1)) <= (fly) +a < N(y,1) (y=t""'z)),
and for ¢ < 0, we get the condition
f(y) —a < N(y,-1).
Therefore, o must satisfy

sup (f(y) = N(y,—1)) < < inf (=f(z) + N(z,1)).
yERKk z€R

Such an « always exists for f(y) — N(y,—1) < —f(z) + N(z,1) for all y,z € R¥. Indeed, we have by
linearity of f

fW@)+ 1) =fly+2) <Ny+z)=Ny+z-1+1) < N(y,—1) + N(z,1),
which concludes the proof of this step. Notice that an immediate induction gives an extension of f to
R™.
Step 2. General case.
Let E be the set of extensions g : D(g) — R of f (where D(g) D Y is the domain of g) such that
g < N|p(g)- We introduce the partial order relation < on E as follows:

(91 < g2) <= (D(91) C D(g2) and g2 = g1 on D(g1)).

The set E is not empty since f € E. Furthermore if F' C E is totally ordered, writing F' = {g;},.;, we
see that g : |J,c; D(g9:) — R such that g = g; on D(g;) is a well-defined function and an upper bound of
F. Therefore, E is inductive, and admits a maximal element that we will denote by fy,. By Step 1, if
D(fo) # X, fo admits an extension f, : D(f,) — R such that D(f,)/D(fy) ~ R has codimension 1. In
particular, it would imply that fp is not a maximal element, a contradiction. Therefore, D(fy) = X and
f = fo is an extension of f satisfying all expected properties. O

Remark 1.1.21. Notice that we do not use the finite-dimension of the ambient space R™ in Step 1,
and this why we can apply it to the (potentially) infinite-dimensional case of Step 2.

We now let in the rest of this chapter (X, || -||) be a normed space. The dual space X’ (or X*) is the
space of continuous linear forms f : X — R equipped with the following dual norm

1fllx: = sup [f(z)] (1.1.2)
eX

X
llzll<1

From Hahn-Banach theorem, we deduce the following corollary.

11



Corollary 1.1.22. Let Y C X be a sub-vector space, and f : Y — R be a continuous linear form. Then,
there eists an extension f: X — R such that ||f| ., = [Iflly-

Proof. Take N(z) = || f|ly. ||lz||. O

Corollary 1.1.23. For all x € X, there exists f € X' such that || f|| x. = ||z x and f(z) = |jz||%-

Proof. Apply Corollary 1.1.22 to fo: Rz — Rt +— ||x|\§( t. O

Corollary 1.1.24. For all x € X, we have

Izl = sup |f(2)] = max |f(x)] (1.1.3)
fex’ fex
1l <1 11l <1
Proof. The inequality | f(z)| < || f|lx |lz||x and Corollary 1.1.23 imply the result immediately. O

We will not mention other the geometric forms of Hahn-Banach theorem (see [11]), but we will need
the following very useful result in the rest of the lecture.

Theorem 1.1.25. Let Y C X be a sub-vector space such that Y # X. Then, there exists f € X'\ {0}
such that fjy = 0.

1.2 The Three Fundamental Theorem of Linear Operators in
Banach Spaces

First recall the Baire lemma.

Lemma 1.2.1 (Baire). Let (X,d) be a complete metric space. Let {F,}, .y C X a sequence of closed

spaces of empty interior, i.e. such that int(F,) = & for alln € N. Then, U F,, has empty interior too.
neN

Let Y be a normed vector space. We denote by -Z(X,Y) the space of continuous linear operators
X — Y, equipped with the following norm

Il xvy = s [T@)lly -

T
)l x <1

We skip the standard proof by induction.

Theorem 1.2.2 (Banach-Steinhaus, or Principle of Uniform Boundedness). Let (X, |- y), (Y, Ily),
be two Banach spaces, and {T;},.; C L (X,Y) be a family of continuous linear operators from X into
Y. Assume that for all x € X, we have

su? | Ti(x)]y < oo (1.2.1)
1€

Then, we have

Sup 1Tl ¢ (x,yy < oo (1.2.2)

Proof. For all n € N, let F,, = X N{z:Vi € I,||T;(x)| <n}. Then F, is an intersection of closed sets,

therefore, a closed set. Furthermore, we have U F,, = X. Therefore, by Baire’s lemma, we deduce that
neN

there exists N € N such that int(F) # @. In particular, there exists an open ball B(zg,r) in Fy, and

we deduce that

Viel, |Ti(x—zo)|ly <N for all x € B(xo,).

12



By linearity, we deduce that
. 1
viel, |Ti(@)lly < — (N + [ Ts(zo)lly) 2l x < Clizllx
using (1.2.1) with z = z,. O

Let us list a few corollaries.

Corollary 1.2.3. Let X and Y be two Banach spaces. Let {T,}, .y C Z(X,Y) be a sequence of linear
continuous operators from X toY, such that for all x € X, the sequence {T,(x)}, oy C Y converges to
a limit denoted by T'(x) € Y. Then, the following properties are satisfied:

L. sup | Thl| ¢(x,y) < o©-
neN
2. Te Z(X)Y).
3. 1Tl 2(x,yy < liminf [T o x v -

Proof. The first point 1. follows from Theorem 1.2.2. In particular, there exists a constant C' < oo such
that

sup [|[Tn(2)]ly < Cllz|y forall z € X.
neN

In particular, we have
|T(2)|ly <Cllz|ly forall e X.
By linearity of T,,, we deduce that T is linear, which proves 2. Finally, the inequality
IZ0(@)) < 1 Tll o xs el forall = € X
implies the last point 3. O

Corollary 1.2.4. Let X be a Banach space and A C X an arbitrary subset. Assume that A is weakly
bounded, i.e. for all f € X', the set f(A) CR is bounded. Then, A is strongly bounded in X.

Proof. Let {Ta},c 4 C Z(X',R) be defined by T,(f) = f(a) for all f € X’. Then, we have
sup | T.(f)|| < oo forall f e X'
acA
Therefore, by Theorem 1.2.2, we have
sup [|Ta| o (x/ gy < 00
acA
In particular, we have

[f(@)] < Cliflly forall feX'.

Using Corollary 1.1.23, we deduce that ||a]| < C for all a € A, which concludes the proof. O

The dual statement is given by the following.

Corollary 1.2.5. Let X be a Banach space and F' C X'. Assume that for oll x € X, the set F(x) =
Rn{y:y= f(z) for some f € F} is bounded. Then, F is bounded.

Proof. The proof is almost identical, using the family {T; = f}feF' O
The second fundamental theorem of Banach is the following.

13



Theorem 1.2.6 (Open Mapping Theorem). Let X and Y be two Banach spaces, and T € £ (X,Y) be
a surjective linear continuous operator. Then, there exists r > 0 such that

By(Oﬂ") C T(Bx(o, 1))

Proof. Step 1. We show that By (0,7) C T'(Bx/(0,1).

Since T is surjective, we have U T(Bx(0,n)) =Y. Therefore, Baire’s lemma implies that there
neN
exists N € N* such that int(T(Bx(0,N))) # @, and by linearity (T'(Bx(0,N)) = NT(Bx(0,1))), we
deduce that T(Bx (0, N)) has non-empty interior. Therefore, there exists yo € ¥ and r > 0 such that
By (yo,7) C T(Bx(0,1). Therefore, for all y € By (0,r), there exists {z,,(y)},cny C Bx(0,1) such that

yo+y= lim T(zn(y)).

Therefore, we have by linearity

= lim T (fvn(y) —an(—y)> ’

n—oo
and since 3(z,(y) — zn(—y)) € Bx(0,1) by convexity, we deduce that y € T(Bx(0,1)), which shows
that By(O,T’) C T(Bx(o, 1))
Step 2. We show that By (0,7) C T(Bx(0,1)).

Let y € By (0,r), and fix some 0 < § < 1 to be determined later. Then, there exists € > 0 such that
(14 &)y € By (0,7). Therefore, by the previous step, there exists g € Bx(0,1) such that

or
[(1+e)y —T(xo)|| < o
Therefore, we get
.
T((1 -
v =T(@+ &) 0| < 1 o2 T
where n = m to simplify. We deduce that there exists 1 € Bx(0,1) such that

207y = T((1 + €)' w0)) = Tw)| < g

)
Hy -T <(1 +e)7! <:c0 + 2:r1>) H < 7722.

By immediate induction, we deduce that there exists {z,}, .y C Bx(0,1) such that for all n € N, we

have
5 6 n n n+1
_ _1 -_— e _— —_—
Hy T<(1+€) (Jco+2x1+ +<2> $n))H<(2) rn:;O.

or

Furthermore, defining z/, = (1 +¢)~! (g)n Ty, we have {z,}, . C Bx(0, 11?), and
1 ]
1 = 1 . 1.2
Sl < <+Z()> o (1+15) (123

Therefore, we deduce that ZHGN a), converges absolutely in Bx(0,1) (provided that 6 > 0 is small

enough), which implies as X is a Banach space that

L 1+3
Zl‘k — l‘EBX 11 e CBx(O,l),

n—oo
k=0
5= (6 = § would work). By continuity of T, we finally deduce that T'(z) = y, which
concludes the proof of the theorem. O

14



Finally, we give the third theorem of Banach.

Theorem 1.2.7 (Closed Graph Theorem). Let X, Y be two Banach spaces, and T : X —'Y be a linear
map. Assume that the graph of T,

9(T) = X x Y N {(a,y) : y = T(2)}

is a closed set of X X Y. Then T is continuous.

Proof. Consider on X the norm |||z|| = ||z||x + [|T(2)|ly. Since ¥(T) is closed, (X,]|-||) is a Banach
space. Indeed, let {z,},cy C (X, [|-[I) be a Cauchy sequence. Then, we have

limsup ||z, — Zm || = 0.
n,Mm—00
Equivalently, we have
limsup ||n, — Zm| x =0 et limsup || T(zr) — T'(@m)|ly = 0.
n,m— 00 n,m—oo

In particular, {z,}, .y € X and {y, = T'(zn)}, ey CY. As X and Y are Banach spaces, we deduce that
there exists xo, € X and yoo € Y such that x,, — 2 in X and y, — y- in Y. By hypothesis, as

n—oo n— oo

4 (T) is closed, we deduce that (oo, Yoo) € ¥(T'), which shows that T'(roo) = Yoo. Therefore, we have

lln = zooll —> 0
n—oo

and this shows that (X, || ||) is a Banach space.

Furthermore, we have |[-||y < |[|-||. By the open map theorem applied to the identity map
Id(X, |- ) = (X, ]| 1), we deduce that there exists r > 0 such that Bj.;(0,7) C Id (By.;(0,1)) =
By .41(0,1). In other words, for all # € X such that ||z|| < r, we have [|z]| < 1. In other words, we have

sup [[lz[| <1,
=l <r

which is equivalent thanks to the homogeneity of the norm that

1
sup |[lzf| < —.
flzll<1 r
In particular, we have
1
sup [T (x)]ly <~
llzllx <1 r
. 1
which shows that [|T &y y) < = < oo O
' r

The argument in the second part of the proof works in a more general setting.

Corollary 1.2.8. Let X andY be two Banach spaces, and let T € £ (X,Y) be a bijective linear operator.
Then, the inverse T™1 :Y — X is continuous.

Proof. By the Open Mapping Theorem (Theorem 1.2.6), we deduce that there exists r > 0 such that

rllzlly < ||T(z)|ly forall z € Bx(0,1),

which shows that ||T_

1
1”3(Y,X) < r
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1.3 Weak Topology

1.3.1 General Definition

Let X be a set and {Yi},.; be a family of topological spaces. For all i € I, we fix some map ¢; :
X — Y. The weak topology on X is with topology that makes all maps ¢; : X — Y; continuous.
Notice that this is well-defined by Definition 1.1.3), and the associated pre-topology is given by % =
{cpi_l(Vi) : V; open subset of K-}.

Proposition 1.3.1. Let {xn}neN be a sequence of X. Then x, — x for the weak topology if and only
n—oo
if pi(zn) — @i(z) €Y; foralli€ 1.

Proof. The first implication is trivial for each map ¢; : X — Y; is continuous with respect to the weak
topology. Conversely, let U be a neighbourhood of x. By the construction of Definition 1.1.3, we can
assume that

U= n (Pz‘_jl(‘/ij)v
j=1

where V;; is an open set of Y;, (by hypothesis, V;; is also a neighbourhood of ¢;,(x)). For all 1 < j <n,
there exists N; € N such that ¢;, (7,) € V;; for al n > N;. In particular, taking N = max {Ny,- -+, Ny},
we deduce that for all n > N, x,, € U, which concludes the proof. O

1.3.2 Weak Topology on a Banach Space

Let X be a Banach space, and f € X’. Let ¢ : X — R be defined by ¢;(z) = f(z) for all z € X. Then,
the weak topology o(X, X’) on X is the weak topology associated to the family of maps {@f}fex“ To
emphasise the duality, we will sometimes write f(z) = (f, x).

We will denote the weak convergence of {z,}, .y C X to some element x € X in the weak topology
by the half-arrow —. Notice that by what precedes (Proposition 1.3.1), we have

(xn I~ x) = (f(xn) — f(z) €R forall fe X') .

Let us list some basic properties of the weak topology.

Proposition 1.3.2. The weak topology o(X, X') is separated.

Proof. The proof follows from the geometric version of Hahn-Banach theorem, and will be omitted. [J

Proposition 1.3.3. Let {x,}, .y C X. The following properties are verified:

1. The sequence {xn}, cyy weakly converges to some element x € X if and only if f(x,) — f(r) €R
n—oo
forall f e X'.

2. If x, — x strongly, then x, — x weakly.
n—oo n—oo

3. If v, — x weakly, then {||lz,|},cn C Ry is bounded and
n—oo

|lz|| < liminf ||z, . (1.3.1)
n—oo

4. Ifx, — x weakly, and {fn},cny C X' converges towards some element f € X', then fn(xn) —

n—oQ n—oo

f ().
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Proof. The first property 1. is trivial by definition of the weak topology and Proposition 1.3.1. The
second 2. follows from the inequality |f(z,) — f(x)| < || fllx/ [|[2n — 2| -

Let us prove 3. now. We apply Corollary 1.2.5. We need to check that for all f € X', {f(zn)}, ey C R
is bounded, which is trivially satisfied since f(x,) — f(x) by definition of the weak convergence.
n—oo

Furthermore, for all n € N, we have

|f (@)l < ([ fllxr lznllx
which implies that
()] < [l limin [z
Finally, Corollary 1.1.24 implies that
= < limi .
lzlx = max |f(2)] < liminf ] x
115 <1

The last property 4. follows immediately by the triangle inequality:

[fn(an) = f(@)] < |fa(zn) = f(@a)| + 1 (@n) = F@)] < fn = fllxo lznllx + 170 l2n — =l x
which implies the claim by the previous property 3.. O

We end this section by a few remarks on the weak topology.

Remarks 1.3.4. The weak topology has many surprising properties:

1. The adherence of the unit sphere S = X N{x : ||z| y = 1} for the weak topology is the closed ball
B =Xn{z:|z|ly <1}. We will see that in a reflexive space (to be defined in Definition 1.4.1), B
is a compact set for the weak topology, although this set is never compact for the strong topology
in infinite dimension. This is why the weak topology is so important: it allows one to solve partial
differential equations thanks to a compactness argument.

2. The interior of B = X N{x : ||z||y < 1} for the weak topology is empty.

3. In infinite dimension, the weak topology is never metrisable. This is why it is futile to define it
using convergence of sequences, although for most applications, one need only look at sequences.

4. In infinite dimension, there are sequences that converge weakly but do not converge strongly.

1.4 'Weak x Topology

Let X be a Banach space, X’ its dual space, and X" = (X’)’ the dual space of X’ (also called bidual of
X). We endow it with the following norm

lellxr = sap  lo(f)I. (1.4.1)
fex’

1705 <1
There is a canonical injection J : X — X", defined as follows. Let z € X and J(z) : X' = R, f —
(J(z), f) = f(z). Then J(z) € X”. Furthermore, we immediately check that J defines a linear map
X — X", which is an isometry for

1T(@)|n = sup |[(J(@), f)l = sup |f(x)] =]y, (1.4.2)
fex’ fex’
Il xr <1 Il <1

using Corollary 1.1.23.

Therefore, X is isometric to a subset of X”. This allows us to introduce a fundamental notion that
will prove fundamental in the following (and explain all the pathologies of spaces such as L' and L*°).

17



Definition 1.4.1 (Reflexive spaces). We say that a Banach space is reflexive if the isometric injection
J: X — X" is surjective, i.e. J(X)=X".

Common examples of reflexive spaces are the LP spaces (on a locally compact group, say) for expo-
nents 1 < p < oo.

Before listing the major properties of reflexive spaces, we now define the weak * topology (X', X)
on X'

Definition 1.4.2. The weak * topology! is the smallest topology that makes all maps J(z) : X’ — R
continuous, where x € X. We denote it o(X’, X). We denote by X the convergence for sequences of X.
Let us give a few basic properties of the weak topology.

Proposition 1.4.3. The weak * topology on X' is separated.

Proof. Let f,g € X’ such that f # g. Then, there exists € X such that f(z) # g(z). Assume without
loss of generality that f(z) < g(z), and let o € R such that

f(@) <a<g(z),

then J(z)71(] — 00, a]) and J(z)7(Ja, 0o]) are disjoint open (for the weak * topology) subset of X’ that
respectively contain f and g. O
We now list the basic properties of the weak * topology (the proof is almost identical to the one of

Proposition 1.3.3, and we omit it).

Proposition 1.4.4. Let {f,},cy C X'. Then the following properties are satisfied.
1. The sequence {fn}, oy converges to f € X' if and only if f.(x) — f(x) for all x € X.
n—oo

2. If fn — [ € X' strongly, then f, — f weakly for the weak topology (X', X"). If f, — f€
n—oo n—o0

n—oo

X' for the weak topology o(X', X"), then f, = f weakly for the weak x topology o(X', X).
n oo
3. If fn nfoo [y then {|[fullx/ }en C Ry is bounded and

11l xr < lim imf | frll (1.4.3)

4. If f, = f, and x, T strongly, then fn(x,) — f(x).

n—oo n—oo
We end this section by a fundamental compactness theorem that justifies the introduction.

Theorem 1.4.5 (Banach-Alaoglu-Bourbaki). The unit closed ball B = X"N{f : ||fllx. < 1} is compact
for the weak x topology o(X', X).

Proof. The proof is an easy application of Tychonoff’s theorem (the arbitrary product of compact set is
compact). Notice that this “theorem” is equivalent to the axiom of choice, so it was not very limiting to
use Hahn-Banach theorem previously considering that the compactness of the unit ball for the weak
topology is needed in many applications.

Now, let Y = RX equipped with the product topology. Let ® : X’ — Y defined by

O(f) ={f(x)},ex forall feX'

By definition of the product topology, since each canonical projection 7, o & = J(z) : X' — R is
continuous (x € X), we deduce that ® is a continuous map. Here, we denoted 7, : Y = RX — R the
canonical projection on the “x factor.” Furthermore, note that ® is injective since for all given elements

TOne pronounces weak star topology.
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fyg € X', the equality f = g holds if and only if f(z) = g(x) for all x € X. Now, consider the inverse
map ®~1: ®(X’) — X’. We need only prove that for all # € X, the map y — (®~1(y),x) is continuous,
but it is trivial since (®~1(y), x) = 7, (y).

Now, we observe that

O(B) = YN {y : [ma(y)| < l[zll, mopar (y) = 72 (y) + 72 (y),
Taz(y) = Am,(y) for all z,2" € X and X\ € R}.

Notice that the set A1 = Y N {y: |m.(y)| < ||z|| forall z € X} = [ cx[—llzl|,[|z[] is compact by
Tychonoff’s theorem, whilst

Ay =Y N{y : Topar (y) = 72(y) + 72 (¥), Mra(y) = Ame(y) for all Iax/ € X and A € R}

is closed as intersection of closed sets. Therefore, we deduce that ®(B) = A; N As is compact. O

1.5 Reflexive Spaces

Recall that by the Definition 1.4.1, a Banach space is reflexive if the canonical (isometric) injection
J: X — X" is surjective. The major theorem is the following result of Kakutani.

Theorem 1.5.1 (Kakutani). Let X be a Banach space. Then, X is reflexive if and only if the unit
closed ball B =X N{z : ||lz||y <1} is compact for the weak topology o(X,X').

We omit the (rather technical) proof.

Remark 1.5.2. We see that for a reflexive space, the weak * topology is useless. However, for a non-
reflexive space that is the dual of a Banach space (as L), the weak * topology furnishes a topology for
which the unit ball is compact, which has fundamental applications to calculus of variations and partial
differential equations.

We also mention the following theorem that is not trivial, contrary to what one may think.

Theorem 1.5.3. A Banach space is reflexive if and only if its dual space is reflexive.

1.6 Separable Spaces

We have the following results.
Theorem 1.6.1. Let X be a Banach space such that X' is separable. Then, X is separable.

Remark 1.6.2. L, the dual of L!, is not separable, although L! (as all Lebesgue spaces LP for
1 < p < o0) is separable (provided that we consider the space L' on an open subset of R¢ for example).

Theorem 1.6.3. Let X be a Banach space. Then X is reflexive and separable if and only if X' is
reflexive and separable.

We assume the reader familiar with Lebesgue spaces (since they are special cases of Sobolev spaces)
and do not recall here the basic results such as the Holder’s inequality (we will see generalisations of
it), the convergence theorems of Lebesgue or Fatou, or the inequality for convolutions that will all be
treated in the more general setting of Lorentz and Orlicz spaces.

19



20



Chapter 2

Distributions

2.1 Basic Notations

From now on, we let d > 1 and consider a (connected) open subset @ C R%. Forall a = (ay,--- ,aq) € RY,
we define the |a|-order operator (where |a| = oy + -+ + aq) by

olel
D= — .
oxt -+ 0xy?
Then the Taylor expansion shows that for any smooth function f : @ — R, and for all m € N, and
zo € 2 we have for all z € 2 such that
[zo, 2] =QN{y:y=tx+ (1 —t)zy for some t € [0,1]} C N

flz) = Z %@(m—xo)%r Z mﬁfl/o DP f(xg + t(x — x0))(1 — t)™dt (2.1.1)

la|<m |Bl=m+1

where a! = aq!--- g, and y® =yt - yg¢ for all y € R

2.2 Topological Vector Spaces

Distributions are defined as dual spaces of generalisations of Banach spaces for which the topology is
defined by an (uncountable) family of semi-norms. Those spaces are locally convex topological vector
spaces (see [13], Chapter 1) that are not metrisable (a metrisable locally convex topological vector space
is called a Fréchet space). On the other hand, tempered distributions are defined as dual space of Fréchet
spaces. A bad definition of locally convex topological vector spaces would be to start with a countable
family of semi-norms, for it would not explain why such a definition is natural. We will therefore follow
the order of Edwards ([13]).

In recent analysis textbooks on distributions, the topological foundations are barely mentioned, and
only sequential convergence of distributions is mentioned. Even if sequences suffice in most applications,
we find it helpful to give suitable background to those interested to continue further in the theoretical di-
rection, that answer many a non-trivial question, such as the PhD thesis ([19]) of Alexandre Grothendieck
(made under the direction of Laurent Schwartz) that solved most problems in the field, and notably gave
rise to the notion of nuclear spaces. Grothendieck showed that there is another natural notion of tensor
product of locally convex topological vector spaces, much to the dismay of Schwartz! However, for a
sub-class of locally convex topological vector spaces, the tensor product is unique, and Grothendieck
called them nuclear. Thankfully, all spaces of distributions 2, 2, &, &', %, ' and the space of
holomorphic functions on a complex manifold are all nuclear. However, one can endow those spaces with
various topologies, and one should give a rationale why one notion is preferred to the other. Spaces of
general distributions (contrary to tempered distributions) are not metrisable, and one therefore needs to
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give a satisfying definition of topology and not restrict to sequences without further explanations. Up
to this day, Grothendieck’s PhD remains his most quoted work. Out of the enormous amount of results
it contains (even restricting to Banach or Hilbert spaces), we cannot resist to mention Grothendieck’s
inequality, that has deep applications to various fields, and whose optimal constants are still unknown.

Needless to say, this theorem is only mentioned for cultural reasons. Consider it as hors-piste
(off-piste).

Theorem 2.2.1 (Grothendieck, 1955). For all N € N, and 1 < p < oo, define for all z € KV (where

K=R orK=0C)
N ’
], = <Z xﬂ) 7

i=1
and for p = oo
”xm”:}igﬁ*”|:1§2&“ﬂ'

For all matriz A € My, »n(K), and for all 1 < p,q < oo, define the operator norm of A as a map
(K™, 1P) — (K™, 19) is defined by

[All, 4 = sup [[A(2)],
zcK

2], <1

Then, the following statement holds. There exists a universal constant Kg < 00 such that for allm,n > 1
and A € My, »(K), for all Hilbert space (H, || -||y),

m n

sup ZZ i (i, vj) | < KG 14l 221
(wyer™ <" | =
[l |l g llvill g <1

Remark 2.2.2. The [|- ||, ; norm of A is alternatively given by

||A||oo,1 sup ZZA JLilj| = ]K’" K ZZAZ VEZEAE

(z,y) e]Kmx]K" 151 (z, y)e 13
2l ooyl o == 2]l oo Iyl o <1 751 9=
Therefore, the inequality can be recast in the more elegant way:
K
" U)gl;;ﬂ(XHn E E A j(ui,vj)m < KG (zyrélﬁgr}'fo" E E A iz | . (2.2.2)
1j=1 1j=1
lwill g llog ] <1 7= 9= 2]l oo llyll o <1 =1 =

The main surprising feature of this theorem is that the constant is independent of m,n > 1 (refining
the theorem, it means that the Grothendieck constant can seen be as a function of m,n, which, by
Grothendieck’s result, stays bounded as m,n — 00).

The exact values of the real and complex Grothendieck constants are unknown, but we have the
bounds:

s

2log(1+ v2)

g<K§;<

and

4
- <K&<e'™,
™
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where + is the famous Euler constant:

— 1
v—nlg%o(;k log(r >

There are more precise bounds, but they are either complicated or false (using either elliptic function,
or unpublished and only appearing as a private communication from 1984* in [20]). See the survey of
Gilles Pisier for more information on this topic ([32]).

Definition 2.2.3. A gauge on X is real-valued function G : X — R such that

1. GO\z) =AG(x) for all z € X and A > 0.
2. Gz +y) <G(z)+G(y) for all z,y € X.
Definition 2.2.4. Let X be a vector space over K, where K is R or C. Then, a semi-norm on X is a
map N : X — R, such that
N(Az) = |A\|N(z) for all z € X, A € K.
2. N(z+y) < N(z)+ N(y) for all z,y € X.

The only difference with a norm is that we do not require that N(z) = 0 if and only if z = 0.
In the rest of this section, we fix a field K that is either R or C.
We can now move on to the definition of topological vector spaces.
Remark 2.2.5. Taking A = 2 and & = 0, we deduce that N(0) = 0. In particular, for all z € X, we

have 0 = N(0) = N(z — z) < N(z) + N(—z) = 2N (z). Therefore, we see that the requirement that
N > 0 is not necessary in the definition of a norm.

Definition 2.2.6 (Topological Vector Space). A topological vector space on K is a vector space X on
K equipped with a topology .7 such that the maps:

1. X xX = X, (z,y) = z+y;
2. KxX = X,(\z)—= Az
are continuous.

Example 2.2.7. Although not commonly studied in first courses on integration due to their pathologies
and surprising properties (such as the reverse Minkowski inequality for p < 1 and positive functions), L?
spaces of exponent 0 < p < 1 do come up in some applications. Let 0 < p < 0o, and consider the space

27(0.1) = #(0.,0)n {1 / P < oo}

where .#([0,1],C) is the set of measurable functions from the unit interval [0, 1] into the complex plane
C. Then the following semi-metric (on LP, since it is not a semi-metric on .Z7)

= ([ - sora)

endows .ZP with a topological vector space structure. When p > 1, the topology is induced by the semi-
norm N(f) = || fllps (0,17 (here, we did not take the quotient by the equivalence relation that identifies
two functions that differ on a negligible set, so Z? is not a normed space, an a fortiori not a Banach
space).

Recall that a semi-metric is a map d : X x X — R, that satisfies all metric axioms but the triangle
inequality (see Definition 1.1.8).

*What will people think of this private communication in 20847
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2.3 Locally Convex Topological Vector Spaces

We will not study the general properties of topological vector spaces for our main interest will be the
smaller close of locally convex topological vector spaces.

Definition 2.3.1 (Locally convex topological vector spaces). A locally convex topology vector space is
a topological vector space that admits a basis of neighbourhoods of 0 made of convex sets.

Remarks 2.3.2. 1. LP spaces with exponent 0 < p < 1 are not locally convex, whilst LP spaces for
1 < p < o0 is locally convex.

2. The space of continuous functions on a compact set equipped with the uniform convergence topology
is locally convex.

Finally, we come to the statement that permits to define workable topology on locally convex topo-
logical vector spaces.

We first need a few elementary results after introduction some basic topological definitions.
Definition 2.3.3 (Absorbent and Balanced Sets). A subset A C X is called absorbent if for all x € X,
there exists A > 0 such that Az € X.

A subset A C X is called balanced if A\x € A for all x € A and A € K such that |\ < 1.

Lemma 2.3.4. Let X be a topological vector spaces. Then, there exist either a neighbourhood base at 0
comprised of sets that are all balanced and open, or balanced and closed.

Proof. We only prove the existence of the neighbourhood of balanced open sets.

By the definition of a general topology, there exists a base of neighbourhoods at 0 comprised of open
sets. Let U be an arbitrary neighbourhood of 0. By the second axiom of topological vector spaces
(Definition 2.2.6), there exists € > 0 and an open neighbourhood V' of 0 such that for all z € V and
|A| < e, we have AU. Let W be the balanced enveloped of eV (the smallest balanced set containing £V;
since the arbitrary intersection of balanced sets is balanced, this is well-defined). Since V' is open, we
deduce that W is open. Indeed, the balanced envelope W = Z(V) of V is explicitly given by

BV)=Xn{y= z:zcVAcKN\<1}=VU ]V,
AeK”
[AI<1
which is an arbitrary union of open sets thanks to the second axiom of topological vector spaces. There-
fore, we deduce that for all A € K* and for all open set Z, the set A\ Z is open.

Furthermore, we have W C U by definition of V', which concludes the proof. O

Now, by Lemma 2.3.4, we deduce that there exists a neighbourhood base of 0 made of closed,
convex, and balanced sets. Indeed, let U be a neighbourhood of 0, and let U; be a closed and balanced
neighbourhood of 0 such that U; C U. Then, there exists a convex neighbourhood Uy C U; of 0, and a
closed and balanced neighbourhood Us C U, of 0. Finally, taking the closure of the convex envelope of
Us yield a closed set V' C U that is a neighbourhood of 0.

Letting now {U;},.; be a neighbourhood base of 0 made of closed, convex and balanced subsets of
X. We will need the concept of Minkowski gauge and a few technical results.

Theorem 2.3.5. Let C' be a conver and absorbent subset of X which contains 0. Define the following
real-valued function G : X — R by

G(z) =infRy N {A: X'z eC}.
Then, G is a positive gauge on X such that
G Y] -0, 1) cCCc G~ 00,1]). (2.3.1)

We say that G is the Minkowsky gauge of C'.
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Proof. Since C'is absorbent, the set Riﬂ{)\ A lzeC } is non-empty, which shows that G is well-defined
and satisfies G(x) > 0. Now, for all A > 0, we have G(Az) = inf R; N {p: p~*(Az) € C} = AG(z) by an
immediate change of variable. Now, by convexity of C, if A, x > 0 are such that A™'z € C and =ty € C,
we have

W)+ Ly e

(1) @ +y) = e

At
Taking the infimum in A and p, we deduce that G(z 4+ y) < G(z) + G(y).

Finally, we need only prove the first inclusion, for the other one is trivial (z = 1712z € G71(] — o0, 1])
for all z € C). If G(z) < 1, there exists 0 < A < 1 such that A™'x € C. Since 0 € C and C is convex,
we have z = A(A71x) + (1 — \)0 € C. This concludes the proof of the theorem. O

We now introduce a new definition to state a useful corollary.

Definition 2.3.6. We say that a subset A C X is open (resp. closed) in rays if for all x € X, the set
I, =R, N{X\: A"z € A} is open (resp. closed) relative to the interval I = R% = (0, c0).

Corollary 2.3.7. Let C be a convexr and absorbent subset of X containing 0, and let G be its Minkowski

gauge. If C is open (resp. closed) in rays, then C = G=1(] — oo, 1[) (resp. C = G=(]—o00,1])). In either
case, C is balanced if and only if G is a semi-norm on X.

Proof. We only treat the case of C' open in rays. By (2.3.1), we need only prove that C C G~1(] — oo, 1[).
Let x € C. Then 1 € I, and since I, is open in rays, we deduce that there exists 0 < A < 1 such that
A € I.. In particular, we have G(x) < A < 1.

If G is a semi-norm, then C = G~1(] — 0o, 1]) is trivially balanced, for G(Az) = |\|G(z) < G(z) < 1
for all z € C and |A| < 1. Conversely, if C is balanced, for all ¢ > 0 fixed and z € X, we have
(G(z) + €)'z € C, which implies in particular that for all A € K*, we have (|]A\|(G(z) +¢))"'(A\z) € C,
so that G(Az) < |A|(G(x) + ¢€). Letting e — 0, we deduce that

G(Az) < NG(@).
Replacing A € K by A™!, and z by Az, we get
G(z) < |\'G(\x),
which shows that G(Az) = |A|G(z). O

Thanks to the previous results, we deduce that for all ¢ € I, if N; is the Minkowski gauge of U;, then
N; is a semi-norm, and U; = N[l(] — 00, 1]). Therefore, we have proved that the family of semi-norms
N; on X gives a neighbourhood base at 0. Notice that the family {N[l(] — 00, 1[)}1.6[ yields an open
basis of neighbourhood of 0.

Conversely, we immediately check that an arbitrary family of semi-norms on X endows X with a
structure of locally convex topological vector space. Such a family is called a defining family.

Summarising the previous discussion, we now state the following theorem.
Theorem 2.3.8. Let X be a locally convex topological vector space. Then, there exists a family of semi-
norms {N;},.; on X such that {N;7(] — oo, ID}ieI (resp. {N; (] — 0, 1])}1,61) is a neighbourhood base
at 0 of open (resp. closed) convex, and balanced subsets of X.

Furthermore, X is separated if and only if

sup Ni(z) >0 for all x € X\ {0}. (2.3.2)
iel

Proof. We have already proven the first part, so we need only prove the second part. Since X is a
vector space, X is separated if and only if for all zy € X, there exists two open sets U; and Uy such
that 0 € Uy, g € Us and Uy NUs = @. Assume that X is separated. Without loss of generality,
we can assume that Uy = X N{z: Ni(z) <1} and Uz = X N {z: Na(xg — ) < 1}, where Ny and
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Ny are semi-norms. Since U; and Us have empty intersection, we deduce in particular that 0 ¢ Us,
i.e. Na(xg) = Na(xzg —0) > 1, which shows the second implication. If there exists ¢ € I such that
Ni(zg) = € > 0. Therefore, Uy N {z: Ny(z) < 5} and Uy = X N {z: Ny(x) > 5} are disjoint open
neighbourhoods of 0 and x( respectively. O

2.4 Dual Space of a Topological Vector Space

On a topological vector space X, we define—as in the case of normed spaces—the space X’ as the space
of continuous linear forms X — R. If XY are topological vector spaces, we let £ (X,Y’) be the vector
space of continuous linear maps from X to Y.

Finally, we remark that the definition we gave of weak topology for the dual of a normed space also
makes sense for the dual of a topological vector space, and that allow us to define the natural topology
on distributions. Furthermore, provided that X is locally convex, if {N;},.; is a family of semi-norms
defining the topology of X, we can define a strong topology on X', denoted by (X', X), such that for
all sequence {f}, .y € X', we say that {f,},y converges to f € X’ if and only if for all bounded subset
B C X, we have

sup sup N;(fn(z) — f(z)) = 0.
el xeB

Both topologies o(X’, X) and (X', X) endow X with the topology of a locally convex topological space,
as one immediately verifies.

Remark 2.4.1. Contrary to the familiar case of Banach spaces where dual spaces generally offer a lot
of information, the dual of a locally convex topological vector space might be reduced to {0}, as the
example of LP([0,1]) shows when 0 < p < 1.

2.5 Distributions

2.5.1 General Definition and Topologies

Finally, we can move on to the definition of distributions.

Let  be an open set of R%, and define the space space of smooth functions of compact support by
P(Q) = C2(Q) = C=(Q) N {p : supp (¢7) CC O}
We can also see it as the inductive limit of the spaces
Ik () = C*(Q2) N {p: supp(p) C K},
where K C () ranges all compact subsets of €2, that we will define below. Notice that

2@)= | 2x®

KcQ
K compact

For all m € N and compact subset K C Z(12), define the semi-norm on 2(Q2) by

1l = sup [[DGllpe k) -

la|<m

This topology on Z(Q) gives the latter space the If K is fixed, this family of semi-norms endows Z (€2)
with a Fréchet space structure, where the metric is given by

1 e =%,k

mmwzzﬁﬂwimz

meN
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Now, if {K,},y is an exhaustive sequence of compact sets of €, then the topological vector space
(2(0),{ll |lnen }) can be equipped with a distance:

det) =3 Y 1 =%k,

m+n _ ’
meNneN 2 1+ ||S0 me,Kn

making it a Fréchet space. However, the dual of such a space is not the space of distributions 2’(), but
the space of distributions with compact support &”(£2), and one checks that &(Q) = (2(Q),{| - [l,nen}) =
C°(Q), equipped with the compact-open topology: the topology of uniform convergence on all compact
for each D%p (o € N9).

The topology on Z() is given by an inductive limiting procedure.

Definition 2.5.1. Let {X;},.; a family of topological vector spaces, X be a vector space, f; : X; — X
be a linear map. Then, the inductive (or final) topology on X is the biggest locally convex topology on
X such that each map f; is continuous, and we write X = thl

The same definition would make sense in the category of sets instead of the category (locally convex)
topological vector spaces.

Remark 2.5.2. 1. We see that this topology is defined in a very similar way than the weak topology,
although the base and target spaces are reverted—we also take the finest topology, not the coarsest
one, but in the category of locally convex topologies (otherwise, we would end up taking the discrete
topology on X).

2. Explicitly, a subset U C X is open if and only if fi_l(U ) is open for all ¢ € I.

3. Although the notation X = lim X; might seem frightening, in practice, it poses no issues to check
if a set is open for the inductive limit topology.

Now, take as previously an exhaustive sequence of compact sets { Ky}, .y C 2. Then, as previously,
we have

72(Q) = | 7k, (),

neN

and we endow Z({2) with the inductive limit topology associated to the canonical injections ¢, : K, < Q.
The space Z(Q2) will always be equipped with this topology that makes it an inductive limit of Fréchet

spaces. In practice, the topology can be characterised as follows. For all {¢,}, oy, we have ¢, — @ €
n—oo

2(Q) if and only if there exists a compact set K C £ such that supp(¢,) C K for all n € N, and for all
m € N, we have

Jim {lon =@l = 0.
This result can be showed by exhibiting a suitable family of semi-norms that define the inductive topology

on 2(12). We first select a sequence {Q,}, oy of open and relatively compact subsets of €2 such that

Qo =2,Q, CQyqand U 0y, = Q. Then, for all decreasing sequence € = {e,,},,cjy C (0, 00) converging
neN
to 0, and for all increasing sequence m = {my,}, .y C N diverging to co, we define the semi-norm

1
= — D%t 0o congy | -
||(p||e,m :lél[g] (5 sSup || @HL (Q\QT,))

n |a|<mny

First, we need to shows that for all (¢,m) as above, ||-||,,, is continuous. By the definition of the
inductive limit topology, we need only show that the restriction of ||| ,,, to any compact K C € is

continuous. However, for all compact K C 2, there exists N € N such that K N Q\ Q,, = @ for all
n > N. In particular, we have for all ¢ € Pk ()

1 _ _
[#lle,m = sup — sup HDa(pHLOO(K) =cy sup ||Da<P||L°c(K) =y 10 k¢ -
1<n<N En |a|<m, o] <m
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Conversely, if U is a closed convex convex neighbourhood of 0 for the inductive limit topology, then we can
find |||, ,, such that U D 2(Q) N {ap Hellem < 1}. By definition of the inductive limit topology, for
all n € N, there exists m, € N and 6, > 0 such that ||¢[lg ., ., <, implies that ¢ € U. Furthermore,
we can assume without loss of generality that {d,},.y C (0,00) is decreasing and m = {my,}, .y C N is

be a smooth partition of unity, such that supp(8,) C Q,12\ 2, and Z B, = 1.
neN

increasing. Let {Bn}neN

Then, for all ¢ € 2(Q2), we have

1 n
p=> W(Q 1 Bne),

neN

and by convexity of ¢ we deduce that ¢ € U provided that 2"+ 3,,¢ belongs to U. Furthermore, for all
n € N, there exists 0 < ), < oo such that

”2n+1ﬁn(pHmen+2 < Cn H‘PHann-m .

We can also assume that {Cy, },,cy C (0, 00) is an increasing sequence. In particular, taking &, = C;; ',

we have 2(Q2) N {<p lellem < 1} C U, which concludes the proof of the following result.

Theorem 2.5.3. Let Q be an open subset of R, and let 2(2) = C(Q) the space of smooth functions of
compact support on Q, and for all compact set K C 0, let D (Q) = C°(Q)N{p : supp(p) C K} C 2(Q),
that we endow with the topology of uniform convergence of all derivatives, that makes it a Fréchet spaces

with defining semi-norms given by < || - ||, W where for all m € N,
? me

[l = sup DYl oo (sy  for all ¢ € Dx ().

lal<m

Then, the inductive topology on P() is the inductive topology associated to all canonical injections
fr : Zx(Q) = 2(Q), and we note

2(9) = lim P ().

The resulting space is a separated locally convex topological vector space. For all exhaustive sequence of
relatively compact subsets {0}, .y C Q such that Qy = & and Q. C Quy1 for all n € N, a defining
family of semi-norms is given by |- . where € = {en}, oy C (0,00) ranges over all decreasing
sequences converging to 0, and m = {m,} of ranges over all increasing sequences diverging to oo,
and for all ¢ € 2(2), we have

neN

1 (e
H@gmmm<wanmeme. (2.5.1)
N\ €&

ne n |ja|<m,

Remark 2.5.4. We stress out that this topology is not metrisable and does not have a countable base
of neighbourhoods at 0. It is not countable for the family of decreasing sequences converging to 0 has
the cardinal of the continuum.

Finally, we can define the space of distributions as follows.

Definition 2.5.5. The topological dual space of Z(f) is called the space of distributions, and we denote
it by 2'(Q2). We endow it with the weak topology o(2(2), 2'(£2)).

We spoke about weak topology although we meant weak topology. However, since 2'(2) is a reflexive
space, the weak topology and the weak * topology coincide, and this terminology is rather standard.

Remark 2.5.6. Analogously, we define complex-valued, or vector-valued definition by taking the product

spaces of distributions.

Thanks to Proposition 1.4.4, we deduce that a sequence {T),}, .y C 2'(£2) converges to an element
T € 2'(Q) if and only if

T.(p) — T(p) forall ¢ € ().

n—oo
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Definition 2.5.7 (Support). By definition of the inductive topology, we deduce that a linear form
T:2(22) — R belongs to 2'(1) if and only if for all compact K C Q, there exists Cx < 0o and mg € N
such that

TP < Cr ¢l = Cx sup D@l ) - (2.5.2)
K

al<m

The smallest such constant C is denoted ||T|, and the smallest integer mg € N such that (2.5.2)
holds is called the order of T on K, denoted by ordg (T). If

m= sup ordg(T)
KCQ
K compact

is finite, we say that T is a distribution of order ord(T) = m. We denote by 2 ™(Q) the space of
distributions of order m € N.

Remark 2.5.8. Analogously, we define complex-valued, or vector-valued definition by taking the product
spaces of distributions. Notice that distributions of support 0 are Radon measures.

Examples 2.5.9. 1. If f € L{ (Q), then the distribution 7' = f defined by integration such that

loc

T(p) = /Qf<pdx for all ¢ € 2(0)

is a distribution of order 0, with ||T[; = [|f[[;1(s)- More generally, if T' = p is a real Radon
measure, then

T(p) = /Qcpdu

is also a distribution of order 0, such that || 7|, = u(K). An important example is the Dirac mass
at xg € Q, given by

bz, (9) = p(z0)-

2. The Dirac mass d, such that d,(¢) = ¢(a) (a € Q) is a very important distribution (a measure, in
fact), that will have a crucial importance in several theorems for reasons that will be made clear
by convolution and Fourier transform.

3. Anticipating on the next section, for all @ € R define for all n € N the distribution s e g (R)
by 65 (¢) = (—=1)"¢™ (a). Then, the following distribution

T=> 60"
neN

has infinite order. Indeed, we see easily that for all n € N, the restriction of 7' to B(0,n + %) has
order n.

4. The principal value integral (at 0) of a function f : R\ {0} — R such that f € L] _(R\ {0}) is
defined by

p-v-f(p) = lim f@)p(@)da.
eV JR\[—¢,e]

Under suitable conditions on f, p.v.f is a well-defined distribution, known as Cauchy principal
value. Take f(z) = 1. Then, by oddness of f, for all 0 < & < R < oo, we have

1 dx dx
<p.v., f> - / o) = / (@) — p(0) % + / o(@)dz,
z R\[—¢,é] x [~R,—€]U[e,R] z R\[-R,R]
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and since ¢ is of class C!, the function M is bounded at 0, and for all 0 < R < oo, we have

(pv b= [ e+ [ o - oo+ [T,

Taking R > 0 large enough such that supp(¢) C [—R, R], we deduce by Fubini’s theorem that

(pvtoo)= [ ot - won®

_ _/_OR (/0 <p’(t)dt> ‘iﬁ + /OR (/0 cp’(t)dt) iﬁ. (2.5.3)
We first compute
L o) = [ ([onemma) S = [ w0 ([, %)

= /OR ©'(t) log (_tR> dt. (2.5.4)
/OR (/OI @’(t)dt) %‘T = /OR ' (t) log (?) dt, (2.5.5)
which implies that

<p.v.i,<p> _ /I; (1) log (';') it = /1; 2 (t) log |t|dt + log(R) /I; o (bt

—— [ ¢eogat, (2:5.6)

Likewise, we have

since supp(¢) C [—R,R]. This expression easily shows that p.v.% has order 1, and that the
distributional derivative (as defined in the next section) of z + log|z| is p.v.2. Indeed, for all

v € Z(R), we have
‘/ o(t) 10g|t|dt‘ < / log [t|dt | 1"l (g) -
R supp(y’)

which shows that p.v.% has order at most 1. If this distribution had order 0, it would extend
to a Radon measure. We will therefore exhibit a bounded sequence {¢,},y in C.(R) such that
(p-v.1, ) diverges. Now, let {¢n},cy C C2(R) such that ¢, is odd, supp(¢,) C [~2,2], ¢, = ¢o
on [—2,2]\ [-1,1],

1
on(z) = -1 forall —1<az<——
n

1 1
on(z) = nz forall — = <z<-=-
n n
1
on(xz) =1 forall — <z <1.
n
This sequence is bounded in C.(R) since supp(¢,) C [-2,2], and |¢,| < 1. However, we have

1 2 1 1
<p.V.,gpn> = lim (2/ gpo(m)d—x + 2/ de + / ndm)
x =0 1 x 1 |zl R

n

n—oo

2 dx
=2 wo(x)— +2+2log(n) — oc.
1 xr

Therefore, we deduce that p.v.% is a distribution of order exactly 1. By introducing ¢(z) — ¢(—x),
give an alternative proof of the above results.
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The first basic property of distributions is the multiplication by smooth functions. Recall that
&(Q) = C>() equipped with the compact-open topology (which makes it a Fréchet space).

Definition 2.5.10. For all T € 2/(Q) and f € &(Q), the product S = f T defined by
(T 0) = (T,f ¢) forall g€ 7(Q)
is a distribution such that for all compact K C €2, we have
ordg (fT) < ordg (). (2.5.7)

Remark 2.5.11. That fT € 2'(Q) follows immediately since fo € 2(Q) for all (f,¢) € £(Q2) x 2(Q),
and the property of order is trivial by Leibniz formula.

Example 2.5.12. We have 2 - (p.v.1) = 1. Indeed, for all ¢ € 2(Q),

<w~ (p.vé) ,cp> - <p.v.313,xtp> = lim /R\[m] (x cp(x))i—x - /Rgo(x)d:c = (1,¢).

We saw above that p.v.% was a derivative of a Radon measure (of a function, more precisely). This
fact is general to distributions of finite support, but we will prove it below (in Theorem 2.5.32) once we
define the notion of support.

The previous example also poses the question of division of distributions. Obviously, the division by
a non-zero function is always possible, and we will concentrate on isolated zeroes. This question has
immediate applications to partial different equations of constant coefficients.

2.5.2 Division of Distributions by a Function with Isolated Singularities

Assume that d = 1. Then, the problem is reduced to the following one. Let m € N* and T € 2'(R)
(the problem is local, so we can consider distributions on the whole space). We look for a distribution
S € 2'(R) such that

S ="T.

By induction, it suffices to treat the case m = 1. The existence follows by Hahn-Banach theorem.
Indeed, if S is a solution, then for all ¢ € Z(R) such that ¢(0) = 0, we have ¢ = 27 1p € Z(R), and
S(¢) = T(v). Therefore, we define S by this relation on the hyperplane H = 2(R) N{p : ¢(0) = 0}. By
the Hahn-Banach theorem, S admits a continuous extension to 2(R), such that

zS="T.
If S; and S5 are two solution, then X = S| — S5 satisfies
zX = 0.

Therefore, X (¢) = 0 for all ¢ € H, which implies that X = ¢Jy for some ¢ € C. If m > 0, we have
X = Z ca D0y (cq € C). Therefore, all solutions differ by Dirac masses (and their derivatives) at 0.

la|<m

This approach using a weak form of axiom of choicel is not very satisfying, and we will see below the
direct method of Hadamard’s finite part to deal with radial weights.
2.5.3 Fine Properties of Distribution Spaces

In order to understand the strong topology on 3(2(Q), 2'(Y)) on 2'(Q2), we need to characterise the
bounded sets of Z(Q2). This characterisation and its proof are surprisingly easy.

tHahn-Banach theorem is strictly weaker than the axiom of choice, but Hahn-Banach and Krein-Milman theorem imply
the axiom of choice [8].
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Theorem 2.5.13. A subset B C 2(Q) is bounded in the inductive limit topology if and only if it is
contained and bounded in D () for some compact K C Q.

Proof. By definition of the inductive limit topology, any bounded set in Pk () is bounded in Z(Q).
Conversely, let B be a bounded set of 2(Q). If B ¢ P, (Q) for some compact K C 2, then for all n € N,
there exists ¢,, € B such that and z,, € Q\ Q, such that ¢, (z,) # 0. Defining £, = n~!|p,(z,)|, the
semi-norm || - ||s’{n}neN would be unbounded on B, since

1 1
— sup sup ||DYQ||y sorong—y > — T,)|=n — oo.
€ LPGB\oz|§nH elly, (\Qn) 6n|<)0n( n)l e

This concludes the proof of the theorem. O

Remark 2.5.14. This theorem permits to make precise what the convergence in 3(2(2), 2'(f2)) means.
See [13].

Theorem 2.5.15. The space 2(2) is complete.

Proof. We only show the sequential completeness (the proof would be virtually unchanged for general
completeness, but force one to introduce uniform structures and filters). Let {¢,},cy be a Cauchy
sequence. Then, for all (e, m) there exists N € N such that

lon = @mllem <1 forall m,n > N.

In particular, we deduce that D*y,, converges locally uniformly for all |a| < m towards some function
D%p, and we need only show that ¢ has compact support. Taking m = {0} we deduce that for all
67

neN?

lon(z) — pm(2)] <& forall z€Q\Q

for all m,n > N. In particular, we have |p,(z) — ¢(x)| < & for all x € Q \ Q,. Since ¢ has compact
support, we deduce that |¢(z)| < g for all x € Q\ @ for [ large enough. Therefore, ¢ has compact
support choosing if ¢(2;) # 0 for some z; € Q\ Q; the value g; = 3 |p(z;)|. O

Remark 2.5.16. The general proof works almost identically, but needs to use the notion of Cauchy
filters that will not be used elsewhere. Notice that in a topological vector space X, if {U;},; is any
neighbourhood base at 0, then a uniform structure is given by

A= {A(UZ)}zelv
where for all subset U C X, we have

AU)=X x Xn{(z,y):x—yeU}.

Continuing in this direction, we may state alternatives of the three Banach theorems in the case of
linear maps on locally convex topological vector spaces. However, in applications, we study either maps
between Sobolev-type spaces (that are Banach), or pseudo-differential operators (not introduced in these
lectures) that are outside of this setting.

We will not study in more details the the properties of 2'(Q2), and simply mention that this space is
(in a precise sense) reflexive, so that linear forms on 2'(Q2) are induced by functions in 2(Q) (see [13],
Chapter 8).

2.5.4 Differentiation of Distributions
The fundamental idea of Schwartz (1945) is to show that by duality, one can define differentiation of dis-
tributions, and that this operation is continuous with respective to either topology—weak or strong—on

7'(Q).
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Definition 2.5.17. For all multi-index o € R, and T € 2'(Q), we define DT € 2'(Q) to be the
distribution satisfying

DT (p) = (-1)1IT(D%p).
It satisfies ordi (D*T) < ordk (T) + || for all compact K C €.

The continuity of this operation for the weak topology is trivial for

IT(D*O)| < Tl 1Dl i < NPl
ol

holds for all compact subset K C €.

In early work, Schwartz had not introduced the minus sign ([36]), but the sign convention is the one
consistent with integration by parts.

Of course, if T'= f € C*(), integrating by parts, we deduce that

ey =—{r, %)= fﬁx-wde/@axvfdx,
axi 8%’ Q ’ Q '

so that 0,,T = 0,, f. Sobolev spaces, which will make for half of those lectures, are sets of distributions
whose weak derivatives belong to some LP space (see. Thinking about partial differential equation (energy
functionals), it becomes apparent why Sobolev spaces are the natural settings to solve equations, and
their good properties allows one to use (say) calculus of variation in order to build solutions.

Examples 2.5.18. Let H = 1g, be the Heaviside function. Then, we have H' = ¢y in the sense of
distributions. Indeed, for all ¢ € 2(R), we have

(H' ) = —(H,¢') = — / H(z)o! (2)dz = — / T (@)de = o(0) = (o,

We saw in the first example that for C'' functions by arcs, the usual derivative and the distributional
derivative. This is a general fact, the formula of “jumps” allows on to quantify the difference (both
quantities only differ up to Dirac masses).

Theorem 2.5.19. Let I C R an open interval, and f : I — R be a C* function by arcs, i.e. a function
such that there exists infI < ay < --- < an < supl such that fla, a,r1) fintI,ar) and fla, sup1) GTE
functions of class C. Then, we have

n—1 n

fl = Z fll(ai,ai+1) + f/]-(ian,al) + f/]-(an,supl) + Z (f/(aj_) - f/(az_)) 6aia
i=1 =1

where f'(af) = lim, f(x) forallie{l,--- ,n}.

z%ai

Proof. The proof goes exactly as in Examples 2.5.18 and is omitted. O

Remark 2.5.20. This formula has generalisations to higher dimension, but would force us to introduce
notions of differential geometry, that we consider to be outside the scope of those lectures.

The basic theorem about differentiation shows that the solution to an elliptic equation is generally
unique in %’(R9). There are deep theorems that involved Sobolev spaces—to be introduced in the next
chapter—and we will simply mention elementary results related to continuous functions and first order
derivatives.

Theorem 2.5.21. Let T € 2'(R%) be such that VT = 0. Then, there exists Co € C" such that T = Cj.
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Proof. Showing by induction that 0,,7 = 0 implies that T is independent of x;,we need only show the
result for d = 1. Assume that 77 = 0, and separating real and complex part, assume without loss of
generality that T is real-valued. For all p € Z(R), we have ¢ = ¢’ for some ¢ € Z(R) if and only if

/ p(x)dx = 0. (2.5.8)
R

Denote by H the hyperplane of such functions. Indeed, provided that (2.5.8) holds, we deduce that the
following function

belongs to 2(R) since ¢ has compact support. Conversely, if ¢ = ¢’ with ¢ € 2(R), we have

/ " o)y = o)

— 00

And since ¢ has compact support, there exists r € R such that ¥ (x) = 0 for all > r, which shows that
(2.5.8) holds in particular. Now, let 8§ € Z(R) such that

/ O(x)dx = 1.
R
For all ¢ € 2(R), we have

z/J:go—H/QDd,ZleH,
R

which implies since T = 0 that

or

This concludes the proof of the theorem. O

The theorem is also true on a simply connected domain, since the result is local. More generally, we
have the following result.

Theorem 2.5.22. Let X € C°(R%,R?) be a continuous vector-field. Assume that VT = X. Then, T is
a C! function such that VT = X classically.

Proof. We only treat the case X € C(R?) (see [35] for the general case). The condition VI = X shows
that in the distributional sense, the following identities hold

O0p; Xj = 0z, X forall 1 <i,j <d. (2.5.9)

Since VX € C°(R?), the identities (2.5.9) hold for C° functions, and we deduce by the Poincaré lemma
that there exists f € C?(R%) such that Vf = X. Therefore, we have V(T — f) = 0 in 2'(R%), which
shows that

T=f+ C_;o
for some C_"o € R O

Remark 2.5.23. This theorem immediately generalises to the case X € C*(R¢,R?) for some k € N
and 0 < « < 1, since the equations become classical, and on simply connected domains. When we
introduce Sobolev spaces, we will be able to prove a Sobolev spaces version of the Poincaré lemma.
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2.5.5 Restriction, Support, and localisation of a Distribution

Definition 2.5.24 (Restriction). Let @' C € be an open subset, and T € 2'(€2). Then, for all
p € 2(Q), the extension by 0 of ¢ to Q is an element of 2() denoted by @, and we define by duality
the restriction T € 2'(Q) by

(Tar,p) =(T,¢) forall p € 2().
Then, T € 2'(Y), and for all compact K C ', we have ordg (Tq/) < ordg (T).

The definition is consistent with the one of restriction of functions.

Definition 2.5.25. If ¥ : Q — ' is a diffeomorphism between two open sets of R?, and T € 2'(Q), we
define T o U € 2'(Q') by duality as

(ToW,p) = (T,|detd¥ o U™1) forall p € 2(Q).

Remark 2.5.26. Notice that for a function T = f € L{ _(Q), the change of variable formula shows that

loc
[ r@)eta)dn = [ e )] detaw o)ldy

The case of conformal transformations in R is one of the most important one. If 7, : R* = R 2 +— z+4a
is the translation by a € RY, we define for all T € 7'(R%)

(raTy ) = (To1a,0) = (T, 0075 ") = (T, 7—a®) -
For all rotation R € O(d), we define
(RT,p) = (T,R™"¢p),
and for all A € C\ {0}, we define
(Tr, 0) = A\ 7UT, pa1),

where -1 (z) = (A7 1(2)).

Proposition 2.5.27 (Principle of Localisation). Let Q C R? be an open subset of R%, and {Q}ier
be an open covering of Q. Suppose that {Ti};,c; € [l,c; 2'(Q) and that for all i,j € I, we have
T; % N Q; =T N Q. Then, there exists a unique distribution T € 2'(Q) such that T, = T; for all
1€ l.

Proof. Let {Qg }je J be a locally finite open covering such that Q; is relatively compact in £2, and Q; C Q
for some i € I. Then, we define the distribution T} = T;|Q} if Q; C ;. The compatibility hypothesis
shows that this is well-defined. Then, let {x; }jGJ be a partition of unity, ¢.e. such that x; € 2(Q)

for all j € J, 0 < x; < 1, supp(x;) C ] for all j € J, and ij = 1. For all p € 2(), we have
jEJ
Xjp € 2(;), which shows that if 7" as in the theorem exists, we have

T(p) =Y Tj(x;9)- (2.5.10)
jed
Therefore, T' is uniquely determined by the family {X;},.;. Conversely, if supp(p) C €, since T;[2; =
T7Q; N QY for all (i,5) € I x J, we have
Ti(e) = > Tilxse) = > Ti(x;e) = T (),
jed jed

which shows that T; = T'|€; for all ¢ € I, and concludes the proof. O

35



Corollary 2.5.28. The support of T € 2'(Q) is the complementary of the union of all open sets Q; C
such that T|Q; = 0. We denote this closed set by supp(T) C Q2. We say that T has compact support if
supp(T) is a compact subset of Q.

Remark 2.5.29. The previous Proposition 2.5.27 shows that the definition is unambiguous.

Let us list without proofs a few easy properties of the support of distributions.
Proposition 2.5.30. 1. For all a € R? and a € N, we have supp(D®4,) = {a}.
2. supp(fT) C supp(f) Nsupp(T) for all f € C°(Q) and T € 2'(Q).

Let us show that distributions with compact support, are in one-to-one correspondence with the dual
of £(Q) = C>(Q), which will justify the notation T € &”(Q).

Theorem 2.5.31. Let &'() be the dual space of &(Q) = C(Q). Then, T € &'() if and only if
T € 2'(Q) and T has compact support.

Proof. Let L be a continuous linear form on C*°(2). Then, by density of C°(£2) in C*(f2), we deduce
that L is entirely determined by its restrictions Ly on 2(f2). Since Lg is continuous, there exists a
compact set K C Q and m > 0 such that

LN < C i@l g forall feC=(Q).
In particular, we have
[Lo(@)] < Clielln i for all p € ().

Therefore, we have supp(Lg) C K, and ord(Lg) < m. Conversely, if T € 2’(2) has compact support,
and x € 2(Q) is such that x = 1 on an relatively compact open neighbourhood Q' of supp(T), then T
extends to a continuous linear form on C'*°(£2) by the formula

T(f) = T(xf) forall feC®(Q).

Furthermore, 7" has support order since ord(7") < ordg:(7)) < co by the definition of continuity in the
distribution topology. O

We can finally prove the structure theorem for distributions of finite order.

Theorem 2.5.32. Let T € 2™ () be a distribution of finite order m € N. Then, there exists Radon
measures o (o € N?) such that

T= > D%iu.

laf<m

Furthermore, if T has compact support K, for all open neighbourhood U of K we can assume that
supp(ua) C U. Conversely, any finite sum of derivatives of Radon measure is an element of 2 ™ ().

Proof. The converse statement is trivial.
By hypothesis, we deduce that for all sequence {¢n}, cy C Z(£2) such that [[D%¢n |, — 0, we
n o0
have T'(¢,) — 0. We now associate to each ¢ € Z(?) the N(d,m)-uple ® = {D%p}, -, C H(Q),
n—oo =

the space of continuous functions with compact support. The previous discussion shows that the map
® — T(yp) is a continuous linear form defined on the sub-vector spaces .# (Q)N(@™) of elements ® given
by @ = {D%p},,|<,,- Therefore, we deduce by the Hahn-Banach theorem that this linear form admits

an extension (denoted by L) on # (Q)V(4™) By the structure theorem of the dual space of # (), we
deduce that there exits Radon measures {l/a}‘algm such that

L{fobmem) = 30 /Q fadve,

lal<m
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Taking {fa}|oj<m = {D¢} o< for some ¢ € Z(Q), we deduce that

()= X [ Dopdin= 3 ((=1)lvn.s).

la]<m la|<m

which concludes the proof with 1, = (—1)1%lv,,.

We omit the part on compact support, that follows easily by the introduction of a suitable cut-off
function. O

2.6 Convolution of Distributions

2.6.1 First definitions

As previously, we want to generalise the notion of convolution to the case of distributions. Notice that
whenever f,g,h € 2(R% R), we have

tram = [ ra@n@de= [ ([ - piy) voyis

= [ 1 ([ e = n)) s = [ rta < m-na

—_~—

= | f@g+hydy = (f.(gxh)).
Rd
where $(z) = p(—x) for all p € Z(R?) and z € R?. We can rewrite this expression as follows:

(fas (gy, o(x +9))) = gy, (fz, p(z +Y))) -

Indeed, we have
(gy: p(z+y)) = /R 9(Y)e(z +y)dy,

so that by Fubini theorem

nnlapeoto+ o) = [ 56 ([ stwote + iy ao

= [ @ ([ o= ) s = [ (£ edeteta

where we made the change of variables z = x + y. The second computation is analogous.

Therefore, we want to define the convolution of two distributions 71,75 € 2'(R?) as the distribution
T = T4 « T which is the common value of (T} 4, (T, ¢(z + v))) and (Tsy, (T> 2, (x + y))). For general
distributions, (T, p(z +y)) ¢ Z2(R?), so the expression cannot be defined. However, if Ty (or T,) has
compact support, then @ — (T, o(x +y)) is a C>(R?) function, and the first duality bracket makes
sense, whilst the second duality bracket makes sense for y — (T ., p(x + y)) € Z(R?). Let us show that
both expression are equal if T7 or Ts has compact support, and let us denote them by S;(¢) and S2(p).
First assume that 77 € .@/m(Rd). Then, the structure Theorem 2.5.32 shows that there exists a family
of Radon measures {Na}m <m with compact support on R? such that

Ty = Y D%
la|<m

By linearity, it suffices to treat the case Ty = D“pu, which is equivalent to showing that S;(D%p) and
Sa2(D*¢) coincide, where T is replaced by u. Finally, we need only treat the case T} = u. We therefore
need to show that

/Rd (To,y, p(z +y)) du(z) = <T2,y, /R oz + y)du(q;)> _
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If Ty has compact support, a similar reduction shows that we can assume that 7, = v is a Radon
measure, in which case the identity S1(¢) = Sa2(¢) is nothing else than Fubini theorem. If T does not
have compact support, we let {xn}, cny C 2(R%) be a sequence such that x, = 1 on B(0,n). Then,

((nT2)ys oz +y)) — (Toy, (2 +y))

uniformly as 2 stays within a compact domain of R?. Therefore, we have

[ Aol + ) due) = [ (Bl +) dinto)

n—o00 Jpd

and since y — [5q o(z + y)du(z) € Z(RY), we also trivially have

<(XnT2)y,/Rd oz + y)du(fc)> v <T2,y7/Rd oz + y)du(w)>-

Since the equality between the left-hand sides of holds for all n € N, this concludes the proof.

Therefore, the equality is proved for (T1,Ts) € 2'(R%) x &' (R?) and (T3, T») € &' (RY) x 2'(R?). By
induction, we can define the convolution of an arbitrary finite number of distributions, provided that
their supports are all compact but one at most.

Proposition 2.6.1. For all (S,T,U) € &'(R%) x 2'(R?) x &' (RY), we have
1. S*xR=TxS5.
2. (S«T)xU=8«(TxU).
3. 0gxT =T=x6p="T.
4. D*(S*T)=D*S T = S+ D°T.

5. supp(S *T") C supp(S) + supp(7T).

Proof. We need only check the first property in the case of two Radon measures p and v on R?. Notice
that by Fubini’s theorem, we have

i) = [ ([ et rni))duw = [ et
[ et <@ = [ ([ et nat) i = @),

The proof of 2. is analogous and we omit it, while the proof of 3. is trivial.

For the proof of 4., we have in the case of two Radon measures v and v

<D“(M*V),<p>:(—1)'“‘/ ( D‘;‘%(x,y)dV(y)> du(z) = (e, (Dvy, p(z +y)))
Rd Rd
= ((u* D), ),

and we prove similarly that D*(u * v) = D*u * v. The general proof is similar.

Finally, we prove the statement on supports. Since S has compact support, the following function
y = (Sa,0(x +y))

is an element of 2(R%). Indeed, it vanishes whenever supp (z — o(z + %)) = y + supp(y) and supp(S)
have vanishing intersection. In other words, supp(y — (S.,¢(x +1y))) C supp (S) — supp (). There-
fore, (T, (Sz,¢(z+y))) vanishes provided that supp(T’) N (supp(S) — supp(y)) = @, or supp (¢) N
(supp(S) + supp(7T')) = @. Therefore, we have supp(S * T) C supp(.S) + supp(7T). O
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Remark 2.6.2. We spoke above of tensor product of distributions, and this is how Schwartz historically
(see [35], Chapitre 6) defined the convolution. However, it is not necessary to introduce this notion in
order to define the convolution, and we omit the discussion of tensor products completely.

We see in particular that D*T = D®Jg * T', so that all (linear) partial differential equations may be
seen as convolution equations. We will see in the next section a way to transform a large class of such
convolution equations to the afore-mentioned problem of division of distributions.

The reader has probably already shown that the solution of the Laplace equation Au = f (for f
sufficiently smooth) in R? (d > 2) is given by

U:Gd*f,

where G is the fundamental solution of the Laplacian, given by

1 1
- for d >3
d—2)8(d d-2 -
Gutw = | | @ DI
— log |z for d = 2,
2

where 3(d) = s#?71(S971). The usual proof using integration by parts shows that AG4 = &y, but we
will check this fact below by a different method.

2.6.2 A First Extension: Distributions of Convolutive Supports

Now, we extend the notion of convolution to the case of distributions having convolutive supports.

Definition 2.6.3 (Convolutive Supports). Let A and B be two closed subsets of R?. We say that (A, B)
is convolutive (or that A and B are convolutive) if for all 0 < R < oo, there exists p(R) < oo such that

Ax Bn{(a,d):|a+bl <R} C B(0,p(R)) x B(0, p(R)).

More generally, a family {F;},_; of closed sets is convolutive if for all subset J C I, and for all0 < R < oo,
there exists p(R) < oo such that

I1E NS @)jes

jeJ

DL

jeJ

<R C ] B, p(R))

jeJ

Proposition 2.6.4. If A and B are convolutive sets, A+ B is a closed subset of R?.

Proof. Let {xy, = a, + by}, cy C A+ B be a convergent sequence (call the limit = € R%). Then {70}, en
is bounded, and by the convolutiveness property, we deduce that both {a, }, .y and {by }, .y are bounded
sequences. Therefore, up to a subsequence, we have a, — a € Aand b, — b € B since A and B

n—oo n—oo
are closed. By unicity of the limit, we deduce that x =a+b € A+ B. QED. O

Theorem 2.6.5. For all couple of distributions S,T € P'(RY) whose supports are convolutive, and for
all sequence {xn},cy C 2(RY) such that x,, =1 on B(0,n), define for all ¢ € 2(R?)

(ST, p) = lim ((xn5) * (xnT), ) - (2.6.1)

Then, for all ¢ € P(R?), the sequence on the right-hand side of (2.6.1) is constant for n € N large
enough. We call S T the convolution of S and T, and it does not depend on the choice of the sequence

{Xn}tnen as above.

Furthermore, all properties of Proposition 2.6.1 are satisfied for this generalised convolution.
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Proof. Assume that supp(¢) C B(0, R). We will show that the sequence ((xnS) * (x»nT), ) is constant
for n large enough. If n,m > p(R), we have

(0nS) * (XnT) = (xmS) * (XmT), @)

= (((¢n = xm)S) * (xnT), ) + {(xnS) * (X = Xm)T) ) -

If the first term does not vanish, then supp(¢) N (supp ((xn — Xm)S) + supp(x»T)) # @. However, if
z € supp(¢) N (supp ((Xn — Xm)S) + supp(xnT)), then x =y + z, where |y| > n = p(R), while |z| < R
since x € supp(p) C B(0, R). However, since (y,z) € supp(S) x supp(T'), those conditions contradict
the hypothesis on convolutiveness of those those distributions.

Therefore, we see that the limit (2.6.1) defines a distribution.,Now, assume that supp(¢) and supp(S)+
supp(T') are disjoint. Then, we have a fortiori supp(¢) N (supp(xnS) + supp(x»T)) = & for all n € N,
which shows by (2.6.1) that (S« T, ¢) = 0.

The proofs of the other properties are similar, and we omit them. O]

Remark 2.6.6. The convolution product is not associative in general, as the following example shows:

(1x6))«H=0

Finally, we introduce a last extension of convolution thanks to a new class of distributions that happen
to be proto-Sobolev spaces (anticipating on the next chapter, they correspond to W—=°°). We will do
so in a new section.

2.6.3 A Second Extension: the Z],(R?) Spaces of Distributions

Definition 2.6.7. Let
D1 (RY) = C®(RY) N {f:D*f € LP(R?) for all o € N*}
We equip it with the family of semi-norm [[D*(-)||»gay where a € N4, which makes it a Fréchet space.

We also define Z(R?) = Zp.~(R?), and

BRY = BRY N {@ :D%(z) —» 0 forall ac Rd} .

Remark 2.6.8. We only define this space on R? since it will only be used for convolution and Fourier
transform, but one could define it on an arbitrary open subset Q C R<.

Theorem 2.6.9. 2(R?) is dense in Zr.»(RY) for p < oo and in B(R?).

Proof. Let f € Zur(RY), and {xn} ey C Z(R?) such that x,, = 1 on B(0,n). Then, we have for all
a € N? by Leibniz’s formula and Minkowski’s inequality

(/ Daf—D”‘(an)”dx>P<</ B (l—xn)p|Dafpdx>
R4 R4\ B(0,n)

1

+ / |DﬁXn||Daﬁf|pdx> <D fllpowa\B om)) 2 0
= (Lo S

n—oo
B#0

by dominated convergence, provided that ||Vxn||Lw(Rd) is bounded. But this is very easy to find such a
sequence, by taking a regularisation (by convolution, say) of

1 for all |z| <n
1
Pp(x) = ¢ —=|z| +2 for all n < |z| < 2n
n
0 for all |x| > 2n.
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Therefore, the proof of the theorem is complete. O

Definition 2.6.10. For 1 < p < oo, we define Z},(R%) C 2'(R?%) as the dual of 2, (R?), where
1 1

— 4+ — =1, that we equip with the weak topology. We also define #'(R?) = 2] .. (R?).

p P

Theorem 2.6.11. For1 < p < oo, the space Z1.»(R?) is reflexive, and in particular, the dual of 7}, (R?)
is Dy . Furthermore the dual of Z{,(R?) is B(R?).

We do not prove those theorems here, since they will be proved in a different setting in the next
chapter.

Theorem 2.6.12. A distribution T € 2} ,(R%) if and only if T is a finite sum of derivatives of LP
functions. Equivalently, T € 2{,(R?) if and only if for all ¢ € P(RY), the reqularised distribution T * ¢
belongs to LP(RY).

We also omit the proof.

Remark 2.6.13. Anticipating on the next chapter, we see that for 1 < p < co, we have T' € |, (R?) if
and only if there exists m € N such that T € W—"?(R?%) = (W™» (R%)). In other words,

Zi,(RY) = | WP (RY).
meN

This is why we need not prove those results here, and prove the decomposition in derivatives of LP
functions for each space W ~™P(R?), which is relatively easy. See [35] p. 199 — 205 for more details on
this general approach.

Theorem 2.6.14. 1. If T € 2{,(RY) and f € Zr«(R?), the product fT belongs to Z{.(R%) for

1 1 1
r > 1, provided that — < — + —.
r p q

1 1
2. IfSe2/,RY, T e 2{,(RY), and , + i 1 >0, then we can define the convolution product ST
and S+ T € 2{.(R?).

Proof. The existence of a convolution product in 2'(R?) follows immediately from the decomposition
of S and T into a sum of derivatives of LP and L? functions. However, since this decomposition is
not-unique, we must needs prove that the convolution is independent of the chosen decompositions.
Therefore, assume that

S= Y D%, T=Y Dg.
laf<m |Bl<n
Then, for all |a] < m and |8| < n, define
D fox DPgs = DB (f, % gg).

Since f, € LP(R?) and gg € LI(R?), we have f, * gs € L"(R?), and D f, * D?gs € 2], (R?). Therefore,
we define the convolution of S and T as

S*xT = Z DetA(f, *gg).
lee|<m
1B1<n
Since the role of S and T is symmetric, assume that we have the alternative decomposition

s= Y D

lor|<m
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Now, let

U= > D**P(flxgp).
la|<m
[B1<n

For all ¢ € 2(R?), we have

Ulp)= <fg*g,3,(—1)‘al+‘ﬁ‘mgp>: 3 <fé”§5*((,1)\a|+IB\Da+B¢>>

i e
- < S DS Gax ((—1>'ﬂD%)> = <S, L ((—1)5D%)> = (5+T,¢).
[a|<m |B]<n 1B|<n

Therefore, the definition is independent of the chosen decomposition by density of 2(R?) in 2, (R?). O

2.7 Tempered Distributions and Fourier Transform

In this section, all functions will be complex valued unless stated otherwise (which will never happen).
As previously, we want to define the Fourier transform by duality. Explicitly, for all T € 2'(R?) and
¢ € 2(RY), we want to define

where
F()(©) = 5(6) = /R playe S,

Recall the following basic facts on the Fourier transform.

Theorem 2.7.1 (Riemann-Lebesgue lemma). Let f € L'(R?). Then f € C°(R?), and

~

lim f(€) = 0. (2.7.1)

[€]—o00

The basic algebraic properties of the Fourier transform are listed below.

Proposition 2.7.2. Let f,g € L'(R?). Then, the following properties are verified.

1. For all A € C, we have

FAf+9) =27 (f) + F(9)-
2. IfmeN et |z|™f € LY(RY), then f € C™(R%,C), and for all |a| < m, we have

D) = () [ e,

R

3. If f € C™(R?,C) for somen € N, and D*f € LY(R?) for all |a| < m, then for all |a| < m, we
have

F(D*)(&) =i F (f)(€).
Theorem 2.7.3. Let f € L'(R?).
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1. (Fourier Inversion Formula) If fe LY(R%), then for all z € R, we have

_L N eix{ _ 1 g —r
@) = o [, @4t = G #(F (D))

2. (Plancherel Identity) For all f € L*(R?), we have fe L?*(R%) and

2 _ 1 7 N2
| @ = oo [ 1o (2.7.2)

3. (Convolution Property) For all f,g € L*(R?), we have
F(fxg)=F(f) F(9)- (2.7.3)
Remark 2.7.4. In other words, we have #2 = (2r)¢,Id o ¢, ot 1(z) = —=.

However, the definition cannot make sense for all distributions. Indeed, for all ¢ € 2(R%), there
exists R > 0 such that

~ _ —iz-€
3(6) /B o P

In particular, the function ¢ can be extended to a pluri-holomorphic function, and the maximum principle
implies that $ does not have compact support unless ¢ = 0. In particular, ¢ Z(R%) for all ¢ # 0, and
the expression (T, ) does not make sense in general. Therefore, we are confronted with the problem of
finding a topological vector space S C C*(R%) N L'(R?) such that 2(R%) C S, and with respect to the
Fourier inversion formula, that possesses the following invariance property: .#(S) = S. Furthermore, we
want to find a space on which the previous operation of differentiation is compatible. In other words, we
require that for all T € S’ (the dual of S), for all p € S, a € N%, the following quantities are well-defined

(F(DT), )
and
(DU(F(T)), ¢)-
Using both definitions of D* and %, we get
(F(DT),¢) = (DT, F(p)) = (-1)/*UT, D*F (p)) = (T, F(a%¢)) = (F(T),2°¢),
whilst
(D*(F(T)),¢) = (=)(F(T), D).
Combining both properties, we are led to the axioms
"D € 8 forall p €S and for all o, € N (2.7.4)

Furthermore, the stability condition .#(S) = S for Fourier transform shows that for all o, 3 € N¢, there
exists ¢ € S such that

2’ D% = F ().
In particular, the Riemann-Lebesgue lemma implies that

P D%(z) — 0. (2.7.5)

Therefore, both properties (2.7.4) and (2.7.5) lead to the definition of the following minimal space .7 (R9),
that happens to be a Fréchet space, once equipped with a natural set of semi-norms.
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Definition 2.7.5. The Schwartz space .7 (R%), or space of rapidly decreasing function, is defined as
follows:

SR = C*RHN {ga : sup |2°]|DY(x)| < oo for all (a, B) € N¥ x Nd} .
zER4

The previous discussion shows that .(R%) is the minimal space satisfying the desirable axioms of
Fourier transform—we want to take the smallest function space so that the dual space is the largest
possible. It happens to be a solution to our problem, as we will easily check.

Theorem 2.7.6. For all a, 8 € N, define the semi-norm || - 0.5 00 S (R?) such that for all p € 7 (R?),
lella,s = [l2” DY@ Lo (gay - (2.7.6)

Then, the topological vector space (- (R%), {]| - o)) is a Fréchet space, and the closure of P2(RY) for
the induced topology is . (R?).

Furthermore, the Schwartz space is stable under Fourier transform: Z (. (R)) = .7 (R?).

Proof. Step 1: Stability under Fourier transform.

We first show that .(R%) is stable under .7, since we trivially have 2(R%) C .#(R%). The inverse
Fourier formula will then show that .7 (.7 (R%)) = #(R?). Let ¢ € .#(R%). Then, for all a,3 € N4,
and we have x*DPf € L'(R?), which shows by the Riemann-Lebesgue lemma (Theorem 2.7.1) and
Proposition 2.7.2 that

18llo5 = sup [€7||DYB()] = sup [F (x*DPp)(£)]
£eRC £ER?

Now, we have for all £ € R?

|ﬂ(anﬁ<p)(§)| = ‘/ z*DP p(z)e” S dx
Rd

dx
< 22| DPop(z) | dz + |||z DP g, . / A
/3(0,1) H HL (R R4\ B(0,1) |2[24
8(d)
< a(@d) Ipllg.0 + =g 16l paszaeo = @) (I6lln + 19050200 )
where eg = (1,---,1). Finally, we get the inequality
10,5 < ) (1150 + 19015 0 2000) - (2.77)

Therefore, we have .% (. (R%)) C .#(R%), which shows as we said above that .# (. (R%)) = .7(R9),
since F 1 = (2m)"4F o

Step 2: Density of test functions in the space of Schwartz functions.

Let ¢ € ./ (R%), and {n,},cy C Z2(R?) such that 7, : RY — [0,1], 5, = 1 on B(0,n) and supp(n,) C
B(0,n + 1) for all n € N, and consider ¢,, = ,¢. Then, we have for all (p,a) € N x N¢

sup (1+ [z])P|D* (pn(z) — o(2))] < sup (=) (1 + [z])"|D%(2)]
z€RC z€B(0,n+1)\B(0,n)

+> <g> sup | D1y (2) Do ()|

B<a z€B(0,n+1)\B(0,n)
B0

< sup (14 [2)?|D%p(x)| +C Y sup (14 |2)?|D*P(a)| — 0.
2€B(0,n+1)\B(0,n) <0 z€B(0,n+1)\B(0,n) n—reo

B#0

This concludes the proof of this lemma.
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Step 3: Fréchet property.

It is very easy to show that . (R?) is a topological vector space, and since its topology is defined by a
countable family of semi-norms, it is metrisable. Finally, the Cauchy property follows mutadis mutandis
from the steps of the proof of Theorem 2.5.15 and we omit this easier proof. O

We can now move to the definition of tempered distributions.

Definition 2.7.7. The space of of tempered distributions, denoted by .#’(R?) is the dual space of the
Schwartz space .7 (R?).

Since 2(R?) is a dense subset of .7 (R9), a tempered distribution 7' € .#/(R%) can also be seen as an
element of 2’(R?), and it is defined by its values on Z(R?).

Definition 2.7.8. For all T € .#/(R%), its Fourier transform .%(T) = T is the tempered distribution
such that for all ¢ € .7 (R?), we have

(Z(T),9) = (T, F(9))-

That the Fourier transform maps .#/(R%) into .#/(R9) follows from the above discussion and the
invariance property of .#(R%) by .#. By the Fourier inversion formula, the Fourier transform is in fact
an isometry.

Examples 2.7.9. 1. We have .7 (1) = (27)%8y. Indeed, by the Fourier inversion formula, we have

FW.0) = [ 2= [ a0t = me(0) = @) H(e).

Likewise, we have

(F(680).9) = 3(0) = [ pla)e™"a = (1),

which shows that SAO =land1= (27)46¢, which is obviously consistent with the Fourier inversion
formula.

2. Likewise, computing the Fourier transform of polynomials (that are trivially tempered distribu-
tions) is easy. Fix some a € N?. Then, we have

(F (%), ) = /Rd £°@(€)dE = (2m)%il*I D6y ()
Indeed, for all z € R?, we have by integration by parts and the Fourier inversion formula

/}R EB(©e'mede =il Dy / B(&)e™de = il*IDg ((2m)%p(x)) = (2m)%il* Do (x).

Rd

Therefore, we have
9 = (2m)%ileI D6,

while

d

(F(D%0),9) = (-1 D*p(0) = (~1)*ID¢ ( [ plwpe*as )

=0
= () [ (e pla)de = (e, ),
which implies that
5“750 = glelge,

Once more, we see that those results are consistent with the Fourier inversion formula.
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1
3. Let us now compute the Fourier transform of v.p.— € .#/(R). We have by Example 2.5.12 the
x
identity

1
z-v.p.— =1
x

Let u € %'(R) such that u = v.pé. Then, recalling that jz\c% = x, we have
F(—i6p)F (u) =1=F(d).
Furthermore, by the property of Fourier transform on convolution, we have
F(=i6p)F(u) = F(—idyxu) = —i.F (0o xu') = —i F(u'),
and the previous equation becomes
—i.F () = F ().
Since .Z is an automorphisme on .#’(R%), we deduce that
W =idyg=1iH',
where H is the Heaviside function. Therefore, we have
(u—1iH) =0.
We deduce that there exists ¢ € C such that
u=1H +c.

However, since V.p.% is an odd distribution, its (inverse) Fourier transform is an odd distribution
(the proof is immediate by a change of variable), which implies that ¢ = —%, and

7 (g ) (O = gsmn(®)

The inverse Fourier transform (notice the change of sign!) shows that

7 (v.p.i) (6) = —imsgn(e).

Conversely, we have (without using tricks this time)
0 o0 —e %
(F o)) =~ [ @+ [ pe)ie = tim (— |, s [ @<§)d§> .

€

The truncation that we have made allows us to use Fubini’s theorem and get

—/__lagﬁ(ﬁ)d@r/j @(g)dfz/RsD(%) (_/_—jemmr/f eméd5>

= —21'/R<,0(x) (/j sin(x - 5)d5> = 21_/R(P(z)cos(sa:) ;COS (2) dx
=—i /]R plz) = v(=2) (cos(a;v) — cos (g)) dz.

T

Notice that for all ¢ € #(R), we have (by dominated convergence for example)

/R%W)—%O(—x) cos(ex)ds —y [ LD =) g, <p'V‘i’ Lp> '

T e—=0 Jp x

46



On the other hand, since ¥ (z) = W € Z(R), the Riemann-Lebesgue lemma shows that

T ie lz
/Rw(x) cos (E) dx = Re /Rt/)(x)e dx = 0,
which finally shows that
1
F(sgn(§)) = —2i pv.—. (2.7.8)

Therefore, we have

1
—27rsgn(€) = F2(sgn(§)) = —2i.F (p.v.x> = —2i (—imsgn(§)) = —2wsgn(&)
as the Fourier inversion formula predicts.

For other examples, refer to [13] (p. 385).
The Hilbert transform H : . (R) — .’/ (R) is defined by
1 1
O R

™ T

that is, for all x € R,

o(x —y)d

H r) = lim
(¢)(z) e 7Y

e—0

Y.

Then, the previous result and Parceval formula show that H extends to an isometry H : L?(R) — L?(R),
since

L —

H(p) = isgn(£)e,

so that
2 _i T NN 2 _i N2 g 2)2de
[ @Pds = o [ AP = 5= [ poFd = [ ot

In fact, H belongs to a general class of bounded operators that well-behaved on LP spaces, called
Calderon-Zygmund operators. They are the basic objects studied in harmonic analysis, but their study
goes beyond the scope of this course.

Application to the Laplace equation.
Let d > 2, f € .#(R%) and u € .#/(R?) such that

Then, we have

which shows that

whilst



We see that for n > 2, since the Fourier transform of a positive distribution is positive, the Fourier
transform of radial distribution is radial, and the Fourier transform of a homogenous function of degree
a > 0 (which is a tempered distribution in particular) is a homogenous distribution of degree —a — d,

we deduce that
1 Cqd
()
€17 |42
for some cg > 0. Therefore, we have

u(x) = _Cd/]R Ady‘

P

In order to compute the constant cq > 0, we integrate by parts for » > 0

A
/ U(l{i)_z dy
R4\ B(z,r) |z -yl

— # ” 7—(d—2)($—y).$—yu d—1
- /am,r) (|x I i T B “”) AW
(] _ M d—1 dyu(y) d—1

=—(d-2) /aB(g;,r) Td—ld‘%ﬂ + LB(w7r) a2 d#

(4= A (5 () = —(d— 2)8(d)ul),

r—0

where the sign is due to the negative orientation of B(z,r), and the limit follows from the continuity
of u at x, and the bound

/ auu(y) d%dfl
OB(z,r)

rd—2

< B |Vl ey —3 0.

Finally, we get for d > 3

__ 1 f)
) = G333 o T

For d = 2, we need to define the notion of (Hadamard) finite part in more generality.

Proposition 2.7.10. Letd > 1, and m > d. Then, there exists a rational fraction Q in ' and log(1/c)
such that for all ¢ € 2(RY), we have

/Rd\B(ng) |z| "™ p(x)dx = P (i, log (i) ,{Daw(o)}aeNd) + R-(¢),

where each monomial of P diverges for a suitable choice of ¢ as e — 0, and where R.(p) converges
to a limit as e — 0. Then, this limit is a distribution of finite order max {1, [m] — d}, that we denote
f.p.|z|~™ (where “f.p.” stands for finite part).

Remark 2.7.11. This process of renormalisation has a fundamental importance in physics (see [41] and
[2], [3] for mathematical applications of those ideas).

Proof. Tt follows immediately from the Taylor formula. By symmetry, all non-even polynomials in the

Taylor expansion of ¢ have zero integral. Furthermore, since ¢ has compact support, there exists R > 0
such that

/ e e(e)de = / ()
R4\ B(0,¢) Br\B:(0)

1
= > jpw(())/ Lde/ O(|z|d1Hm=Imy,
ol Br\B.(0) 17| Br\B,(0)

le|<[m]—d
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Then, we see that the last term in the right-hand side of the last equation is bounded as ¢ — 0. Now,
using polar coordinates, we have

% R 1 _
Sdr= | yeda L) dr.
Br\B.(0) [z[™ . rmmd=lalt Sd-1

If some «; is odd, then by symmetry, we have

adai-l = .
/Sd—l y

Otherwise, if o = 23 € (2N)¢, then

d
/ yad%dfl _ / H |yj|2ﬂjd%d71 _ F(ﬂ)
gd—1 gd—1 i

To compute this integral, we use a trick of Federer ([15], 3.2.13). Recall that for all z € CN{z : Re () > 1},
the Gamma function is defined by

[(z) = / t*~tetdt.
0
Now, making the change of variable t = y?, we deduce that
0 R

Therefore, we deduce by the Fubini theorem and polar coordinates that

d d oo
1 2 b _ 4 Lq 2
L'(z)) Z/d [ [ ly;[* e dfdy:/d ATyt 1(?4)/ r?2i=i s e dr
R4 * Sd—1 7% 0
j=1 Jj=1

d
Jj=

1
1 d d
sy / I] 1o, 2ot (y).
2 le Sd—ljzl

Therefore, we have

. ,
zj— — =1
| =tare) = 22— (2.7.9)
=1
J P2

In particular, we deduce that

F(B) = -
L (18] +3) T (\a|2+d>
Finally, we have provided that m ¢ N
1 a
Z ﬁDa‘P(O)/ . Lmdx
ol <m)—a & Br\B.(0) 17|
d
100 (*57)
N j=1 1 1 1 N
— Z al T (lol+d m—d— |a <Em—d—a| Rm—d—la) D%p(0).
la|<[m]—d 3
ae(2N)?
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For m € N and |a| = m — d, we have

d
a; +1
21l (=2
[ (*57)
Jj=1

1 i R

—Dago(O)/ ——dx = — — log () D“p(0).

al Br\B.(0) 2™ al r(3) €
Therefore, the polynomials are given by the formulae above, and the claim on the order follows immedi-
ately from those explicit formulae. O

In the case d = 2 and m = 2, we have

/ ola) , _ / 2(0) +0(al)
R2\B(0,¢) || Br\B:(0) |z[?

= aelog (1) ¢0) 2 tog mypo)+ [ A

Therefore, we deduce that for all ¢ € Z(R?), we have

1 : o(z) 1
f.p.—=, >:hm / dx — 27 log () 0)].
(e m( B0 9P :) 0

In particular, we have

_ 1 L o) . (1> 5
<J (f.p.|x|2> ,<p> = lim (/RQ\B(()@ P d¢ —2mlog | - sa(o)>

. ?() <1>
=1 22 dE — 27 ] - d.
50 /Bl\B(o,e) €] <~ 2mlog 3 /]R(p(x) v

To compute the Fourier transform of %, the direct approach is impracticable. However, since this
distribution is positive and radial, its Fourier transform is also radial and can easily be computed by
an approximating method. Indeed, the Fourier transform is a continuous map .#’(R?) — .#/(R%). In
particular, if a sequence {T},}, oy C -/ (R?) converges towards a tempered distribution T’ € . (R?), we
have

F(T,) — F(T).

n—roo

Notice that the sequence |$|+_E diverges in .(R?) as € — 0, so we need to proceed in a different way.
However, in dimension d = 2, using the link of harmonic functions and holomorphic functions, we easily
see that the Green’s function is given by G(z) = 5= log |z|. In particular, we must show that the inverse
Fourier transform of —f .p.ﬁ is (up to constant terms) log |z, or, equivalently, that the Fourier transform

of log |z| is (up to Dirac masses at 0) —2x f pﬁ We first compute the Fourier transform of functions
|z|* in R? for o € C non-singular (the meaning of this word will be clarified later).

First assume that —d < o < 0. Then, since |z|® is a radial positive function of degree «, which implies

that its Fourier transform is a radial positive distribution of degree —d —«. For |a| < > lz|* € 2. (R?),
which implies that its Fourier transform is a function. The above properties shows that there exists
co € R such that

Ca

Z (1)) = i

To compute the constant ¢, > 0, we use a trick due to Deny (see [35]). Recall that for all 8 > 0, we have

g(e—ﬁ\zlz) = (;) : e*%,
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Therefore, using the Parceval formula with § = %, we find that

. 2 2
|z|aef%dx - G |§|7d7°‘67%d§.
Rd (27)% Jra

The integral on the left-hand side converges for o > —d, and the one of the right-hand side for —d —a >
—d, i.e. for a < 0. Therefore, both integral converge as expected. Now, using polar coordinates, we
deduce that

|2 o0 r2 % oy et
x| 2 dx = 8(d / ret e dr = pld / AN
/Rd| | (@) 0 @ 0 . vat
:2%#45@%/ fﬁ%tﬁ—aﬁylF<a;d>5u%

0

by making the change of variable

dt
r=v2t = dr =

9

Therefore, replacing a by —a — d, we get
—d—a _ﬁ = _1 «
d§& =2 r(—— d
[ tertee Fag = 2% 0w (=) sta),

which finally implies that

and

T (etd
L) 1 d (2.7.10)

a a __ ga+d
F (|2]*) (€) =27 T (—%) Jgfe+d )

Exchanging « into —a — d, we see that (2.7.10) is true for all —d < « < 0. Furthermore, by analytic
continuation, this formula is also true for 0 > Re () > —d, and extends outside of poles of the two
Gamma functions to all values a € C, as long as one replaces the functions by their principal values.
For poles of T', the regularisation is more complicated, and we will (refer to [35]) first treat the case of
interest of @ = d = 2.

Now, we will first compute the Fourier transform of log |z|, which will en passant give us an approx-
imation of f.p.ﬁ, that could also be found directly.

First, notice that for all z € R?\ {0}, we have
1 =lime " (1—[2|7).
og x| = lim = (1~ fa| )
Therefore, we also get
e 1 — |z|7%) — log |z| in #'(R?).
e—0

Now, recalling Examples 2.7.9 1), we get

r'(s)

ST

F (671 (1 . |:C‘76)) _ 571 ((27{_)250 o 227571,11 (1 — %) €|2+e> )

Recall the following Taylor and Laurent expansions:
[(z)=1-7(z = 1)+ 0((z - 1)?)

P =1 7 +0()

o1



where + is the Euler constant. Therefore, we have

1+ e+ 0(e?)
2(1—Ze+0(e?))
=2me (1+ (v —log(2))e + O(?))

-3

22—
r(s)

= 4 (1 —clog(2) + O(c?))

Since I'(z) = 2 + O(1) as z = 0, and I'(1) = 1, we get

ww\ﬂ 2t = 2me (14 (v — log(2))e + O(e?)) |¢|7T=.

r'(s)

Notice that for all ¢ € Z(R?,R), we have (provided that supp(¢) C B(0, R) for some R > 0
(

/ @(Q@de:/ (on_)gdwr/ de_zwliw(oﬂ/ de.
Re || B(O,R) 17| r2 |7 B(0,R) ||

Therefore, we have

2276

(7 (2nt — (14 0N ) o) =2t p0) - [ A2,
€ B(0,R) ||

- 25y ~ 52 R6(0) + 0(2) | 22) = 200) 1 4 0(e)p(0)

B(0,R) ||

—2m log(R)p(0) — /B o de —2m(y — log(2))¢(0).

8—>

(i e) =i (/W(o , e —mi (5 9”“”)
= (/BR\B ©) |5'E Rt og <i> MO))

= lim / #l0) —2mlog (1> +/ (@) —¢(0) _;0(0) dx
=0\ JBRr\B.(0) |z[2 € Br\B:(0) |z|

= 27 log(R)¢(0) + /B _ ‘p(x)w_'f(o)d%

Since

we deduce that

7 (log [x])(€) = =27 f.p. |£‘2

Conversely, the previous discussion shows that

1 o 1,

Using formula (2.7.10), we get

2 —v+0()

1+ 3e+0(e?) €l

7 (1) () = 22n ) gyl =+ elog) + 0(E)

o= (-3

27r(1 + (log(2) — 7)e + O(e2)) €] =

First, we trivially have €|¢|~¢ — 0 in ./ (R2), and since y = 1, we have
E—

F (e — Z00) = 2 (67 = 1) + 2mog(@) - DIel~* + O(e)el

|{E|2 €
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— —2mlog|¢| - 2m(y —log(2)) in S (R?). (2.7.12)

Notice that since F2(log |z|) = (27)%log |z|, formula (2.7.11) implies that

(2n)* log |¢] = —2n.7 (fppj) ~(@2n)(7  log(2)),

or
1
F (f.p.|x2> = —2mlog |¢| — 27 (y — log(2)),

which is indeed the formula given by (2.7.12). Notice that the previous computations show that

1 1
Alog x| = A <§ (—27Tf.p |x|2) + (v — log(2))60>
2 - .

1 1

p~> —(v- log(2))x|25o>
(L)

x|?
We recover the classical formula

uw) = 5= [ ogla 1)y,

for the solution of the equation Au = f in R? (for f € ./ (R%)).

We saw that computing Fourier transforms of distributions may be rather challenging. However,
there is an easy way in the case of distributions with compact support. Let & (R%) c C(R9) be the
space of polynomial growth functions, 4.e. such that for all ¢ € @;(R?), and for all a € N, there exists
m = m(p,a) € N such that (1+ |z|)"" D% € L*(R).

Proposition 2.7.12. Let T € &'(R?). Then, Te On(RY), and for all € € RY, we have

T(€) = (T,x — e,

Proof. Since T has compact support, and z + e~ ¢ € &(RY) = C°(R?), we deduce that the function
P(€) = (T, z + e ¢) is well-defined and continuous in . Furthermore, by the derivation theorem for
distributions depending on a parameter, ) € C°°(R9), and for all @ € N%, we have

Dp(&) = (T, (—i)l*la@e™mt)

Therefore, if K ¢ R? is a compact set containing the support of T, and T has order m € N, we deduce
that

D) <C sup  |[DF (%) < Call+ €)™
z€K,|B|<m

Using the theorem of integration under the bracket, we deduce that

_ - —ix-& d — - —ix-& d _ i 3 — A7 ,
oo = [ (TS de = (T, [ e otepte) = (1,00 = (T.)
which shows that T’ = 1. O

Finally, we prove in a rather general setting the exchange formula between convolution and Fourier
transforms.

Theorem 2.7.13. If S € &' (R?) and T € .#'(RY), then the following formula holds:

F(S+T) = F(S)F(T). (2.7.13)
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Proof. Notice that the product makes sense in .#/(R%) since .#(S) has a polynomial growth at infin-
ity thanks to Proposition 2.7.12. Using the structure Theorem 2.5.32, and the identity .#(D*U) =
(=1)leleaz(U) for all U € .#/(R?), we need only prove this formula for S = p, where p is a Radon
measure. Let {¢n}, oy € 7 (RY) be a sequence such that ¢,, — T in the weak topology. Then, for all

n—oo
n € N, we classically have

F(u*on) = F ()T (pn).

Furthermore, since p has compact support, the formula
(1 * o, ¢) = <<Pm# * ¢>

shows that p* ¢, converges to p*T = ST in .’ (R%). Therefore, we obtain formula (2.7.13) by taking
n — 0. O

2.8 Appendix

Let us compute the Fourier transform of log|z| in R? for any d > 1. As previously, we have
log |z| = lim = (1—|z]79)
e—=0¢ ’

Now, we have

d_ ¢
(i 1 — |z~ E ) = é ((27T)d50 — 2d_57rgr%(g)2)|§|—d+s>
dy _ 17 (d 2
- (Q”)d‘so -1 clog(2) o) ) 2B srd*g)
' (3)

_(277) d—1,_4¢ —d+e d g, v 1 _ —d+e
= 5o — 2 7r1"(>|§| te 4297 (2 2T () log(2)>f| e

Let ¢ € 2(R?) and R > 0 such that supp(p) C B(0, R). Then, using polar coordinates ([15] 3.2.13)

- - dzx e(x) — ¢(0)
(el = [ e =) [ g [ DO,
Br\B:(0) Br\B:(0) |x|d € Br\B.(0) |Z‘|d €

- @R%(OH/ pla) — o0 (2.8.1)

B0 lliE

where we wrote 3(d) = #971(S971). Since the right-hand side of (2.8.1) is bounded as ¢ — 0, we
deduce that

(elz[7%,0) — B(d)¢(0) = (B(d)do, #)

i.e.

lime|z| =4 = B(d)dp in .#'(RY).

Recall by the previous computation (take (2.7.9) with z; = 1 for all 1 < j < d) that

Bld) = 1817 =

Therefore, we have for all ¢ € 2(R?)

<(27r)d5 9d=1,4T (d) €| <p> _ (27r)d@ g -

3
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_2d—1ﬂ_%/ ¢(z) ;@(O)dx
Br\B.(0) |z[%F

1- Re -
= (27T)d7R ©(0) — 2d717r%/ plz) — 0(0) d}:(o) dx
€ Bgr\B-(0) ||

— 1
— —(2m)%log(R) — 24-17% / Mdz = —2d717'('%f.p.7d.
£=0 Br\B.(0) || |

Finally, we get

vl

)
)

(2 log(2) — v+

d 1 9d+1 d 1T
F (log |z]) (€) = _Qd_lﬂf.p.w = (;)T <_’2Y : F((
2

)
_ _gd-2p (g) B(d) f.p.ﬁ + ;2(%

and we check that this formula coincide with the previous one for d = 2 since I'(1) = 1 and ITV(1) = —~.
We also get

+ 10g(2)> (50

[N]jSH

I’ (
r

(SIS
~—

) 80, (2.8.2)

—~
ol
~—

™ d (5
(2m)log [€] = _od-1.% <f'p'|xl|d> &) + 1(?(3) <2 log(2) — v + 11: ((;))> )

or

d

1 d 27z I’ (¢
F <f-P~|x|d> (§) = —2m> log|¢] + @ <2log(2) -7+ (g)

r(d
=T (;Z) B(d) log |z| + B(d) (2 log(2) — v+ a (5)

> . (2.8.3)

We will also check that directly, using the formula

1 A(d) L 2
|x|d—6 — ?(50 Ej) pr m 5” (R )

Indeed, we have for all ¢ € Z(R?) such that supp(p) C B(0, R),

1 d x d
e

o.R) |z
:/ <P(do_) da:+/ o() ;_@(O)dx_ ﬂ(d)gp(())
B(O,R) |T|*F BO,R) |T[97F €

= /OR rd% </Sd1 @(O)d%d1> rdr + /B(o,R) w(ﬁlﬁ_f(o) dx — B(Ed)ga(o)

_ ® dr p(x) — ¢(0)
= Ad#0) /o ri=e o /B(O,R) S

a2
) ﬁ(d) Res_ 1@(0) * /B(o R) S0(3:;)1:|;—f(0) dx — B(Ed)so(o)

p(x) —p(0) RS
— B(d) log(R)(0) + /B(O,R) ———dx = <p.f. I|d,<p> ,

e—0

since

/ s@(rfd) d — / w(Od) n / p(x) _;P(O) dx
R4\ B(0,¢) |z Br\B-(0) |z| R4\ B(0,¢) |z

- 1 o M x
_ 8(d) log (€> £(0) + B(d) log(R)(0) +/B(07R) dz.

55



Now, we have by (2.7.10)

|x|d75 e T (d;s) |§|5 €
. 275
Now, recalling that §(d) I (@) we deduce that
2
4 T(5) 4 2 _y+0(e)
262 22 = (1+¢elog(2) + O(eH))n2
F(%9) r(%)—;r%s) e

.o T(5) 1 B _ B, - I (9) ) (o
2° T e e (&7 = 1) + B(d) <2log(2)—v+r(g)>|€
(%)
Q)—B(d)loglﬁlw’(d) 210g(2)—7+r(%) .

Notice that for d = 1, and for all ¢ € Z(R) such that supp(p) C [—R, R], we have

R J—
/ pla) . _2/ @(O)der/ ) —¢(0) .
R\[—e,e] |7 e T (= R,—e]Ule,R] |z

B 1 M x
=2 log <6> ¢(0) + 2 log(R) (0) + /[R,E]u[e,R] || "

Therefore, we have

(ine) =2, T2 (1) o)

— 2 log(R) (0) + [ 1; de.
We have
et [ ([ o) [ ([0
= /ORw (t)log <R) dt
. / " (0 log 11t — 1og(B)p(0),
whilst

/0 Mdm:/o ¢’ (t) log |t|dt — log(R)p(0),
-R

-R ||

Therefore, we deduce that
0

1 o0
<f-p-|x,s0> = —/0 ' (t) log\tldt+/ ¢ (t)log|tldt = — (sgn(z) log |z, ¢")

— 00

_ <ch (segn(x) 1ogx|),<p>,
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which shows that

1 d
fp.—=—(s 1 2.8.4
b7 = 75 Gem(o)log o) (2.84)
whilst
1 d
pv._ = (log|z|) . (2.8.5)

Remark 2.8.1. Notice that for any L] _ function u in ./ (R?) whose Fourier transform is a L] _ function
(or a finite part or principal value function), its Fourier transform is given for all non-singular values by

the limit

lim ey (x)da.
e—0 B1(0)

However, this formula is of almost none practical use, even for u(x) = log|z|. What are the needed
algebraic transformations that would allow one to make appear the Euler constant v7 Therefore, we see
that the idea of Taylor expansions and limits is the most efficient way to compute Fourier transforms of
rather complicated functions.
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Chapter 3

Sobolev Spaces

Let 2 be an open set of R? for some d > 1, that we choose connected for convenience.

3.1 Definition and Basic Properties

Definition 3.1.1. Let m € Nand 1 < p < oo. A function u :  — R belongs to the Sobolev
space W™P(Q) if and only if for all |@| < m, we have D% € LP(Q). If p = 2, we commonly write
Wm2(Q) = H™(Q). We equip W™P(2) with the following norm

lullvnniy = Y ID%Ulpogey - (3.1.1)

la|<m

Theorem 3.1.2. The space W™P(Q)) is a Banach space. The space WP () is reflexive for 1 < p < oo
and separable for 1 < p < oo. The space H™(Q) is a separable Hilbert space.

Proof. Step 1. WP is a Banach space.

Let {un}, ey € WP(Q) be a Cauchy sequence. Since LP(€2) is a Banach space, there exists u € LP(Q)
and for all 0 < |a| < m, there exists u, € LP(Q2) such that w, — w and D%u,, — wu,. Now, by

n—oo n—oo

Holder’s inequality, for all ¢ € 2(Q), we have
[t @) = (21,0 < Nl — ullg ey Il oy — O

Therefore, u,, — u in the distributional sense, and since derivation is continuous under o(2(2), 2'(2)),
n— oo
we deduce that u, = D®u for all |o| < m, which concludes the proof.
Step 2. Other properties.

We have an isometry WP (Q) — LP(Q)V(4™) given by the natural map u {D%u} 4 < Where
N(d,m) = card(N? N {a : |a| < m}.

In particular, W™P(Q) is a closed space of LP(Q)N(@™) which implies the claims on reflexivity and
separability. O

Remark 3.1.3. There are many generalisations of Sobolev spaces, using more complicated norms or
weaker notions than functions. We will not list them all, but let us nevertheless mention the important
class of function of bounded variations, commonly called BV functions, that are L' functions whose
distributional derivative is a Radon measure. Those functions have applications to the study of minimal
surfaces, and we send to Giusti’s monograph for more details ([18]).
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Theorem 3.1.4. Let u € W™P(Q), with 1 < p < co. Then, there exists a sequence {u,}, oy C Z(RY)
such that

l|r — u”LP(Q) n::o 0 i1
1D (= W)y —2 for all Q' cc Q. (3-12)
n oo

Proof. Let {pn},cn C 2(R?) be an approximation of unity, i.e. a non-negative function with integral
1, support included in B(0, 1), and such that p, — o in Z'(R%). Let v, = p, * (ulg). Then, the
n—oo

‘n

classical results of convolution show that
[un —ulallLrg) —2 0,

which shows the first part of (3.1.2). Now, fix some relatively compact open subset ' of 2, and let
X € 2(Q) such that x =1 on an open neighbourhood of €. Then, for n € N large enough, we have

Pn * (XU') = Pn * (U 1(2)
Indeed, we have
supp (pn * (x 1) — pn * (u1q)) = supp(pn * (Lo — x)u)) C supp(pn) + supp(lo — x) C 2\ &

for n € N large enough. Indeed, supp (1o—x) C 2\’ which is an open set, and since supp (p,,) C B(0, %),
for n large enough, we also have

1 _
B (O, n) +supp(lg —x) C Q\ .
Now, we have by Proposition 2.6.1
D*(p,, * (xu)) = pn * (wD*x + x D)  in Z'(R?).
In particular, we have

D% (v = W)lLo @y =2 O

n—oo

Finally, if n € C*°(Q) is such that n(t) = 1 for ¢ <1 and n(t) = 0 for ¢t > 2, defining n,(z) = n (|x>’
n

the sequence {u, = 0, v, } has the required properties. O

neN

Remark 3.1.5. More generally, the Meyers-Serrin theorem shows that for all w € W™ P(€), there exists
{tn},eny € WTP(Q) N C*(Q) such that u,, — uwin W™P(Q).
n—oo

3.2 Basic Properties of Sobolev functions

We prove two propositions on the composition and change of variable.

Proposition 3.2.1 (Composition of Sobolev functions). Let 1 < p < oo, and G € C1(R) N Lip(R) such
that G(0) = 0. Then, for all u € WP(Q), we have G ou € WHP(Q), V(G ou) = G'(v)Vu, and

1G ol < Lin(@) llullyengo -

Proof. If L = Lip(G), we have by definition |G(z)| = |G(z) — G(0)| < L|z| for all z € Q. Therefore, we
have |G(u)| < L|u| and

HG(U)HLp(Q) <L ”uHLP(Q) :
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Now, let us show that V(G ou) = G'(u)Vu. Let {u,}, oy C Z2(R?) such that

Up — U in LP(Q)
n— oo

Vu, — Vu in LP(QY) for all Q' cc Q.
n—oo
For all ¢ € 2(Q,R%), and for all n € N, we have by Stokes theorem

/ (Gouy)divpdr = — [ G'(u,)Vuy, o pdu.
Q Q

As G(up) — G(u) in LP(Q) and G’ (u,)Vu, — G'(u)Vu in LP(supp(p) + B(0,¢)) for € > 0 small
enough, we deduce that in the limit
/ (Gou)divypdr = 7/ G'(u)Vu - ¢ dx.
Q Q

For p = oo, we apply the previous argument on Q' = supp(p) + B(0,¢), and notice that u € WhP(Q)
for all p < oco. O

Remark 3.2.2. More generally, the result would hold for a Lipschitzian function.

Proposition 3.2.3 (Change of variable). Let ® : U — V be a Ct-diffeomorphism such that Jac(®) €
L>(U) and Jac(®~t) € L*°(V). Then, for all u € WYP(V), we have uo ® € WLP(U) and for all
1 <1 <d, we have

0z, (uo @)(y) = Vu(P(y)) - 0z, 2(y).
while
fluo <I>||WLP(U) <CO(®) ||UHW1,p(v) .

Proof. The proof is similar and we omit it. O

3.3 Extension Operator

A lot of properties of Sobolev spaces are easier to prove for the whole space. If Q # R?, an extension
operator is a continuous linear map E : W™P(Q) — W™P(R?), such that E(u)lq = u for all u €
Wm™P(Q). Those extension operators do not exist for all domains, and we will treat the simple case of
C' open sets (there are many generalisations of this result, see [1]).

The notion of manifolds with boundary will be relevant in this chapter, so we identify R? with
R~ x R, and write z = (z/,24) € R?"! x R those coordinates.

]R‘_f_ =RIN{(2',xq) : g > 0}
R = 9RL =R x {0}.

Definition 3.3.1. We say that an open subset 2 C R? is of class C™—or is a C™ domain—if  is a
C' manifold with boundary. Explicitly, for all € 94, there exists » > 0 and a C™ diffeomorphism
¢ : R? — B(xz,r) such that p(RY) = QN B(z,r), and p(ORY) = QN B(z,r).

Let us start by a simple lemma of extension by reflection. By induction, we need only prove the case
of derivatives of first order, and we will therefore restrict to this case in the rest of this section.

Lemma 3.3.2 (Extension Lemma). Let u € W'P(R%), and u, : RY — C defined by

(@) w(z’, zq) for all g >0
Uy () =
w(@',—xq)  for all zq <0.

Then, u, € WHP(RY), and
HU*HLp(Q) =2 HUHLP(Q) ) ||vu*||LP(Q) =2 HVUHLP(Q) :

61



Proof. First assume that u € C*°(R%), and fix some ¢ € Z(R?). Let {0,},cy C C(R) be an even
function such that #,, =1 on R\ [, 1] and supp(f,,) = R\ [~ 5=, 5-]. Furthermore, by approximating

a piece-wise linear function, we can assume that |0/,| < 4n. Letting x,(7) = 0,,(z4), for all ¢ € Z(R?)
and for all 1 < <d—1, we have

| uonupide = [ udn Gl + ) da,

RY

where ¢*(x) = p(x, —x4), while

/]Rd aa:cd (Xn@)dz - /d uaxd (X"(QD - SO*)) dr.

Rg

Then, we have for all 1 <i<d—1

J.

+

UXn O, (0 + ") dv = / U0z, (Xn (0 +¢"))dr = —/Rd (0 + ©x) Xn Oz, udx

d
RY +

= —/d © Xn Oz, UsdT.
R

+

Letting n — oo, we deduce that

/u@xicpdx:—/ © Oy, Uy dz,
Rd R

while

J

uxnﬁu(s@—so*))dw:/d uxnazd(xn(so—so*))dx—/ U (9 — 9" )0z, Xn dT

¢ R¢ R
= —/ xn(w—w*)azdudx—/ u(p — 9")0z,Xn d.
R RS

Now, we have |p(z, za) — ¢(2', —24)| < 2([02,¢1, &) |Tal = Clzal, so that

/}R U (p — @*)OpyXn dv

d
+

</ Clulfoal |, ()l < 2C [ juldz — 0,
{O<md<ﬁ} {O<md<ﬁ} nTreo

where we used |6/,| < 4n. Therefore, we have

B s = O u(x’ 2q) for all z4 >0
s — Oy, u(x’, —d) for all z4 <0,

which concludes the proof of the lemma. O

Using local charts, the obtention of a continuous extension operator is rather straightforward.

Theorem 3.3.3. Let Q be a C™ domain of R® with a bounded boundary. Then, there exists a continuous
extension operator T : W™P(Q) — W™P(R?) such that for all u € W™P(Q),

1. TulQ) = u,
2. [[Tullypgay < Cllullpeq)
3. ”TUHWP(]Rd) <C HUHWP(Q)'
where the constant C' depends only on €.
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Proof. As previously, by induction, we need only treat the case m = 1. Since 0f is compact, there exists
finitely many points x1,- - ,z, € 9 such that

o0 C CJ B(J?Z‘,’/‘i),

i=1
and C? diffeomorphisms ¢; : R — B(z;,7;) such that p(R%) = QNB(x;, ;) and ¢;(0RY) = 0QNB(x, )
(1 <4 <m). Then, if o, X1, - , X is a partition of unity associated to R\ 9Q, B(x1,71), ..., B(Zn,7n),

we write
n n
i=0 i=0

We extend ug by 0 and write u§ = up 1g. As supp(xo) C R?\ 99, ug has compact support on €2, and
therefore extends to R? as an element of W1P(R?). Furthermore, we have

0z, up = 6o (83511,60) 1o+ (8%90)11 1q. (3.3.1)
For all 1 < i < d, we have V0; € L™(R?) since 6; € Z(R?). Therefore, the identity

=0

shows that
n
Voo =—» Vb € L*(R?),
i=1
and by
1905l gy < Nollogey + V80l Low ey [Vl gy < (14 1900l ) Nl (33:2)

Now, fix some 1 < i < n, and let v; = uo <,D|Ri : R‘i — C. An immediate argument by density shows
that v; € WHP(R4), and that

Vv; =Ve - Vu; 0.
Extend v; by reflection to a map v : RY = C using Lemma 3.3.2, and let w; = v o gp_l : B(ay, ;) — C.
Then, the previous comment on compositions shows that
lwillwir (B, < Clullwie@nba,r)) -

Finally, setting u} = x; w; 1o yields the following controlled extension:

This concludes the proof of the theorem. O

Remark 3.3.4. The theorem holds under milder hypotheses; a strong local Lipschitzian condition (see
[1], Theorem 5.24) suffices by virtue of Stein Extension Theorem.

3.4 Sobolev Embedding Theorem

3.4.1 Super-Critical Case

As we mentioned previously, the Sobolev inequality shows that a distribution u such that Vu € LP(R?) is
in fact a locally LY function for some exponent ¢ > 1. Assuming that u belongs to some L" space, we get
a global estimate. In particular, the Sobolev inequality is particularly easy to state for WP functions.
The argument generalises to W™ P spaces, and once more, we need only look at the case m = 1 to
deduce more general Sobolev inequalities. The results depend on the relation between 1 < p < co and
the ambient dimension d.
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Theorem 3.4.1 (Sobolev). Assume that d > 2, and let 1 < p < d. Then, we have a continuous
embedding WP (R?) — LP" (R?), where

For d =1, for all interval I C R, we have a continuous embedding WP (I) — C°(I), and
||UHL<>O(1) <C(I) ||U||W1,p(1) .

Proof. Part 1. Case d > 2. We first assume that p = 1. For all u € Z(R?), we have for all 1 <i < d by
the triangle inequality

z;
|U(.’L’)‘ = ’/ a$iu(xl7'” s Li—1,Y, Ti41," " ,$d)dy
— 00
S/\axiu@chm Y Tirsse o za)ldy = F(E),
R

where T; = (21, ,%i_1,%ip1, - ,2q) € R1. Now, we use the following straightforward lemma.

Lemma 3.4.2. Let f1, -+, fs € LY"Y(RIY), and define

d
f@)=T] 1&)
i=1
Then, f € LY(R?), and
d
”fHLl(Rd) < H Hfi”Ld*l(Rd—l) . (3.4.1)
i=1

Proof. The case d = 2 simply corresponds to Fubini’s theorem:

[ 1@l lderdes = Dilyssy Dol

Now, assume that the results holds for 2 < i < d — 1. Fixing x4, we have by Holder’s inequality

d—1 =1
o d—1
/ (@ 2a)lde’ < | fallpas o, (/ Il|f1($i)d2dx'> |
Rd—1 Ri-1 -5

Applying the induction hypothesis to | fl\%, - fd_1|%, we deduce that

d—1

d—2
d—1 a-1
PN,
(/Rd H |fu(@i)] =2 dx’) < H ||fi||Ld—1(Rd—2) (za),
i=1 i=1

and

d—1

/]Rdfl |f(xl,17d)\d93/ < ||deLd—1(Rd—1) H Hfi”Ld*l(Rd*?) (za).

i=1
Now, integrating in x4, the generalised Holder’s inequality shows that

d—

d—1 d—1 1
[ T lscs sy ol < TT [ iaesaosy @y = TT 1 asy
i=1 i=1 1

1=

which concludes the proof of the lemma. O
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Therefore, we have

d
w1 <[] @)=
i=1

which shows by the lemma that

v
R4

We finally deduce that

(3.4.2)

- H ||fl||L1(Rd 1) H ||(r“)wlu

Ll(]Rd)

Ld—1(Rd-1)

d 1
”u”Lﬁ(Rd) < H ||axiu‘|ﬁvl(Rd) = ”vu”Ll(Rd) :
i=1

For a general exponent 1 < p < d, fix some ¢ > 1 to be determined later, and apply (3.4.2) to |u|t~lu.
We get
1
Il gy < tH el B s gy <t eallbemsy H 100, ull ) - (3.4.3)

td

Choosing ¢t > 1 such that -1 p'(t—1), we get

cpd-1)
||U||Lp Rd) =gz H HaxzuHLp(]Rd)

Using the density of Z(R?) in W1?(R9) and Fatou lemma, we obtain the general proof.

Part 2. Now, we treat the case d = 1, and first establish an elementary lemma.

Lemma 3.4.3. Let g € L{ (I), and fix some zo € I. Define

Then, we have f € C°(I), and f' = g in 2'(I).

Proof. The continuity follows from the classical theorems of continuous dependence of the Lebesgue
integral (one can use the dominated convergence theorem for example). Now, for all ¢ € 2'(I), we have
by Fubini’s theorem

/f dz-/(/ ()dy> o' (z)dz
sup [
/f[/ 1{x<y<mo}dmdy+/ / )1 {zy<y<aydady
sup I
- _/ (/f ol )1{z§y§fo}d"”> 9(y>dy+/ </ w’(x)l{xogysx}dx> 9(y)dy
1 \Jint1 1\ U

= —/I (/myfld(w)dx> g(y)dy+/1 </ysuplso’(w)> 9(y)dy = —/Iw(y)g(y)dy,

where we used that ¢ has compact support in I. Therefore, we have in the distributional sense [/ = g
in 2'(I) as claimed. O
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Thanks to the lemma and Theorem 2.5.21, we deduce that for all u € WP (I) and for all z¢ € I, we
have

) —u(eo) = [ /).

Zo

Provided that I = R and u € 2(R), we obtain similarly the formula

() fu(z) P = / pu () |u(z) P dz,
so that by Hoélder’s inequality
(@) < plle sy Il ey

so that
1
||UHL°°(R) <p* HUHWLP(R) :
The general result follows by density of Z(R) in W1P(R), and generalises to an arbitrary interval I
thanks to the Extension Theorem 3.3.3. O
Recall the following elementary interpolation result.

Lemma 3.4.4. Let (X, u) be a measured space, 1 < p < q < oo, and w € LP N LY(X,pu). Then,
u € L"(X,u) for all p <r < q, and we have

a -«
lullyrxy < Mulltex) lullnecx) » (3.4.4)

where o € [0, 1] is such that

11—«

(3.4.5)

ﬁ
e

+
<

Proof. Let p <r < qand 0 < a < 1 such that
r=ap+ (1—ag.

By the Holder’s inequality, for all 1 < s < 0o, we have

1
7

/ Ju|"dps :/ |u|°‘p|u|(1_o‘)qdu < (/ |u°‘psd,u> : (/ |u|(1—a)q5/dﬂ) .
X X X X

We choose s such that

which leads to

—r
oo Pla=r)
(¢ —p)
or
1_1
. q
=17
P a
Since this last expression is equivalent to (3.4.5), we are done. O

Corollary 3.4.5. Let 1 < p < d, and u € WYP(R?). Then, for all

p < q < p*, we have a continuous
injection WP (R?) — LI(R?) and there exists a universal constant C =

C(p) < oo such that
”uHLq(]Rd) <C ”vu“leP(Rd) . (3.4.6)
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3.4.2 Critical Case

Theorem 3.4.6. We have a continuous embedding

WHARY) — LP(RY)  for all d < p < oo.

Proof. Apply the inequality (3.4.3) with p = d to get
t t—1
¢ < 1 . 4.
I, gy < I s IVl (3.47)
Choosing t = d, we get
d d—1

||U||def21(Rd) < dlfullgagay [Vullpaga) -
By interpolation, we deduce that v € LY for all d < ¢ < dd—jl. Applying (3.4.7) with t = d+1,d + 2, etc,
we deduce the statement of the theorem. O

Remark 3.4.7. By the Poincaré-Wirtinger inequality (see Theorem 3.5.4 below), we have a more precise
result WH4(R9) — BMO(R?), where BMO is the space of bounded-mean oscillation functions. We say
that f € BMO(RY) if
£loio =50 1f = Fonld2’ < .
r>0J B(x,r)

,
where

— 1
_ d _ d
fB(:C,T) B ][;(x,r)f = Oé(d)?"d /;(x,r) fdj .

This Banach space, that contains L* but is strictly greater that this space (log|z| € BMO \ L*°, has
deep applications to partial differential equations, and the celebrated Stein-Fefferman result identifies it
as the pre-dual of the Hardy space. One studies such spaces in lectures about harmonic analysis (see
37, [7]).

The Poincaré Wirtinger inequality, scaling considerations and the convexity of <+ |z|? imply that

d
<][ u — uB@,r)Idfd) SJ[ U= TUp(a,n|*dL? < C Vul?d2",
B(z,r) B(z,r) B(z,r)

where C' < o0 is independent of x € R? and r > 0.

3.4.3 Sub-Critical Case

Theorem 3.4.8. Assume that p > d. Then, WHP(R?) — C%® N L>(R?), where a = 1 — % € (0,1).
Furthermore, there exists C' < oo such that

[ullpe ey < Cllullwrp e (3.4.8)
and
lu(z) —u(y)| < C|Vully,gay lz =yl for a.e. z,y € RY. (3.4.9)

Remark 3.4.9. In other words, v admits a continuous and even Holder-continuous representative.
Beware that when one deals with Sobolev functions, he does not always have the latitude to replace u by
its continuous representative. Indeed, generalised versions of the coarea formula ([15] 3.2.12) that holds
for W1P(R?) functions (1 < p < 00) are only valid for a specific choice of representative. One can find an
example a W1P-homeomorphism (for all 1 < p < d) for which the corea formula is false. In other words,
the theorem would only hold for a discontinuous representative. One can find similar counter-examples
for Wh¢ maps that are not homeomorpism. However, it cannot happen for p > d thanks to the Lusin
property—a map has the Lusin property if it maps negligible sets to negligible sets. The restriction on
the exponent p < d in the first counter-example is optimal for W1¢ homeomorphism satisfy the Lusin
property (see [21] for more details).
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Proof. Let u € 2(R%). Then, for all x € R, we have

g d 1
u(z) — u(0) = /0 au(tx)dt = ;/0 x; O, u(tx)dt

If we fix r > 0, and assume that € B(0,r), we get by the triangle inequality

d 1
lu(z) —u(0)] < r;/o |0, u(tx)|dt.

Integrating on B(z,r), we get

Up(o.m — w(0)] < / / |0, u(tz)|dt. (3.4.10)
| B(0,r) (0)] < Td 12 B(or)

Now, we have for all 0 <t < 1

1

1 1 i 1
/ O, ulta)de = — / 100, u(y)dy < / Vupdz? | (a(d)(tr)?)?
B(0,r) y=te 1% /B(0,tr) t B(a,tr)

IVullie 50,0 - (3.4.11)

d
and since — < 1, we get by Fubini’s theorem, (3.4.10) and (3.4.11)
p

a d b 4 bt
|UB(O,T) - U(O)| < W X Oz(d)P ||vu||LP(B(0 ") ; g
d 1

1—4
R IVl 0.0 -
p

=

By translation, we deduce that for all z € R% and y € B(z,r)

B d 1 _d
lu(y) — uB(z,'r)| < 1_7(1717’1 ‘

pa(d)?

Using Lebesgue differentiation theorem (that is trivial of smooth functions), we deduce that

‘VU’HLP(B (z,r)) *

d__1 g

u(z) — u(y)| < Vullie () »

and by triangle inequality, we get

2d 1

L= 2 a(d)

_a
|U(y) - U(Z)| < ,,,1 P ”VU‘”LP(B(z,T)) for all Y,z € B(l’,T‘),

D=

which shows the second inequality. Choosing r = 2|z — y|, we get for all y € R?

d

_ 227vd 1 _d
[wW)| < [Up@,2y—a)| + ﬁm\x - Z/|1 P ||VU||LP(B(1,T)) <C HUHWLP(W) )
p

which shows the first inequality. This proves the theorem in the case u € 2(R?), and the general result
follows by density. O
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3.4.4 General Result for W™P(Q)

Theorem 3.4.10. Let m € N and 1 < p < co. We have the following results:

1 d
1. If = — 2 50, then Wm?(RY) — LI(RY) for g = —L
p

d d—p
1
. 7_@:07thenWmﬁde — LIY(RY) for all p < q < o0o.
2. If ]
p

1
3. If]; - % < 0, we have W™P(R4) — L>®(R%). Furthermore, if a = (m — %) — {m — 4} > 0,

and k = [m - %} , we have u € C**(RY), and for all |8] < k, we have
ID7u(z) — D u(y)] < C llullygma g -

Proof. The proof is done by induction thanks to the previous embedding theorems, and we leave it to
the reader. O

Corollary 3.4.11. Let Q be a bounded open subset of class C™ and assume that OS2 is bounded. Then,
the following results hold:

1 d
1 If - — 50, then WmP(Q) — LI(Q) for g = L.
p d d—p
1
2. If; - % =0, then W™P(Q) — LI(Q) for all p < g < 0.
3. If I.om < 0, we have W™P(Q) — L¥(R%). Furthermore, if a = (m - 4) - [m - 4} >0
N p d 7 - ) - P P )

and k = {m— %}, we have u € C**(RY), and for all |B| < k, and for a.e. x,y € Q such that
B(z,2|z —y|) U B(y, 2|z — y|) C  we have
|DﬁU(I) - Dﬁu(y)| <C ||U||Wm,p(9) lz —yl.

Remark 3.4.12. We recall that the hypothesis of C™ open subset could be weakened to Lipschitzian
subset by virtue of Stein Extension Theorem.

Theorem 3.4.13 (Rellich-Kondrachov). Assume that d > 2, and that Q is a bounded open subset of
class C* of RY. Then, we have

1. If p < d, then we have a compact embedding WP(Q) — L>(Q) for all 1 < q < p*, where
Pt =i
2. If p = d, then we have a compact embedding W1P(Q) — LP(Q) for all 1 < p < co.
3. If p > d, we have a compact embedding WP () — C°(Q).
For all —o0o < a < b < oo, we have a compact embedding WP (Ja,b[) — C°([a,b]) for 1 < p < oo
and a compact embedding W't(]a, b[) — Li(Ja,b]) for all 1 < ¢ < co.

Proof. Thanks to Ascoli’s theorem, we need only treat the case p < d.
We apply the following compactness criterion in LP ([11], IV.25).

Theorem 3.4.14 (Riesz-Fréchet-Kolmogorov). Let Q be an open subset of R?, and U C 2 be a relatively
compact open subset. Let .F be a bounded domain of LP(Q) with 1 < p < co. Assume that

Ve >0, 36 >0 such that ||mnf — fllio@) <€ Vh€B(0,6) and Vf € F,

where T, f(z) = f(z + h). Then, Fy is relatively compact in LP(U).
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Fix some relatively compact open subset U C 2, to be determined later, and let € > 0. Using the
interpolation inequality from Lemma (3.4.4), for all 1 < ¢ < p*, there exists 0 < « < 1 such that

1— o 1—
[T — UHLIJ(U) < lImau — u”gl(U) [ Thu — U”Lp*a(U) < |A] HVUHEQ(U) [7hu — UHLP*Q(U)
—al o (e -« «
< 2! IVullta oy lullper @y = ClRI* <&
provided that A is small enough. On the other hand, we have by Hoélder’s inequality

n TT 1_;%*
ullpa@e) < lullies @ (Zm(@Q\1)) <¢g,

provided that Z"(2\ U) is small enough.

We omit the proof of the case d = 1 which is very similar. O

3.5 The Space W;""(Q)

3.5.1 Definition and first properties

m,p

Definition 3.5.1. Let 1 < p < oo. We define W;"*(Q) = WW the closure of the space of
compactly supported smooth functions in €2 for the W™P topology. For p = 2, we write H*(Q) =
W{2(Q). The space WyP(Q) is a separable Banach space, and a reflexive space for 1 < p < co. Hy(Q)
is a Hilbert space for the standard scalar product associated to H™ ().

WP functions are functions whose traces up to the derivatives of order m—1 vanish on the boundary.
However, in order to make the idea of trace precise, one needs to introduce fractional Sobolev spaces,
that will be mentioned later in the course. We will therefore only prove two classical inequalities of
fundamental importance.

Furthermore, in order to solve boundary problems for partial differential equations, the notion of
trace is not formally needed in simple cases. Indeed, if g € WP(2), then we define the space

War(@) = W (@) 0 {uiu—g e W)}
of Sobolev functions whose trace on the boundary is g. This is not completely satisfactory for it requires
to be able to extend g, but we will treat below the easier case of traces in H*(2) (where s € R).
3.5.2 Poincaré Inequalities

Theorem 3.5.2 (Poincaré Inequality). Let 1 < p < oo, Q be a bounded subset. Then, there exists a
universal constant Cp < 0o such that

[ullpe@y < Cr ([ Vullysg) for all uw € Wy (Q). (3.5.1)
Proof. Let ¢ € 2(Q), and R > 0 be such that Q@ € R? N {z : |24 < R}. Then, we have
zq
p(wsa) = [ duyela, i
-R

By Hoélder’s inequality, we deduce that

R

o(e za) P < 2R / [Onplal )P

Therefore, Fubini’s theorem implies that
[ 1e@rds < Ry [ 10,617
Q Q
which yields the announced inequality by density of 2(f2) in VVO1 Q). O
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Remark 3.5.3. The proof shows that the statement is true for a set that is bounded in a single direction.

Theorem 3.5.4 (Poincaré-Wirtinger Inequality). Let 1 < p < oo, and Q2 be a bounded domain of R%.
Then, there exists a universal constant Cpy < oo such all u € WHP(Q), we have

/ lu —uql? < C’pw/ |Vu|Pdz, (3.5.2)
Q Q

where

1
ug =4 ud L = /ud.i”d
. ]{z 2UQ) Jo

is the mean of u on €.

Proof. We argue by contradiction, and let {u,} C WhP(Q) such that

neN*

[un — unQHLp(Q) =1

—_

”vunHLp(Q) < n

Let v, = up — ung. Then, {v,}, oy is bounded in W1P(Q), which implies by the Rellich-Kondrachov
Theorem 3.4.13 that up to a subsequence, we have v,, — v € LP(Q) strongly, which implies in particular

n—oo
that [[v]| ) =1, and vg = 0. However, we also have by Fatou lemma

||VU||LP(Q) < linrgigf ||vvn||LP(Q) =0.

Therefore, v is constant, but the condition vg = 0 implies that v = 0, contradiction. O

3.6 The Dual Spaces W~ ()

Definition 3.6.1. For all 1 < p < co and m € N, we denote by W~ (Q) the dual space of W (€2).
Theorem 3.6.2. For all F € W="? (Q), there exists f, € L¥ () (o € N) such that
(Fouy= > / fo D¥ud L for all u € WJ"P(). (3.6.1)
Q

laf<m

Proof. The proof is, mutadis mutandis, the same as the one of Theorem 2.5.32, provided that one
replaces compactly supported continuous functions by LP functions. Indeed, let N(d,m) = card(N¢ N
{a:|al <m}) €N, and let T : W"P(Q) — LP(Q)N(m) 41— ({D%u} | <p)- Then, T is an isometry of
W P(Q) into LP(Q)N(E™) . Let T—1 : T(W"P(Q)) — WP(Q2), and
L:T(Wy"" () =R
{ga}‘(ﬂfﬂl = <F7 Tﬁl({ga}|(x‘gm> .

By Hahn-Banach theorem, this continuous linear form admits a continuous linear extension to LP(£2)
that preserves the norm, that we denote by ® : LP(Q)N(dm)+1 5 J7i™P(Q). According to the Riesz rep-
resentation theorem, there exists f, € L¥' (Q) such that

<<I>, ({ga}aeNd)> = Z /Qfa gadL? forall g € LP(Q)N(d,m).

lorf<m.

N(d,m)

Therefore, we have

1@l zaaycamy = max ol o}
loe|<m
which concludes the proof of the theorem. O
Remark 3.6.3. In general, the functions f, are not unique. Notice that our previous theorem on

P1»(RY) is proven.

71



3.7 The Hilbert Spaces H*(RY)

3.7.1 Basic Properties

Those spaces will be the first examples of interpolation spaces, and they are easy to define.

Definition 3.7.1. For all s € R define
H R =" RY) N {u: (1+]¢*)2F(u) € L2RY},

and equip it with the following norm:

ol ey = [ 0+ flz)slﬂ(f)lz’df)é . (37.1)

Remark 3.7.2. In the case of S1, the space H*(S!) is defined as follows:
H(SYHY =2'(S)n{u: (1+n)uel*2)},

where for all n € Z, we have

2)

(n) = (u, e_i"9>.

We equip H*(S') with the following norm:

[l z) = (Z(l + IHIQ)SIﬁ(n)F) : (3.7.2)

neL
Theorem 3.7.3. For all s € R, H*(RY) is a separable Hilbert space, and for m € Z, H™(RY) =

Wm2(R®) with equivalent norms.

Proof. The following quantity
(u,v) :/ (1+[€*)*a(e)o(e)de (3.7.3)
Rd

is a scalar product on H*, and the map u + (1 4 |¢|?)2% is an isometric bijection between H*® and L2.
Since L?(R?) is complete, we deduce that H* is complete for the norm above. We need only treat the
second part in the case m > 0. By the properties of the Fourier transform, for all u € ./ (R%), we have
F(D%u) = il*l¢2q, which shows by Parseval identity that

1
a 1 a2~ 2
1Dy = = ([ lePiaceas) (3.7.0)
(2m)2 R
Notice that here exists constants 0 < C,,, < oo such that
Cl(L+ €)™ < D [P < Cn(1+ (€17 (3.7.5)
|| <m

Indeed, for all || < m, we have
€0 < JePel < (1 e

while

P 21+ Y1 2 G+ [P = Ca(1+ g
la]<m j=1
thanks to the binomial formula. Finally, we deduce by (3.7.4) and (3.7.5) that both H™(R?) norms are

equivalent. O
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Theorem 3.7.4. Z(R?) is dense in H*(R?).

Proof. We first show that .7 (R?) is dense in H*(R?). Indeed, the inverse isometry of u +— (1 + |£|?)2%
is the map v +— Z (14 [£]?)7%) * FL(v) = 27)"4F ((1 + |€>)7%) * 0(—€), which sends .7 (R?) into
S (R?) since (1+ |€|2)7% € Op(R?) has polynomial growth. By density of .%(R?) in L?(R?), we deduce
that . (R?) is dense in H*(R?).

Now, notice that for all ¢ € .7 (R%), we have

1

Hs(Rd) — </Rd(1 + |§|2)S|¢(§)|2d§> < ||(1 +¢| )s+d ||LM(Rd)/ (1+|§|2)d

B B(d) 2N std~ Bd) ojsi+a-1 (1~ 2(lsl+d)
=\ = ||(1 +1€1%) ‘PHLw(Rd) =< 2d 2 ”wHLN(Rd) + H‘ﬂ SDHLOO(JM)

el

/B(d) |s|+d—1 ‘ |+d 2([s]+1+d)
< /B2 (Bl gy + (5] + 1+ ZHKI Ploma

/B(d) S — N S -~
Wﬂ -t ||80||0,o +(ls[+1+ d)l +d Z ||80||2([s]+1+d)ej,0 J
j=1
where we recall that the norms || - ||, 5 (o, 8 € N?) are defined in (2.7.6), and (ey, - - , eq) is the canonical
basis of R?. Using the inequality (2.7.7), we deduce by density of Z(R%) ib .7 (R%) that Z(R?) is dense
in H*(RY). O

3.7.2 Duality

Theorem 3.7.5 (Duality). For all s € R, for all L € (H*(RY))’, there exists a unique v € H~*(R?)
such that

L(u) = {u,v) = /Rd u(z)v(x)de  for all u € H*(RY).

Proof. First, for all (u,v) € H*(R?) x H~*(R%), we have by Parseval identity:

() = s [ (€60

In particular, we deduce that

o] = s | [+ IR0 1+ ) Ha0) ds| | ey

1
(2m)»
which shows that the map L, : u + (u,v) is a continuous linear form on H*(R?), i.e. an element of
(H*(R%))’, and that furthermore, we have

1
[ Lol (s (mayy < @n) [0l g+ (ay - (3.7.6)

In fact, we have the equality in (3.7.6), as we will see it below.

Conversely, let L € (H*(R%))’, and consider the isometric map 7 : H*(RY) — L2(R%),u + (1 +
|€/2)2%. Then, T is an linear continuous isometry. Consider the map T~ : T(H*(R%)) — H*(R9), and
as previously, the map

F:T(H*(RY)) =R
v (L, T (v)).
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By Hahn-Banach theorem, this linear map extends to a continuous linear map ® : L?(R%) — R. Thanks
to Riesz-Fréchet representation theorem (on the dual space of a Hilbert space), there exists f € L?(R?)
such that

D(u) = y f(z)v(z)dx for all ve L*(RY).

If v = (14 |z|?)3 for some u € H*(RY), the Parseval identity implies that

L) = 00) = [ 1+ P)E @) = s [ 20+ 1RO F @) -0t

- [ meueras.
where h = Z((1 + |z|?)2 f) € H=*(R%) by definition, since

h(&) = Z2((1+ a2 f) = (2m) (1 +[€1)2 (=€),
and f € L?(R). This concludes the proof of the theorem. O

3.7.3 Traces

Theorem 3.7.6. For all s > %, the operator v : #(R?) — #(R41), such that
1(@)(a) = (@', 0),

admits a unique continuous linear extension H®(R?) — H* 3 (R9).

Proof. Fix some ¢ € .%(R%). Thanks to the Fourier inversion formula and Fubini’s theorem, we have
for all 2/ € R4~1

1 (¢! iz’ -& et
V) = ol 0) = oy [ Bl e ey

- Clta iz’ & et
= (277>d_1/Rd1 <A@(§v€d)dfd> e §d€

Using once more the inverse Fourier formula, we deduce that
1

oe) = 2 /Rg(flvt)dt = % /R (BE DA+ EP+12)5) 1+ ¢/ +t2)~ 24t

Since s > %, we have

/ dt B 1 / a Cs o
R (1+ ‘§/|2+t2)s (1+|51|2)s—% - (1+t2)s (1+|§,|2)3_% s
which implies by Cauchy-Schwarz inequality that

(€ <

Cs 1
(2m)% (14 |¢/2)*2

Another application of Fubini’s theorem shows that

Au+m%+ﬁf@@¢Wﬁ.

2 —i, >
s gy = [, A+ I HDE e
< s [ A+ I IO = ol
~(27)? Jra (2m)2 T ED
By density of .(R%) in H*(R?), we deduce that v : H*(R?) — H*~2(R%1) is a continuous linear map
such that
Il < o /15—1 :
M=o\ ha+e)r) “wVas-1
which concludes the proof of the theorem. O
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Remark 3.7.7. In particular, if we have a continuous trace operator H'(Bg2(0,1)) — Hz(S") (where
H#(S') is defined in (3.7.2)), and more generally, the trace theorem is true for a C* domain, but requires
to define the fractional Sobolev space, which will be seen later on.

Those results have applications to the solvability of the Dirichlet problem for H 3 data, which is
crucial in many applications (see [9], and the exercises).

3.8 Link between fractional derivatives and fractional Sobolev
spaces
3.8.1 Fractional derivatives

For all locally integrable function f : R — R, and for all n € N, one shows by induction that the n-th
primitive of f that vanishes at 0 is given by

1 x
I f(z) = —/ v — "L f(1)dt, (3.8.1)
(@) = 7 [ (=00
where T is the Euler T" function, such that for all z € CN{z: Re(z) > 0}, we have
o dt
I'(z) = / tet—. (3.8.2)
0 t

This is the Mellin transform of the function ¢ — e~*

integral of order o > 0 by

. By analogy, we define for all a > 0 the fractional

1 xT

70 f(z) = —— / ( — o1 (1) dt, (3.8.3)
I'(a) Jo

well-defined for z > 0, and that one can eventually extend by analytic continuation to all values of x

outside a half-line of the complex plane. In particular, to define the a-derivative—where « € (0,1)—we

assert that

Df(z) = %Ilfaf(x) = % <F(11_a) /0 (xf_(tz)adt) (3.8.4)
is a good notion of fractional derivative. If o = [o] + o, we define
D f(z) = D fleD(2). (3.8.5)
Indeed, the properties of the I' function and the 3 integral

[()T(5)

ot 5 (3.8.6)

1
B(a, B) :/0 11— )P tdt =

show by Fubini’s theorem that

ToIP f(x) = I (t — %ﬁ) /Ot(t — s)Blf(s)ds> ()

_ m /Om(x gyt (/Ot(t - s)ﬁlf(sms) dt
— st | om0 ([ - 9 e foyas ) at

_ m /: £(s) </x(a? et — s)B_ldt> ds. (3.8.7)
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Making the linear change of variable t — s = u, we get

xT r—Ss
/ (z — )2t — s)P~Ldt = / (z — 5 —u)* P du
s 0

Tr—sS a—1
=(z— s)o‘_l/ (1 B ) u?~ldu
0 xr— S

1
u=(a—s)v (=8 /0 (1= 0)*H((z = s)v)"H(z - s)dv
= (¢~ )" B(a, B)
_rre)
Lo+ B)
Putting together (3.8.7) and (3.8.8), we deduce that

_ Ia:—saJrB*l s)ds
r<a+5)/o( o+ £(s)d

(z — s)2TF7L, (3.8.8)

IIP f(x) =

which shows that Z¢Z? f = Z¢+8 f. Therefore, we also have D*DF f = D**# f whenever both expressions
make sense.

1
Example 3.8.1. Let us check that on an explicit example, with f(z) = z and a = 8 = ok Recalling

1
that T (2) = /m, we have

w\»-A
H-

tf{[ 2t/ — 1], +2/ Wdt}

which implies that

Now, we compute D2 /z. We have

Iéﬁ:\/l%/om\/idt:\/%{[—2 te—1)] / th}
Zy\j%/loo\/yj(jg'

Now, making the change of variable y — 1 = u?, we get
Vy—-1—= = ——du
/1 Ty T ey

1 °°+/°° du
= _7.111
1+ u? 0 o 1l+4+u?

= [arctan(u)]y” = =,

which shows that

and



so that

S

S

8

Il

S
/~

as expected.

Now, in order to allow for negative values of x, we will define the partial integral for Schwarz functions,
and then generalise it to tempered distributions.

Definition 3.8.2. Let f € .(R%). For all 1 < j < d and for all a € (0, 1), define

1 i
I f(z) = () / (x; — ) (21, w1yt g1, Ta)dE (3.8.9)
—0o0
and
DS f(x) = -T2 f ()
J dx;
1 z; >
_9 / RICNAY (3.8.10)
0z; \T'1l—a) J_ (z; — 1)
where ©; = (z1, - ,2j-1,0, 2,41, 2q) and we write by abuse of notation

f(@5,t) = f(@; +tey).
The a-gradient of f is defined by
Daf: (D?‘f’ 7Dgf) (3811)

For all a > 0, if a = [a] + o/, where o’ € (0,1), we define

, (ol
Dj =Dj (%f) (). (3.8.12)

3.8.2 Computation in Fourier space

Now, taking the partial Fourier transform in z;, if

then we have

Taking d = 1 and replacing a by —a, we get

7 (x > 1) O =2-L05) 1

||

Therefore, we first obtain

(3.8.13)



if (z) = ¢(—x). Since P, € Z],(R) for 0 < o < 3, its Fourier transform is a function, and we have in
particular

F(t = Po(=1))(§) = Pa(=5),

which gives

Pa(f)JFﬁ( §=2"""r ((Z;)Kﬁ o

Now, recalling (2.7.8), we have

F(x—sgn(z))(§) = —2i p.V%,

and

sgn(t)

Palt) = Pal—t) = S

(3.8.14)
The Fourier transform of this function is also a function for 0 < a < =, and since it is an odd function,
its Fourier transform is odd, purely imaginary and homogenous of degree 1 — o. Therefore, we have

F (x - Sgn(x)) (€) = —ica sgn(§)

Ed &t

for some ¢, € R\ {0}. We will determine the constant thanks to the Parseval formula. Now, let
o2
G(z) = e~ 7. Then, we have

G(€) = V2rG(€).

Furthermore, the properties of the Fourier transform imply that
_z2 .0 2
F(x— x2G(x))(§) :/xe Te “”56l917=/18—5 (e e sz) dx
R

:igg( )= ine (fe ) N

Using the Parseval identity, we deduce that for all function f € Zj,(R), we have

/f —/f Vivar e % de

_ \/ﬁ /R Fle)ce 5. (3.8.15)
sgn(x)

This formula is well-suited for odd functions. Applying the formula to f(z) = e We deduce that

sgn(z) .2 i (_‘ sgn(§)> _e
Y A G- =) R

1 sgn(§) . _¢
= o S d
‘ ar Ju e abe Tt

= o /m“ -5

where we used sgn(z)x = |z| valid for all x € R\ {0}. Finally, we obtain

2 1 2
/R|J:\1_ae_7dx:ca\/—z?/RE\“e_%dﬁ. (3.8.16)
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Now, we compute by polar coordinates

1 a2 1 2
|z|]" "% e T dx =2 r "% Trdr
R 0

= 27r/ (2t)177aeftdt
=t 0
s 1—
:27722F(1+ a)
2
o 1 — 1—
—972%3 20‘1“( a)

2
1-— 1-—
:wﬂa“r( C“),
23

<
oY

2

where we used the formula I'(z 4+ 1) = 2I'(z). Therefore, we get

1—« 11—« 1 o o
2O (=2 e —— x 12 r(f>,
™2y ( 2 ) “ fon 7”/21‘7“ 2

which finally gives

_ 1—al (1*—&)
o 72\/;@2“ Pé) '
We deduce that
a7 sgn(x) o 1—aT (52) sgn(é)
F (SU — ‘xla > (g) = —12\/7? a2 T (%) |£‘1—a (38]_7)

which is valid for all 0 < Re (a) < 1 by analytic continuation. Let us check this formula thanks to the
Fourier inversion formula. We have

z (:17 s Sgn(z)) €)= —i2vm—O r S%l sgn (&)

‘xll—a

Therefore, we have

o (o 0 sl maT(5) (o e T(3) s
£ B O - ( M () 5|a>

— v

_seu(¢)
135

sgn(—¢)
I35

which coincides with the formula given by the inverse Fourier transform.

By (3.8.14), we deduce that

=-2

=27

F (Pa - ﬁa) (€)= —i2l=/x (3.8.18)

Recalling (3.8.13), we finally get

() 1

—i2lm/x

1 1 —a
F (»’U = |x|a1{x>0}> &) = 5 (21 v

—
—
(Nl
~—
78
=

|

Q
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CFTOE) ( 1a |
= e I‘(;) <1—z ” sgn(f)) G

2
Now, thinking of the constant involved in the definition of the fractional derivative, we can simplify this
formula thanks to Legendre’s duplication formula and the Euler’s reflection formula:

I'(2z) = 2\;% I'(z)r (z + ;)
PEIA —2) = smzrwz)

Therefore, we have

1 1 1—2 s 1
- 71'22F< 2 ) % sm(%)l—‘(%)
_ VT 1T(5)
S ()T 1)
which finally gives
\2/§FF( é)) = sin (%) (1 - 2),
and
F (m — |Z‘|O‘> (&) =sin (7; ) I'(l—a) <1 —1 sgn(f)) |£‘}—a (3.8.19)

Now, recall that

o B o 1 i f(@vt)
D; <f>—axj<m—a>/_w m—mdt>
1 0
= T =) o, Fo s FE D) (@)

Using the product formula for the Fourier transform of a convolution and the elementary algebraic
identity Z(9,,5) = i&;.#(S) valid for all tempered distribution S € .#’(R?), we deduce that

F(Par 1065, )6) = Pa©F(5.6) =sin () 70 = 0) (1= 8- 2sn(6) ) i 7€)
and
F (051) (5.6) = isin () (1= 155 2sn(6) ) 41617656 (3320)
Therefore, we obtain
F(D 1)) = Tz (‘ Z (D51) (5,€)) (&)

~isin (1—z “sen(6)) 61 Fl)

~sin (7) (52 +ism(e ) I61°Fi6) (3321)
and

F@eN©) =sin (1) 11+ Lo ig 1o (g

= da&;|*IF(©)]. (3.8.22)

Therefore, we have proved the following theorem.
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Theorem 3.8.3. For all s > 0, the following norm

ey = 3 1Dl + 3 0D

a<(s] lee|=[s]

L2(Rd)

is equivalent to the norm || - || (ga) defined in (3.7.1) on H*(RY).

Proof. By the Parseval identity and (3.8.22), we deduce that for all a« € N, we have

a 2 _ 1 o125
Lot = s [P

while

d2 d
s—[s] As—I[s]| e |27 Qd )
oot 261 Hle rato Pas

Noticing that there exists 0 < C), < oo such that

g |D* Bl D (a) P dx =

d
CRLlA+EP) <14 > > g1 e < cna+1¢P)°.

loe|<m j=1
we conclude the proof as in O

Remark 3.8.4. An equivalent norm would be given by

1wl ge oy = lellpagay + HDHS]DQU

2mdy
o= (s] LA@%

3.9 Fractional Sobolev spaces in the non-Hilbertian case

3.9.1 Fractional Laplacian and fractional Sobolev spaces

Since the two characterisations of fractional Sobolev spaces coincide, we can find another equivalent
norm thanks to the introduction of the fractional Laplacian. Recall that by the properties of the Fourier
transformation, for all u € . (R%), we have

F(Au)(€) = —¢]*u(©).
By analogy, for all 0 < s < 1, we define the fractional Laplacian on . (R%) by
F((=A)*u)(€) = [¢[**u(&). (3.9.1)
Therefore, we formally have

(=A)'u(z) = F71 (€ = [E7°u(€)) (x) = 2m)1F 71 (€ = [6]*) * u(@).

For 0 < s < 1, (—A)® is not a differential operator, but a pseudo-differential operator given formally
by a convolution with a tempered distribution, and which is standardly used to define fractional Sobolev
spaces. Indeed, one first shows that for all u € .7 (R%), we have

(-ayu() = cpr. [ ue) —ulw)

a lo—y|*r

where

(3.9.2)



1
Notice that the principal value is not indeed if s < 3 Let us shows that this formula holds (we will

however not directly prove it from the definition in (3.9.1)). First, a change of variable allows one to get
rid of the principal value, and to get

(—A)Su(ﬂi) _ _% /Rd ’U“(JC + y) +|Z(dx+;y) — 2U(SL‘) dy.

Let us compute the Fourier transform of this function. We have by Fubini’s theorem since all integrals
are absolutely convergent

F((~A)u)(E) = - / (—A)u(z)e i ¢d

Rd
L [ ([ M) 0, g,
2 Jra \Jra |y|dt+2s

—% [ e ([t ) o ) = 2utae = ) ay

Cs 1 " iy ~
- _5/[@(1 [y|d+2s (ezyg e tve —2)a(€)dy

_ 1 —cos(y-¢§)
= d
Csu(g) /Rd |y|d+28 y
= c,cl€*u(e),
where we used the identity

1— )
1) = [ s = e

Notice that I is a radial function, as one immediately checks by making a rotation and using the parity

of cos. If £ # 0, making a change of variable y = é, we get
1 —cos (z . %) J ) ¢ )
1(¢ :/ ———2 dszI<>£SIe
(€) e L iy €l €] E17° I (ex)
€]
1 —cos(z1)
= s 7(1
€1 [ el
= clel°
by radiality. Therefore, we deduce that
cs =1I(e;)™!

Let us compute ¢;. Taking polar coordinates, we find by taking polar coordinates ([15], 3.2.13)

1~ cos(a) sin? () st () L
I(el) = /Rd Wdﬂ? = 2/ Wdl‘ = 2/5(1,1 /0 Wdr dt (y)
oo sin? %
:2/ / 1(+25 )dr dA" 1 (y)
Sd—1 0 r

L ( o[ wr
_9l-2s (/0 t1+25 ) ( |y 23g =1y )).
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Now, remember (2.7.9)

el

/S H|y 1251 i -
)

1
Taking z; = s+ =

1
2andzjziforaHnggd,weget

where we used I' (%) = /7. For the second integral, see the Appendix 3.9.3, where we prove that

oo ([ L 7 T

t1+28 822s+1 T (S + %) ?

which finally gives

d
_ 2 T(1-y9)
L P L . 3.9.3
© (e1) $22°T (s + 9) ( )
which allows us to recover (3.9.2).
This prompts one to make the following definition.
Definition 3.9.1. For all 1 < p < o0, and s > 0 such that s ¢ N, define
sp(Q)) — lsle . a |D%u(x) — D*u(y)|”
WP(Q) = WEP(Q) N {u sfor all |af = [s], [Duly Dw(Q) = / / o y|d+P p—p) dzdy < oo ¢,

that we equip with the norm

HUHWM’(Q) = ||u||w[s]»p(§2) + Z [D%ul w10 ()
o] =[s]

Remarks 3.9.2. 1. Thanks to what precedes, the definition coincides with the one of H* for p = 2
and Q = R%. If Q is an extension domain, the definition can be replaced with the one involving
fractional derivatives.

2. For p = oo, we simply recover the Holder space C1*17 (), where
d
=—+s—s].
p

The study of pseudo-differential operators is the topic of harmonic analysis, and goes beyond the
scope of these lecture notes. However, let us remark that harmonic analysis gives a completely satisfying
solution to the question relating the fractional derivatives and fractional Sobolev spaces.

Theorem 3.9.3. For all 1 < p < oo and s > 0, define
weP(R?Y) = (R N {u:(1+|¢)2u =70, where vee LF(RY)},
and the associated norm

[ ( /R FT e (I Rac) <z>|”do:) gy

For all 1 < p < 00, and for all s > 0, we have W“’(Rd) = W*P(RY) with equivalent norms.
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The identity (3.8.22) implies in turns the following theorem.

Theorem 3.9.4. For all 1 < p < oo and s > 0, define on
WP(RY) = 7' (RY) N {u: D € LP(RY) for all a € R such as |af < s}

and the associated norm

lllyyes@ay = D 1D ullpogay + Y HD&ﬁﬂDau

a<ls] jal=ls]

Lr(Rd)

For all 1 < p < 0o, and for all s > 0, we have W*P(R?) = W*P(R?) with equivalent norms.

For p = 1, the theorem does not apply for Calderén-Zygmund operators do not generally map L!
to L'. Indeed, elliptic regularity shows that for all 1 < p < oo and f € LP(R?), if u solves in the
distributional sense

Au = f,
then u € W2P(R%). However, this result is false for p = 1. In Fourier, notice that

& &

F (02 5, u)(€) = —&&u(8) = mm(—wl%(@)
88 ga,
= e A @
e
= T’ ©

We see in particular by the Parseval formula that

HVZUHLQ(Rd) = Ca | fllp2ra) -

ik
By showing that the inverse Fourier transform of |?| is a Calderén-Zygmund operator®, we deduce that

LP boundedness for all 1 < p < co. If one wants to obtain a L' estimate, a estimate of f in the Hardy
space 1 (R?) (the pre-dual space of BMO(R?); it is a subspace of L'(R%)) is necessary.

3.9.2 Return to the case p =2

Let us prove that both notions coincide for p = 2.

Theorem 3.9.5. For all s > 0, we have W*2(R%) = H*(R?) with equivalent norms.

Proof. Tt suffices to treat the case 0 < s < 1 thanks to the properties of the Fourier transform. The
proof is an easy consequence of the Parseval formula. We have by Fubini’s theorem and a linear change

of variable
‘2 / / 2 dz
/]Rd /Rd |z — y|d+2s o Re \JRd fuz t9) —u(w)l"dy |z[d+2s

:(zi)d/Rd(Rd'y(”” u) (€)| d§>| =

where we wrote as previously 7, f(x) = f(z + z). Since

Fr)(©) = / ufr e = @),

r4+z=y

*Equal to p.v. up to a constant.

T
|$‘d+1
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This identity implies that

y)I? _ 1 P26 11215062 dz

L L ey =gy [ ([ - emorae) i
1 1—cos(z- &) 12

T 9d—1,d /Rd (/Rd |Z|d+25 dz) [u(&)["d¢

- 5o [ P,

where we used the identity
1 — cos(z- €) )
1§ = dz = s,
© = [ o tds = e

Notice that I is a radial function, as one immediately checks by making a rotation and using the parity
of cos. If £ # 0, making a change of variable z = %, we get

1—cos|y- &
o=/, u&ﬂfddy — 11 () = P 1)
el
o [ 1= cos(y)
= |€|2 /Rd Wdy
= cil¢l”

by radiality. This concludes the proof of the theorem. O

Using Theorem 3.7.5, we deduce the following result that permits to unify all notions of fractional
derivatives.

Corollary 3.9.6. For all s > 0 such that s ¢ N, the semi-norms

U]Hs(Rd) = Z H’Dsi[]
e =[s]

L2(R4)

and

B Du(w) = Douly)l? | \*
[ulwe oy = D (/Q 0 |z — y|dr2Ge—lD drdy

lee|=[s]

are equivalent. In particular, H*(RY) = W*2(R9) with equivalent norms.

3.9.3 Appendix

Let us compute the integral

e} _ . 00 .2
J(s) = / L—cos(t) py _ g1-2s / sin”(t)
0 0

t1+2s t1+25

where 0 < s < 1. Integrating by parts, we get

1 1—cos(t)]™ 1 [ sin(t)
J(s) = [ % 125 :|0 + 2 0 125 dt
1 [%sin(t)

dt.

- % 0 +2s
Since J(s) < oo for all 0 < s < 1, we deduce that the integral above converges for all 0 < s < 1 (which

1
is trivial for 2 <s<1). For0<s< 2 this integral is known (up to a change of variable ¢t = u?) as the
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Fresnel integral, and can be easily computed with the help of a standard positive quarter-disk contour.
We get after computations

J(s) = 21—8 sin ((1 - 25)2) I(1 - 25).

Therefore, we have

1
ol = 27r%1m x 2% sin ((1 - 23)2) (1 - 2s)
= iw%lr(sig)sin ((1 - 28)7;) r (S + ;) I'(1—2s).
Now, recall the formulas
9221
I(2z) = NG I'(z)I’ <z + 2)
P01 —2) = —

We get

Therefore, we get

sin ((1 — 23)%) r (s + 1) I(l—-2s)= WF(I ) — WF (2 (% — 5))

F'(z—s) F(z—s
9(1-2s)—1
= NG I'l-s)
1
= Wﬁf(l — S),
which finally gives
1 a 1 1
-1 a-1
c, =-m2 — Xy/r—=—I(1-s
s s r (s + %) f225 ( )
1 d P(l — S)
= T2 .
T (a1 9)

1
Notice that by analytic continuation, the formula proven for 0 < s < — is true for all s € C such that
0 < Re(s) < 1.

3.10 Sobolev Spaces on Manifolds

We end this section with some comments on Sobolev spaces between Riemannian manifolds. A possible
definition is the following. If M™ and N™ are Riemannian manifolds, by Nash’s isometric embedding
theorem ([27]), we can consider N™ as a subset of R? with the induced metric from the canonical
embedding ¢ : N* — R?. Then, define

WSP(M™, N™) = WP (M™ RY) N {u: u(z) € N" for almost every = € M™},

where M™ is equipped with its natural measure induced by its volume form (equivalently, we can consider
the m-dimensional Hausdorff measure on M™ induced by its Riemannian distance).

In this general setting, very little is known in general, and questions of density of smooth functions
are difficult. Furthermore, one cannot embed W#P(M™, N™) with a structure of a Banach manifold in
general (this is only possible provided that sp > m).

For further reading, one may look at Hélein’s book (][22], and in the case of maps with values to the
circle St Brezis-Mironescu’s new 500-page-long monograph! (Cf. [?])
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