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Introduction

The theory of distributions, introduced by Laurent Schwartz in 1945, gives the modern suitable framework
to think of partial differential equations, and has had a considerable success ever since. We will not
cover the most subtle aspects of this enormous theory, but mention suitable references to study the
most immediate generalisation, such as the Sobolev spaces. Distributions permit to give meaning to
expressions that have a very low regularity. Distributions are generalised functions that should rather
be thought of generalised measures, and they notably permitted to obtain very deep geometric results
after Federer and Fleming introduced, following previous contributions of de Rham and Whitney ([39]),
the notion of normal and integral currents ([16], [15]). Indeed, one can think of currents as generalised
surfaces that have good compactness properties. One easily solves generalisation of the Plateau problem
or obtains minimal surfaces in any dimension and codimension thanks to a very fine theory of Almgren
and Pitts ([33]). If existence is relatively easy, regularity is extremely challenging (especially in higher
codimension, see [5] and [6]), but extensions of this theory by Codá Marques and Neves permitted to solve
the Willmore conjecture in codimension 1 ([30], [31]) and other conjectures ([29]). Let us mention en
passant that distribution theory permits one to think of Willmore surfaces in a very weak setting ([34]),
which has many applications to calculus of variation and geometry. The best references on geometric
distributions or current remains Federer’s treatise ([15]), and Whitney’s classical reference ([40]).

A function belongs to a Sobolev space if its “weak derivatives” belong to some Lp space. Sobolev’s
major advance was to show that a distribution whose derivative belongs to some Lp space (1 ≤ p ≤ ∞)
was in fact a function from some Lq space (where q depends on p and the ambient dimension). More than
half of the lectures will be centred on these spaces and the obtention of their basic properties. Another
classical idea going back to the work of Hadmard on fractional derivatives will allow us to introduce
Sobolev spaces of fractional order, such that some s-derivative of a given function (where 0 < s <∞ is
not necessarily integer) belongs to some Lp spaces. Contrary to what one may be thinking, those spaces
are nothing but arbitrary, and we will notably mention the classical link between harmonic functions of
finite Dirichlet energy on the (unit) disk D = C ∩ {z : |z| < 1} and functions f : S1 → R whose Fourier
coefficients {cn}n∈Z belong to H 1

2 , i.e. satisfy∑
n∈Z
|n||cn|2 <∞.

We note that those ideas were not especially new as Schwartz recognised it himself (he also claimed that
his discovery would have very likely been made in the decade following his work), and Sobolev spaces had
already been used implicitly in the work of many, including the one of Leray on Navier-Stokes equations.

In these lecture notes, our main references will be Schwartz’s original treatise ([35]), and the classical
books of Brezis ([11], [12]), Adams and Fournier ([1]), Gilbarg and Trudinger ([17]), Evans ([14]), and
Katznelson ([28]) amongst others. On distributions, we will mainly follow Bony ([10]), Schwartz ([35]),
and Edwards ([13]). Another useful references for rather advanced topics is Tartar’s lecture notes ([38]).
We will not refer to much more advanced references like Hörmander ([23, 24, 25, 26]) or Alinhac-Gérard
([4]). This course is an introductory lecture on distribution theory that mainly focuses on basic properties
of Sobolev spaces: topics such as micro-local analysis (including pseudo-differential operators, wave front
set, wavelets, etc) will not even be mentioned.

The course will be divided into three parts. We will first spend a couple of lectures reminding the
attendee about fundamental results of functional analysis—the course Functional I (MATH-302) is not
a mandatory prerequisite—define distributions, give their fundamental properties, introduce the notion
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of Fourier transform of tempered distribution, before moving on to Sobolev spaces, and end the lecture
with applications and fractional Sobolev spaces, that will motivate the concept of interpolation spaces,
though one may define those spaces directly in practice.

You are welcome to use the above email address to tell me about typos in those notes!
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Chapter 1

Topology and Functional Spaces

1.1 Basic definitions

We assume the reader familiar with the basic notions of topology, and only recall a few basic definitions.

Definition 1.1.1. Let X be an arbitrary set. We say that T ⊂ P(X) is a topology if the following
properties are verified:

1. If {Ui}i∈I ⊂ T is an arbitrary family of elements of T , then
⋃
i∈I

Ui ∈ T (stability by arbitrary

union)

2. If U1, · · · , Un ∈ T , then
n⋂

i=1
Ui ∈ T (stability by finite intersection).

Elements of T are called open sets, and complements of open sets are called closed sets. We say that
such a couple (X,T ) is a topological space.

Remark 1.1.2. Notice that a set may be closed and open. Taking an empty union and empty inter-
section, we deduce that both ∅ and X are open sets, which implies by definition that they are closed
too.

On a non-empty set X, there are always at least two topologies: the trivial topology given by T =
{∅, X}, and the discrete topology given by T = P(X).

We will need of the notion of basis of topology later.

Definition-Proposition 1.1.3. Let T0 = {Ui}i∈I be a non-empty collection of sets of a non-empty
set X. The smallest topology T that contains T0 is given by the following construction. Let T1 be the
family of finite intersection of T0. Then, T is given by

T = P(X) ∩

W : W =
⋃
j∈J

Vj , Vj ∈ T1 for all j ∈ J

 . (1.1.1)

Proof. Notice that an arbitrary intersection of topologies is a topology. Indeed, let {Tj}j∈J be a family
of topologies, and consider T =

⋂
j∈J

Tj , and {Ui}i∈I ⊂ T . In particular, we have
⋃
i∈I

Ui ∈ Tj for all

j ∈ J , which implies that
⋃
i∈I

Ui ∈ T . Therefore, T is well-defined and given by

T ′ =
⋂

T ′′ topology T0⊂T ′′

T ′′,
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which is a topology by the above proof. Now, we need to show that T = T ′. Notice that we trivially
have T ⊂ T ′ by using both defining properties of topologies. Therefore, we need only show that T is
a topology to conclude the proof. By construction, T is stable by arbitrary unions, so we only have to
check that T is stable under finite intersection. Let W1, · · · ,Wn ∈ T . Then, there exists sets J1, · · · , Jn

and Vi,ji ∈ T1 (ji ∈ Ji, 1 ≤ i ≤ n) such that

Wi =
⋃

ji∈Ji

Vi,ji
.

Furthermore, we have Vi,ji
= U1

i,ji
∩ · · · ∩ Uki

i,ji
for some Uk

i,ji
∈ T . Finally, we deduce that

W1 ∩ · · · ∩Wn =
n⋂

i=1

⋃
ji∈Ji

ki⋂
k=1

Uk
i,ji
.

Let x ∈ W1 ∩ · · · ∩Wn. Then, for all 1 ≤ i ≤ n, there exists ji ∈ Ji such that x ∈ U1
i,ji
∩ · · · ∩ Uki

i,ji
. In

particular, we have

x ∈
n⋂

i=1

(
ki⋂

k=1
Uk

i,ji

)
,

and

W1 ∩ · · · ∩Wn ∈W =
⋃

(j1,··· ,jn)∈J1×···×Jn

n⋂
i=1

(
ki⋂

k=1
Uk

i,ji

)
∈ T1.

Likewise, if x ∈W , then there exists (j1, · · · , jn) ∈ J1 × · · · × Jn such that

x ∈
n⋂

i=1

(
ki⋂

k=1
Uk

i,ji

)
.

A fortiori, we have

x ∈
n⋂

i=1

⋃
ji∈Ji

ki⋂
k=1

Uk
i,ji

= W1 ∩ · · · ∩Wn,

which proves that W = W1 ∩ · · · ∩Wn ∈ T1 and that T is a topology on X.

Let us also recall the fundamental notion of neighbourhood.

Definition 1.1.4. Let (X,T ) be a topological space. We say that a (non-empty) set N is a neighbour-
hood of a point x ∈ X if there exists an open set U containing x such that U ⊂ N .

Finally, we also need the basic notion of interior, closure and frontier of a set.

Definition 1.1.5. Let (X,T ) be a topological space. Let A ⊂ X. Its interior, denoted by int(A) or Å,
is the largest open set contained in A, given explicitly by

int(A) =
⋃

U⊂A,U∈T

U,

whilst the closure of A, denoted by clos(A) or A, is the smallest closed set containing A, given explicitly
by

clos(A) =
⋂

F ⊃A,X\F ∈T

F.

The frontier (or boundary) of A is given by ∂A = A \ int(A).
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The defining properties of a topology trivially imply that those notions are well-defined for the
arbitrary intersection of closed sets is closed. Those definitions show that arbitrary unions are in general
needed to perform basic operations that mimic the classical notions in Euclidean spaces and manifolds.

The following notion will prove crucial in many a proof of those lectures. Indeed, proofs are typically
much easier for smooth or more regular functions, and when those functions are dense in a given (Banach)
space of functions, a standard argument typically allows one to extend the proof from smooth functions
to arbitrary functions in the said Banach space.

Definition 1.1.6. We say that a subset A ⊂ X of a topological space (X,T ) is dense if A = X.
We say that X is separable if it admits a countable dense set.

Finally, recall the notion of continuity.

Definition 1.1.7. Let (X,T ), (Y,S ) be two topological spaces. We say that a map f : X → Y is
continuous if for all open set V ∈ S , we have f−1(V ) ∈ T .

We can finally move to the familiar concept of metric spaces (all spaces encountered in this lecture
are metrisable).

Definition 1.1.8. Let X be an arbitrary set. We say that a map d : X × X → R+ is a metric if the
following three properties are satisfied

1. d(x, y) = 0 if and only if y = x (definiteness).

2. d(x, y) = d(y, x) for all x, y ∈ X (symmetry).

3. d(x, y) ≤ d(x, z) + d(z, y) for all x, y, z ∈ X (triangle inequality).

If d is a metric on X, the open ball of centre x ∈ X and radius r > 0 is defined by B(x, r) = X ∩
{y : d(x, y) < r}, and the closed ball by B(x, r) = X ∩ {y : d(x, y) ≤ r}.

Definition 1.1.9. A metric space (X, d) is a topological space whose basis of open sets is given by the
sets of all open balls {B(x, r)}x∈X,r>0.

Remark 1.1.10. Notice that metric spaces are always separated. It is quite unfortunate choice of
terminology, for the closed ball in an arbitrary metric is not always closed. However, the closed ball is
always closed in a normed space.

Theorem 1.1.11. Let (X, d) and (Y, h) be two metric spaces. Then f : X → Y is continuous if and only
if f is sequentially continuous, i.e. for all x ∈ X and for all sequences {xn}n∈N such that xn −→

n→∞
x, we

have f(xn) −→
n→∞

f(x) ∈ Y .

We can now move on to the definition of normed space, Banach space, and Hilbert space.

Definition 1.1.12. 1. Let X be a vector space on a field K (where K = R or K = C). We say that
a map ∥ · ∥X : X → R is a norm if the following associated map d : X → X → R+, such that
dX(x, y) = ∥x− y∥X is a distance on X, and for all λ ∈ K, we have

∥λx∥X = |λ| ∥x∥X .

The metric space (X, dX) is called a normed space and denoted (abusively) (X, ∥ · ∥X).

2. We say that (X, ∥ · ∥X) is a Banach space if the metric space (X, ∥ · ∥X) is a complete metric space.

In the following, K will denote either R or C.

Remarks 1.1.13. 1. Notice that we have by the triangle inequality for all x, y ∈ X

∥x+ y∥ = d(x,−y) ≤ d(x, 0) + d(0,−y) = ∥x∥+ ∥y∥ .
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2. In reality, there are no abuses of notations for the distance associated to a norm is defined bi-
univocally.

We can now move to the definition of Hilbert spaces. We first need to remind the definition of scalar
product.

Definition 1.1.14. Let E be a vector space on K. A scalar product ⟨ · , · ⟩ : E × E → R is a positive-
definite symmetric bilinear functional. In other words, it satisfies the following properties:

1. ⟨x, x⟩ > 0 for all x ∈ E \ {0} (positive-definiteness).

2. ⟨x, y⟩ = ⟨y, x⟩ for all x, y ∈ E (conjugate symmetry).

3. ⟨λu+ v, w⟩ = λ⟨u,w⟩+ ⟨v, w⟩ for all u, v, w ∈ E and λ ∈ K (linearity in the first variable).

Remark 1.1.15. Since ⟨ · , · ⟩ is symmetric, we need only check the linearity in the first variable.

Definition 1.1.16. We say that a Banach space (H, ∥ · ∥) is a Hilbert space if the following functional

⟨x, y⟩ = 1
4

(
∥x+ y∥2 − ∥x− y∥2

)
, x, y ∈ H

is a scalar product on H.

We do not recall here the useful properties of Hilbert spaces (Riesz-Fréchet representation theorem,
Hilbertian basis, and spectral decomposition that will not play a role immediately).

Remark 1.1.17. It may seem that we are replacing a definition by a theorem, but the polarisation
formula shows that it is a trivially equivalent definition.

Before mentioning the notion of dual space of a normed space and weak topology, let us recall a
statement of the Hahn-Banach theorem (see [11]).

Theorem 1.1.18 (Hahn-Banach). Let X be a real vector space and N : X → R be a sub-linear homoge-
nous map of degree 1, i.e. a map such that

1. N(λx) = λN(x) for all x ∈ X and λ > 0.

2. N(x+ y) ≤ N(x) +N(y) for all x, y ∈ X.

Let Y ⊂ X be a sub-vector space, and f : Y → R be a linear map such that f ≤ N|Y . Then, there exists
an extension f : X → R—i.e. such that f |Y = f—such that f ≤ N on X.

The proof uses the axiom of choice, and more precisely, the equivalent formulation known as the
Zorn’s lemma.∗ First introduce the following definitions.

Definition 1.1.19. (i) A partial order on a set X is a binary relation ≤ on X × X that satisfies the
following properties:

1. x ≤ x for all x ∈ X (reflexivity).

2. For all x, y ∈ X, if x ≤ y and y ≤ x, then x = y (anti-symmetry).

3. For all x, y, z, if x ≤ y and y ≤ z, then x ≤ z (transitivity).

(ii) We say that a subset Y ⊂ X is totally ordered (by ≤) if for all x, y ∈ Y , we have either x ≤ y, or
y ≤ x—in which case, we say that ≤ is a total order (on Y ).
(iii) We say that an element x ∈ X is an upper bound of Y is y ≤ x for all y ∈ X.
(iv) Finally, we say that x ∈ X is a maximal element if for all y ∈ X such that x ≤ y, we have y = x.

∗Another equivalent statement for the axiom of choice is Zermelo’s Theorem, that asserts that any set can be well-
ordered. This terminology is rather poorly chosen for what is called either a lemma or a theorem is nothing else than an
axiom. However, more than a century of usage will not be erased easily.
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Lemma 1.1.20 (Zorn’s lemma). Let (X,≤) be a non-empty inductive set, i.e. a set such that every
totally ordered subset admits an upper bound. Then, X admits a maximal element.

We can finally prove the Hahn-Banach theorem.

Proof. (Of Theorem 1.1.18)
Step 1. Finite-dimensional case.
The theorem is true in finite dimension without the axiom of choice, so let us first prove that a linear

map f : Rk ⊂ Rn → R (where k < n) always admits an extension f to Rk+1 satisfying f ≤ N on Rk+1.
Seeing Rk as Rk × {0} ⊂ Rn, we extend f by f : Rk × R→ R by

f(x, t) = f(x) + α t for all (x, t) ∈ Rk × R,

for some α ∈ R to be determined later. For all (x, t) ∈ Rk+1, we must have

f(x) + α t ≤ N(x, t),

where we identify by abuse of notation (x, t) with (x, , t, 0) ∈ Rn. For t > 0, by homogeneity of N , the
inequality is equivalent to(

f(x) + α t ≤ tN(t−1x, 1)
)
⇐⇒

(
f(y) + α ≤ N(y, 1) (y = t−1x)

)
,

and for t < 0, we get the condition

f(y)− α ≤ N(y,−1).

Therefore, α must satisfy

sup
y∈Rk

(f(y)−N(y,−1)) ≤ α ≤ inf
z∈Rk

(−f(z) +N(z, 1)).

Such an α always exists for f(y) − N(y,−1) ≤ −f(z) + N(z, 1) for all y, z ∈ Rk. Indeed, we have by
linearity of f

f(y) + f(z) = f(y + z) ≤ N(y + z) = N(y + z,−1 + 1) ≤ N(y,−1) +N(z, 1),

which concludes the proof of this step. Notice that an immediate induction gives an extension of f to
Rn.

Step 2. General case.
Let E be the set of extensions g : D(g) → R of f (where D(g) ⊃ Y is the domain of g) such that

g ≤ N |D(g). We introduce the partial order relation ≤ on E as follows:

(g1 ≤ g2)⇐⇒ (D(g1) ⊂ D(g2) and g2 = g1 on D(g1)) .

The set E is not empty since f ∈ E. Furthermore if F ⊂ E is totally ordered, writing F = {gi}i∈I , we
see that g :

⋃
i∈I D(gi)→ R such that g = gi on D(gi) is a well-defined function and an upper bound of

F . Therefore, E is inductive, and admits a maximal element that we will denote by f0. By Step 1, if
D(f0) ̸= X, f0 admits an extension f0 : D(f0)→ R such that D(f0)/D(f0) ≃ R has codimension 1. In
particular, it would imply that f0 is not a maximal element, a contradiction. Therefore, D(f0) = X and
f = f0 is an extension of f satisfying all expected properties.

Remark 1.1.21. Notice that we do not use the finite-dimension of the ambient space Rn in Step 1,
and this why we can apply it to the (potentially) infinite-dimensional case of Step 2.

We now let in the rest of this chapter (X, ∥ · ∥) be a normed space. The dual space X ′ (or X∗) is the
space of continuous linear forms f : X → R equipped with the following dual norm

∥f∥X′ = sup
x∈X

∥x∥≤1

|f(x)|. (1.1.2)

From Hahn-Banach theorem, we deduce the following corollary.
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Corollary 1.1.22. Let Y ⊂ X be a sub-vector space, and f : Y → R be a continuous linear form. Then,
there exists an extension f : X → R such that

∥∥f∥∥
X′ = ∥f∥Y ′ .

Proof. Take N(x) = ∥f∥Y ′ ∥x∥.

Corollary 1.1.23. For all x ∈ X, there exists f ∈ X ′ such that ∥f∥X′ = ∥x∥X and f(x) = ∥x∥2
X .

Proof. Apply Corollary 1.1.22 to f0 : Rx→ R, t 7→ ∥x∥2
X t.

Corollary 1.1.24. For all x ∈ X, we have

∥x∥X = sup
f∈X′

∥f∥X′ ≤1

|f(x)| = max
f∈X′

∥f∥X′ ≤1

|f(x)|. (1.1.3)

Proof. The inequality |f(x)| ≤ ∥f∥X′ ∥x∥X and Corollary 1.1.23 imply the result immediately.

We will not mention other the geometric forms of Hahn-Banach theorem (see [11]), but we will need
the following very useful result in the rest of the lecture.

Theorem 1.1.25. Let Y ⊂ X be a sub-vector space such that Y ̸= X. Then, there exists f ∈ X ′ \ {0}
such that f|Y = 0.

1.2 The Three Fundamental Theorem of Linear Operators in
Banach Spaces

First recall the Baire lemma.

Lemma 1.2.1 (Baire). Let (X, d) be a complete metric space. Let {Fn}n∈N ⊂ X a sequence of closed
spaces of empty interior, i.e. such that int(Fn) = ∅ for all n ∈ N. Then,

⋃
n∈N

Fn has empty interior too.

Let Y be a normed vector space. We denote by L (X,Y ) the space of continuous linear operators
X → Y , equipped with the following norm

∥T∥L (X,Y ) = sup
x∈X

∥x∥X ≤1

∥T (x)∥Y .

We skip the standard proof by induction.

Theorem 1.2.2 (Banach-Steinhaus, or Principle of Uniform Boundedness). Let (X, ∥ · ∥X), (Y, ∥ · ∥Y ),
be two Banach spaces, and {Ti}i∈I ⊂ L (X,Y ) be a family of continuous linear operators from X into
Y . Assume that for all x ∈ X, we have

sup
i∈I
∥Ti(x)∥Y <∞. (1.2.1)

Then, we have

sup
i∈I
∥Ti∥L (X,Y ) <∞. (1.2.2)

Proof. For all n ∈ N, let Fn = X ∩ {x : ∀i ∈ I, ∥Ti(x)∥ ≤ n}. Then Fn is an intersection of closed sets,
therefore, a closed set. Furthermore, we have

⋃
n∈N

Fn = X. Therefore, by Baire’s lemma, we deduce that

there exists N ∈ N such that int(FN ) ̸= ∅. In particular, there exists an open ball B(x0, r) in FN , and
we deduce that

∀i ∈ I, ∥Ti(x− x0)∥Y ≤ N for all x ∈ B(x0, r).

12



By linearity, we deduce that

∀i ∈ I, ∥Ti(x)∥Y ≤
1
r

(N + ∥Ti(x0)∥Y ) ∥x∥X ≤ C ∥x∥X ,

using (1.2.1) with x = x0.

Let us list a few corollaries.

Corollary 1.2.3. Let X and Y be two Banach spaces. Let {Tn}n∈N ⊂ L (X,Y ) be a sequence of linear
continuous operators from X to Y , such that for all x ∈ X, the sequence {Tn(x)}n∈N ⊂ Y converges to
a limit denoted by T (x) ∈ Y . Then, the following properties are satisfied:

1. sup
n∈N
∥Tn∥L (X,Y ) <∞.

2. T ∈ L (X,Y ).

3. ∥T∥L (X,Y ) ≤ lim inf
n→∞

∥Tn∥L (X,Y ) .

Proof. The first point 1. follows from Theorem 1.2.2. In particular, there exists a constant C <∞ such
that

sup
n∈N
∥Tn(x)∥Y ≤ C ∥x∥X for all x ∈ X.

In particular, we have

∥T (x)∥Y ≤ C ∥x∥X for all x ∈ X.

By linearity of Tn, we deduce that T is linear, which proves 2. Finally, the inequality

∥Tn(x)∥ ≤ ∥Tn∥L (X,Y ) ∥x∥X for all x ∈ X

implies the last point 3.

Corollary 1.2.4. Let X be a Banach space and A ⊂ X an arbitrary subset. Assume that A is weakly
bounded, i.e. for all f ∈ X ′, the set f(A) ⊂ R is bounded. Then, A is strongly bounded in X.

Proof. Let {Ta}a∈A ⊂ L (X ′,R) be defined by Ta(f) = f(a) for all f ∈ X ′. Then, we have

sup
a∈A
∥Ta(f)∥ <∞ for all f ∈ X ′.

Therefore, by Theorem 1.2.2, we have

sup
a∈A
∥Ta∥L (X′,R) <∞.

In particular, we have

|f(a)| ≤ C ∥f∥X′ for all f ∈ X ′.

Using Corollary 1.1.23, we deduce that ∥a∥ ≤ C for all a ∈ A, which concludes the proof.

The dual statement is given by the following.

Corollary 1.2.5. Let X be a Banach space and F ⊂ X ′. Assume that for all x ∈ X, the set F (x) =
R ∩ {y : y = f(x) for some f ∈ F} is bounded. Then, F is bounded.

Proof. The proof is almost identical, using the family {Tf = f}f∈F .

The second fundamental theorem of Banach is the following.
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Theorem 1.2.6 (Open Mapping Theorem). Let X and Y be two Banach spaces, and T ∈ L (X,Y ) be
a surjective linear continuous operator. Then, there exists r > 0 such that

BY (0, r) ⊂ T (BX(0, 1)).

Proof. Step 1. We show that BY (0, r) ⊂ T (BX(0, 1).

Since T is surjective, we have
⋃

n∈N
T (BX(0, n)) = Y . Therefore, Baire’s lemma implies that there

exists N ∈ N∗ such that int(T (BX(0, N))) ̸= ∅, and by linearity (T (BX(0, N)) = NT (BX(0, 1))), we
deduce that T (BX(0, N)) has non-empty interior. Therefore, there exists y0 ∈ Y and r > 0 such that
BY (y0, r) ⊂ T (BX(0, 1). Therefore, for all y ∈ BY (0, r), there exists {xn(y)}n∈N ⊂ BX(0, 1) such that

y0 + y = lim
n→∞

T (xn(y)).

Therefore, we have by linearity

y = lim
n→∞

T

(
xn(y)− xn(−y)

2

)
,

and since 1
2 (xn(y) − xn(−y)) ∈ BX(0, 1) by convexity, we deduce that y ∈ T (BX(0, 1)), which shows

that BY (0, r) ⊂ T (BX(0, 1)).
Step 2. We show that BY (0, r) ⊂ T (BX(0, 1)).
Let y ∈ BY (0, r), and fix some 0 < δ < 1 to be determined later. Then, there exists ε > 0 such that

(1 + ε)y ∈ BY (0, r). Therefore, by the previous step, there exists x0 ∈ BX(0, 1) such that

∥(1 + ε)y − T (x0)∥ < δr

2 .

Therefore, we get ∥∥y − T ((1 + ε)−1x0)
∥∥ < δ

(1 + ε)
r

2 = η
r

2 ,

where η = δ
1+ε to simplify. We deduce that there exists x1 ∈ BX(0, 1) such that∥∥2η−1(y − T ((1 + ε)−1x0))− T (x1)

∥∥ < η
r

2 ,

or ∥∥∥∥y − T ((1 + ε)−1
(
x0 + δ

2x1

))∥∥∥∥ < η2 r

4 .

By immediate induction, we deduce that there exists {xn}n∈N ⊂ BX(0, 1) such that for all n ∈ N, we
have ∥∥∥∥y − T ((1 + ε)−1

(
x0 + δ

2x1 + · · ·+
(
δ

2

)n

xn

))∥∥∥∥ < (η2)n+1
r −→

n→∞
0.

Furthermore, defining x′
n = (1 + ε)−1 ( δ

2
)n
xn, we have {x′

n}n∈N ⊂ BX(0, 1
1+ε ), and

∑
n∈N
∥x′

n∥X ≤
1

1 + ε

(
1 +

∞∑
n=1

(
δ

2

)n
)

= 1
1 + ε

(
1 + δ

1− δ

)
. (1.2.3)

Therefore, we deduce that
∑

n∈N x
′
n converges absolutely in BX(0, 1) (provided that δ > 0 is small

enough), which implies as X is a Banach space that
n∑

k=0
x′

k −→
n→∞

x ∈ BX

(
0,

1 + ε
2

1 + ε

)
⊂ BX(0, 1),

taking 0 < δ < ε
2+ε (δ = ε

3 would work). By continuity of T , we finally deduce that T (x) = y, which
concludes the proof of the theorem.
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Finally, we give the third theorem of Banach.

Theorem 1.2.7 (Closed Graph Theorem). Let X, Y be two Banach spaces, and T : X → Y be a linear
map. Assume that the graph of T ,

G (T ) = X × Y ∩ {(x, y) : y = T (x)}

is a closed set of X × Y . Then T is continuous.

Proof. Consider on X the norm |||x||| = ∥x∥X + ∥T (x)∥Y . Since G (T ) is closed, (X, ||| · |||) is a Banach
space. Indeed, let {xn}n∈N ⊂ (X, ||| · |||) be a Cauchy sequence. Then, we have

lim sup
n,m→∞

|||xn − xm||| = 0.

Equivalently, we have

lim sup
n,m→∞

∥xn − xm∥X = 0 et lim sup
n,m→∞

∥T (xn)− T (xm)∥Y = 0.

In particular, {xn}n∈N ⊂ X and {yn = T (xn)}n∈N ⊂ Y . As X and Y are Banach spaces, we deduce that
there exists x∞ ∈ X and y∞ ∈ Y such that xn −→

n→∞
x∞ in X and yn −→

n→∞
y∞ in Y . By hypothesis, as

G (T ) is closed, we deduce that (x∞, y∞) ∈ G (T ), which shows that T (x∞) = y∞. Therefore, we have

|||xn − x∞||| −→
n→∞

0

and this shows that (X, ||| · |||) is a Banach space.
Furthermore, we have ∥ · ∥X ≤ ||| · |||. By the open map theorem applied to the identity map

Id(X, ||| · |||) → (X, ∥ · ∥), we deduce that there exists r > 0 such that B∥ · ∥(0, r) ⊂ Id
(
B||| · |||(0, 1)

)
=

B||| · |||(0, 1). In other words, for all x ∈ X such that ∥x∥ < r, we have |||x||| < 1. In other words, we have

sup
∥x∥≤r

|||x||| ≤ 1,

which is equivalent thanks to the homogeneity of the norm that

sup
∥x∥≤1

|||x||| ≤ 1
r
.

In particular, we have

sup
∥x∥X ≤1

∥T (x)∥Y ≤
1
r

which shows that ∥T∥L (X,Y ) ≤
1
r
<∞.

The argument in the second part of the proof works in a more general setting.

Corollary 1.2.8. Let X and Y be two Banach spaces, and let T ∈ L (X,Y ) be a bijective linear operator.
Then, the inverse T−1 : Y → X is continuous.

Proof. By the Open Mapping Theorem (Theorem 1.2.6), we deduce that there exists r > 0 such that

r ∥x∥X ≤ ∥T (x)∥Y for all x ∈ BX(0, 1),

which shows that
∥∥T−1∥∥

L (Y,X) ≤
1
r

.
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1.3 Weak Topology

1.3.1 General Definition

Let X be a set and {Yi}i∈I be a family of topological spaces. For all i ∈ I, we fix some map φi :
X → Y . The weak topology on X is with topology that makes all maps φi : X → Yi continuous.
Notice that this is well-defined by Definition 1.1.3), and the associated pre-topology is given by T0 ={
φ−1

i (Vi) : Vi open subset of Yi

}
.

Proposition 1.3.1. Let {xn}n∈N be a sequence of X. Then xn ⇀
n→∞

x for the weak topology if and only
if φi(xn) −→

n→∞
φi(x) ∈ Yi for all i ∈ I.

Proof. The first implication is trivial for each map φi : X → Yi is continuous with respect to the weak
topology. Conversely, let U be a neighbourhood of x. By the construction of Definition 1.1.3, we can
assume that

U =
n⋂

j=1
φ−1

ij
(Vij ),

where Vij
is an open set of Yij

(by hypothesis, Vij
is also a neighbourhood of φij

(x)). For all 1 ≤ j ≤ n,
there exists Nj ∈ N such that φij

(xn) ∈ Vij
for al n ≥ Nj . In particular, taking N = max {N1, · · · , Nn},

we deduce that for all n ≥ N , xn ∈ U , which concludes the proof.

1.3.2 Weak Topology on a Banach Space

Let X be a Banach space, and f ∈ X ′. Let φf : X → R be defined by φf (x) = f(x) for all x ∈ X. Then,
the weak topology σ(X,X ′) on X is the weak topology associated to the family of maps {φf}f∈X′ . To
emphasise the duality, we will sometimes write f(x) = ⟨f, x⟩.

We will denote the weak convergence of {xn}n∈N ⊂ X to some element x ∈ X in the weak topology
by the half-arrow ⇀. Notice that by what precedes (Proposition 1.3.1), we have(

xn ⇀
n→∞

x
)
⇐⇒

(
f(xn) −→

n→∞
f(x) ∈ R for all f ∈ X ′

)
.

Let us list some basic properties of the weak topology.

Proposition 1.3.2. The weak topology σ(X,X ′) is separated.

Proof. The proof follows from the geometric version of Hahn-Banach theorem, and will be omitted.

Proposition 1.3.3. Let {xn}n∈N ⊂ X. The following properties are verified:

1. The sequence {xn}n∈N weakly converges to some element x ∈ X if and only if f(xn) −→
n→∞

f(x) ∈ R
for all f ∈ X ′.

2. If xn −→
n→∞

x strongly, then xn ⇀
n→∞

x weakly.

3. If xn ⇀
n→∞

x weakly, then {∥xn∥}n∈N ⊂ R+ is bounded and

∥x∥ ≤ lim inf
n→∞

∥xn∥ . (1.3.1)

4. If xn ⇀
n→∞

x weakly, and {fn}n∈N ⊂ X ′ converges towards some element f ∈ X ′, then fn(xn) −→
n→∞

f(x).
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Proof. The first property 1. is trivial by definition of the weak topology and Proposition 1.3.1. The
second 2. follows from the inequality |f(xn)− f(x)| ≤ ∥f∥X′ ∥xn − x∥X .

Let us prove 3. now. We apply Corollary 1.2.5. We need to check that for all f ∈ X ′, {f(xn)}n∈N ⊂ R
is bounded, which is trivially satisfied since f(xn) −→

n→∞
f(x) by definition of the weak convergence.

Furthermore, for all n ∈ N, we have

|f(xn)| ≤ ∥f∥X′ ∥xn∥X ,

which implies that

|f(x)| ≤ ∥f∥X′ lim inf
n→∞

∥xn∥X .

Finally, Corollary 1.1.24 implies that

∥x∥X = max
f∈X′

∥f∥X′ ≤1

|f(x)| ≤ lim inf
n→∞

∥xn∥X .

The last property 4. follows immediately by the triangle inequality:

|fn(xn)− f(x)| ≤ |fn(xn)− f(xn)|+ |f(xn)− f(x)| ≤ ∥fn − f∥X′ ∥xn∥X + ∥f∥X′ ∥xn − x∥X ,

which implies the claim by the previous property 3..

We end this section by a few remarks on the weak topology.

Remarks 1.3.4. The weak topology has many surprising properties:

1. The adherence of the unit sphere S = X ∩ {x : ∥x∥X = 1} for the weak topology is the closed ball
B = X ∩{x : ∥x∥X ≤ 1}. We will see that in a reflexive space (to be defined in Definition 1.4.1), B
is a compact set for the weak topology, although this set is never compact for the strong topology
in infinite dimension. This is why the weak topology is so important: it allows one to solve partial
differential equations thanks to a compactness argument.

2. The interior of B = X ∩ {x : ∥x∥X < 1} for the weak topology is empty.

3. In infinite dimension, the weak topology is never metrisable. This is why it is futile to define it
using convergence of sequences, although for most applications, one need only look at sequences.

4. In infinite dimension, there are sequences that converge weakly but do not converge strongly.

1.4 Weak ∗ Topology

Let X be a Banach space, X ′ its dual space, and X ′′ = (X ′)′ the dual space of X ′ (also called bidual of
X). We endow it with the following norm

∥φ∥X′′ = sup
f∈X′

∥f∥X′ ≤1

|φ(f)|. (1.4.1)

There is a canonical injection J : X → X ′′, defined as follows. Let x ∈ X and J(x) : X ′ → R, f 7→
⟨J(x), f⟩ = f(x). Then J(x) ∈ X ′′. Furthermore, we immediately check that J defines a linear map
X → X ′′, which is an isometry for

∥J(x)∥X′′ = sup
f∈X′

∥f∥X′ ≤1

|⟨J(x), f⟩| = sup
f∈X′

∥f∥X′ ≤1

|f(x)| = ∥x∥X , (1.4.2)

using Corollary 1.1.23.
Therefore, X is isometric to a subset of X ′′. This allows us to introduce a fundamental notion that

will prove fundamental in the following (and explain all the pathologies of spaces such as L1 and L∞).
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Definition 1.4.1 (Reflexive spaces). We say that a Banach space is reflexive if the isometric injection
J : X ↪→ X ′′ is surjective, i.e. J(X) = X ′′.

Common examples of reflexive spaces are the Lp spaces (on a locally compact group, say) for expo-
nents 1 < p <∞.

Before listing the major properties of reflexive spaces, we now define the weak ∗ topology σ(X ′, X)
on X ′.

Definition 1.4.2. The weak ∗ topology† is the smallest topology that makes all maps J(x) : X ′ → R
continuous, where x ∈ X. We denote it σ(X ′, X). We denote by ∗

⇀ the convergence for sequences of X ′.

Let us give a few basic properties of the weak topology.

Proposition 1.4.3. The weak ∗ topology on X ′ is separated.

Proof. Let f, g ∈ X ′ such that f ̸= g. Then, there exists x ∈ X such that f(x) ̸= g(x). Assume without
loss of generality that f(x) < g(x), and let α ∈ R such that

f(x) < α < g(x),

then J(x)−1(]−∞, α[) and J(x)−1(]α,∞[) are disjoint open (for the weak ∗ topology) subset of X ′ that
respectively contain f and g.

We now list the basic properties of the weak ∗ topology (the proof is almost identical to the one of
Proposition 1.3.3, and we omit it).

Proposition 1.4.4. Let {fn}n∈N ⊂ X ′. Then the following properties are satisfied.

1. The sequence {fn}n∈N converges to f ∈ X ′ if and only if fn(x) −→
n→∞

f(x) for all x ∈ X.

2. If fn −→
n→∞

f ∈ X ′ strongly, then fn ⇀
n→∞

f weakly for the weak topology σ(X ′, X ′′). If fn ⇀
n→∞

f ∈
X ′ for the weak topology σ(X ′, X ′′), then fn ⇀

n→∞
f weakly for the weak ∗ topology σ(X ′, X).

3. If fn
∗
⇀

n→∞
f , then {∥fn∥X′}n∈N ⊂ R+ is bounded and

∥f∥X′ ≤ lim inf
n→∞

∥fn∥X′ . (1.4.3)

4. If fn
∗
⇀

n→∞
f , and xn −→

n→∞
x strongly, then fn(xn) −→

n→∞
f(x).

We end this section by a fundamental compactness theorem that justifies the introduction.

Theorem 1.4.5 (Banach-Alaoglu-Bourbaki). The unit closed ball B = X ′ ∩{f : ∥f∥X′ ≤ 1} is compact
for the weak ∗ topology σ(X ′, X).

Proof. The proof is an easy application of Tychonoff’s theorem (the arbitrary product of compact set is
compact). Notice that this “theorem” is equivalent to the axiom of choice, so it was not very limiting to
use Hahn-Banach theorem previously considering that the compactness of the unit ball for the weak ∗
topology is needed in many applications.

Now, let Y = RX equipped with the product topology. Let Φ : X ′ → Y defined by

Φ(f) = {f(x)}x∈X for all f ∈ X ′.

By definition of the product topology, since each canonical projection πx ◦ Φ = J(x) : X ′ → R is
continuous (x ∈ X), we deduce that Φ is a continuous map. Here, we denoted πx : Y = RX → R the
canonical projection on the “x factor.” Furthermore, note that Φ is injective since for all given elements

†One pronounces weak star topology.
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f, g ∈ X ′, the equality f = g holds if and only if f(x) = g(x) for all x ∈ X. Now, consider the inverse
map Φ−1 : Φ(X ′)→ X ′. We need only prove that for all x ∈ X, the map y 7→ ⟨Φ−1(y), x⟩ is continuous,
but it is trivial since ⟨Φ−1(y), x⟩ = πx(y).

Now, we observe that

Φ(B) = Y ∩{y : |πx(y)| ≤ ∥x∥ , πx+x′(y) = πx(y) + πx′(y),
πλ x(y) = λπx(y) for all x, x′ ∈ X and λ ∈ R} .

Notice that the set A1 = Y ∩ {y : |πx(y)| ≤ ∥x∥ for all x ∈ X} =
∏

x∈X [−∥x∥ , ∥x∥] is compact by
Tychonoff’s theorem, whilst

A2 = Y ∩ {y : πx+x′(y) = πx(y) + πx′(y), πλx(y) = λπx(y) for all x, x′ ∈ X and λ ∈ R}

is closed as intersection of closed sets. Therefore, we deduce that Φ(B) = A1 ∩A2 is compact.

1.5 Reflexive Spaces

Recall that by the Definition 1.4.1, a Banach space is reflexive if the canonical (isometric) injection
J : X → X ′′ is surjective. The major theorem is the following result of Kakutani.

Theorem 1.5.1 (Kakutani). Let X be a Banach space. Then, X is reflexive if and only if the unit
closed ball B = X ∩ {x : ∥x∥X ≤ 1} is compact for the weak topology σ(X,X ′).

We omit the (rather technical) proof.

Remark 1.5.2. We see that for a reflexive space, the weak ∗ topology is useless. However, for a non-
reflexive space that is the dual of a Banach space (as L∞), the weak ∗ topology furnishes a topology for
which the unit ball is compact, which has fundamental applications to calculus of variations and partial
differential equations.

We also mention the following theorem that is not trivial, contrary to what one may think.

Theorem 1.5.3. A Banach space is reflexive if and only if its dual space is reflexive.

1.6 Separable Spaces

We have the following results.

Theorem 1.6.1. Let X be a Banach space such that X ′ is separable. Then, X is separable.

Remark 1.6.2. L∞, the dual of L1, is not separable, although L1 (as all Lebesgue spaces Lp for
1 ≤ p <∞) is separable (provided that we consider the space L1 on an open subset of Rd for example).

Theorem 1.6.3. Let X be a Banach space. Then X is reflexive and separable if and only if X ′ is
reflexive and separable.

We assume the reader familiar with Lebesgue spaces (since they are special cases of Sobolev spaces)
and do not recall here the basic results such as the Hölder’s inequality (we will see generalisations of
it), the convergence theorems of Lebesgue or Fatou, or the inequality for convolutions that will all be
treated in the more general setting of Lorentz and Orlicz spaces.
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Chapter 2

Distributions

2.1 Basic Notations

From now on, we let d ≥ 1 and consider a (connected) open subset Ω ⊂ Rd. For all α = (α1, · · · , αd) ∈ Rd,
we define the |α|-order operator (where |α| = α1 + · · ·+ αd) by

Dα = ∂|α|

∂xα1
1 · · · ∂x

αd

d

.

Then the Taylor expansion shows that for any smooth function f : Ω → R, and for all m ∈ N, and
x0 ∈ Ω we have for all x ∈ Ω such that
[x0, x] = Ω ∩ {y : y = tx+ (1− t)x0 for some t ∈ [0, 1]} ⊂ Ω

f(x) =
∑

|α|≤m

Dαf(x0)
α! (x− x0)α +

∑
|β|=m+1

m+ 1
β!

∫ 1

0
Dβf(x0 + t(x− x0))(1− t)mdt (2.1.1)

where α! = α1! · · ·αd!, and yα = yα1
1 · · · y

αd

d for all y ∈ Rd.

2.2 Topological Vector Spaces

Distributions are defined as dual spaces of generalisations of Banach spaces for which the topology is
defined by an (uncountable) family of semi-norms. Those spaces are locally convex topological vector
spaces (see [13], Chapter 1) that are not metrisable (a metrisable locally convex topological vector space
is called a Fréchet space). On the other hand, tempered distributions are defined as dual space of Fréchet
spaces. A bad definition of locally convex topological vector spaces would be to start with a countable
family of semi-norms, for it would not explain why such a definition is natural. We will therefore follow
the order of Edwards ([13]).

In recent analysis textbooks on distributions, the topological foundations are barely mentioned, and
only sequential convergence of distributions is mentioned. Even if sequences suffice in most applications,
we find it helpful to give suitable background to those interested to continue further in the theoretical di-
rection, that answer many a non-trivial question, such as the PhD thesis ([19]) of Alexandre Grothendieck
(made under the direction of Laurent Schwartz) that solved most problems in the field, and notably gave
rise to the notion of nuclear spaces. Grothendieck showed that there is another natural notion of tensor
product of locally convex topological vector spaces, much to the dismay of Schwartz! However, for a
sub-class of locally convex topological vector spaces, the tensor product is unique, and Grothendieck
called them nuclear. Thankfully, all spaces of distributions D , D ′, E , E ′, S , S ′ and the space of
holomorphic functions on a complex manifold are all nuclear. However, one can endow those spaces with
various topologies, and one should give a rationale why one notion is preferred to the other. Spaces of
general distributions (contrary to tempered distributions) are not metrisable, and one therefore needs to
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give a satisfying definition of topology and not restrict to sequences without further explanations. Up
to this day, Grothendieck’s PhD remains his most quoted work. Out of the enormous amount of results
it contains (even restricting to Banach or Hilbert spaces), we cannot resist to mention Grothendieck’s
inequality, that has deep applications to various fields, and whose optimal constants are still unknown.

Needless to say, this theorem is only mentioned for cultural reasons. Consider it as hors-piste
(off-piste).

Theorem 2.2.1 (Grothendieck, 1955). For all N ∈ N, and 1 ≤ p < ∞, define for all x ∈ KN (where
K = R or K = C)

∥x∥p =
(

N∑
i=1
|xi|p

) 1
p

,

and for p =∞

∥x∥∞ = sup
1≤i≤N

|xi| = max
1≤i≤N

|xi|.

For all matrix A ∈ Mm,n(K), and for all 1 ≤ p, q ≤ ∞, define the operator norm of A as a map
(Kn, lp)→ (Km, lq) is defined by

∥A∥p,q = sup
x∈Kn

∥x∥p≤1

∥A(x)∥q .

Then, the following statement holds. There exists a universal constant KK
G <∞ such that for all m,n ≥ 1

and A ∈Mm,n(K), for all Hilbert space (H, ∥ · ∥H),

sup
(u,v)∈Hm×Hn

∥ui∥H ,∥vj∥H ≤1

∣∣∣∣∣∣
m∑

i=1

n∑
j=1

Ai,j⟨ui, vj⟩H

∣∣∣∣∣∣ ≤ KK
G ∥A∥∞,1 . (2.2.1)

Remark 2.2.2. The ∥ · ∥∞,1 norm of A is alternatively given by

∥A∥∞,1 = sup
(x,y)∈Km×Kn

∥x∥∞,∥y∥∞≤1

∣∣∣∣∣∣
m∑

i=1

n∑
j=1

Ai,jxixj

∣∣∣∣∣∣ = max
(x,y)∈Km×Kn

∥x∥∞,∥y∥∞≤1

m∑
i=1

n∑
j=1

Ai,jxixj .

Therefore, the inequality can be recast in the more elegant way:

max
(u,v)∈Hm×Hn

∥ui∥H ,∥vj∥H ≤1

m∑
i=1

n∑
j=1

Ai,j⟨ui, vj⟩H ≤ KK
G

 max
(x,y)∈Km×Kn

∥x∥∞,∥y∥∞≤1

m∑
i=1

n∑
j=1

Ai,jxixj

 . (2.2.2)

The main surprising feature of this theorem is that the constant is independent of m,n ≥ 1 (refining
the theorem, it means that the Grothendieck constant can seen be as a function of m,n, which, by
Grothendieck’s result, stays bounded as m,n→∞).

The exact values of the real and complex Grothendieck constants are unknown, but we have the
bounds:

π

2 < KR
G <

π

2 log(1 +
√

2)

and

4
π
< KC

G < e1−γ ,
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where γ is the famous Euler constant:

γ = lim
n→∞

(
n∑

k=1

1
k
− log(n)

)
.

There are more precise bounds, but they are either complicated or false (using either elliptic function,
or unpublished and only appearing as a private communication from 1984∗ in [20]). See the survey of
Gilles Pisier for more information on this topic ([32]).

Definition 2.2.3. A gauge on X is real-valued function G : X → R such that

1. G(λx) = λG(x) for all x ∈ X and λ ≥ 0.

2. G(x+ y) ≤ G(x) +G(y) for all x, y ∈ X.

Definition 2.2.4. Let X be a vector space over K, where K is R or C. Then, a semi-norm on X is a
map N : X → R+ such that

1. N(λx) = |λ|N(x) for all x ∈ X,λ ∈ K.

2. N(x+ y) ≤ N(x) +N(y) for all x, y ∈ X.

The only difference with a norm is that we do not require that N(x) = 0 if and only if x = 0.
In the rest of this section, we fix a field K that is either R or C.
We can now move on to the definition of topological vector spaces.

Remark 2.2.5. Taking λ = 2 and x = 0, we deduce that N(0) = 0. In particular, for all x ∈ X, we
have 0 = N(0) = N(x − x) ≤ N(x) + N(−x) = 2N(x). Therefore, we see that the requirement that
N ≥ 0 is not necessary in the definition of a norm.

Definition 2.2.6 (Topological Vector Space). A topological vector space on K is a vector space X on
K equipped with a topology T such that the maps:

1. X ×X → X, (x, y) 7→ x+ y;

2. K×X → X, (λ, x) 7→ λx

are continuous.

Example 2.2.7. Although not commonly studied in first courses on integration due to their pathologies
and surprising properties (such as the reverse Minkowski inequality for p < 1 and positive functions), Lp

spaces of exponent 0 < p < 1 do come up in some applications. Let 0 < p <∞, and consider the space

L p([0, 1]) = M ([0, 1],C) ∩
{
f :
∫ 1

0
|f(t)|pdt <∞

}
,

where M ([0, 1],C) is the set of measurable functions from the unit interval [0, 1] into the complex plane
C. Then the following semi-metric (on Lp, since it is not a semi-metric on L p)

dp(f, g) =
(∫ 1

0
|f(t)− g(t)|pdt

) 1
p

endows L p with a topological vector space structure. When p ≥ 1, the topology is induced by the semi-
norm N(f) = ∥f∥Lp([0,1]) (here, we did not take the quotient by the equivalence relation that identifies
two functions that differ on a negligible set, so L p is not a normed space, an a fortiori not a Banach
space).

Recall that a semi-metric is a map d : X ×X → R+ that satisfies all metric axioms but the triangle
inequality (see Definition 1.1.8).

∗What will people think of this private communication in 2084?
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2.3 Locally Convex Topological Vector Spaces

We will not study the general properties of topological vector spaces for our main interest will be the
smaller close of locally convex topological vector spaces.

Definition 2.3.1 (Locally convex topological vector spaces). A locally convex topology vector space is
a topological vector space that admits a basis of neighbourhoods of 0 made of convex sets.

Remarks 2.3.2. 1. Lp spaces with exponent 0 < p < 1 are not locally convex, whilst Lp spaces for
1 ≤ p ≤ ∞ is locally convex.

2. The space of continuous functions on a compact set equipped with the uniform convergence topology
is locally convex.

Finally, we come to the statement that permits to define workable topology on locally convex topo-
logical vector spaces.

We first need a few elementary results after introduction some basic topological definitions.

Definition 2.3.3 (Absorbent and Balanced Sets). A subset A ⊂ X is called absorbent if for all x ∈ X,
there exists λ > 0 such that λx ∈ X.

A subset A ⊂ X is called balanced if λx ∈ A for all x ∈ A and λ ∈ K such that |λ| ≤ 1.

Lemma 2.3.4. Let X be a topological vector spaces. Then, there exist either a neighbourhood base at 0
comprised of sets that are all balanced and open, or balanced and closed.

Proof. We only prove the existence of the neighbourhood of balanced open sets.
By the definition of a general topology, there exists a base of neighbourhoods at 0 comprised of open

sets. Let U be an arbitrary neighbourhood of 0. By the second axiom of topological vector spaces
(Definition 2.2.6), there exists ε > 0 and an open neighbourhood V of 0 such that for all x ∈ V and
|λ| ≤ ε, we have λU . Let W be the balanced enveloped of εV (the smallest balanced set containing εV ;
since the arbitrary intersection of balanced sets is balanced, this is well-defined). Since V is open, we
deduce that W is open. Indeed, the balanced envelope W = B(V ) of V is explicitly given by

B(V ) = X ∩ {y = λx : x ∈ V, λ ∈ K, |λ| ≤ 1} = V ∪
⋃

λ∈K∗

|λ|≤1

λV,

which is an arbitrary union of open sets thanks to the second axiom of topological vector spaces. There-
fore, we deduce that for all λ ∈ K∗ and for all open set Z, the set λZ is open.

Furthermore, we have W ⊂ U by definition of V , which concludes the proof.

Now, by Lemma 2.3.4, we deduce that there exists a neighbourhood base of 0 made of closed,
convex, and balanced sets. Indeed, let U be a neighbourhood of 0, and let U1 be a closed and balanced
neighbourhood of 0 such that U1 ⊂ U . Then, there exists a convex neighbourhood U2 ⊂ U1 of 0, and a
closed and balanced neighbourhood U3 ⊂ U2 of 0. Finally, taking the closure of the convex envelope of
U3 yield a closed set V ⊂ U that is a neighbourhood of 0.

Letting now {Ui}i∈I be a neighbourhood base of 0 made of closed, convex and balanced subsets of
X. We will need the concept of Minkowski gauge and a few technical results.

Theorem 2.3.5. Let C be a convex and absorbent subset of X which contains 0. Define the following
real-valued function G : X → R by

G(x) = inf R∗
+ ∩

{
λ : λ−1x ∈ C

}
.

Then, G is a positive gauge on X such that

G−1(]−∞, 1[) ⊂ C ⊂ G−1(]−∞, 1]). (2.3.1)

We say that G is the Minkowsky gauge of C.
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Proof. Since C is absorbent, the set R∗
+∩
{
λ : λ−1x ∈ C

}
is non-empty, which shows that G is well-defined

and satisfies G(x) ≥ 0. Now, for all λ > 0, we have G(λx) = inf R∗
+ ∩

{
µ : µ−1(λx) ∈ C

}
= λG(x) by an

immediate change of variable. Now, by convexity of C, if λ, µ > 0 are such that λ−1x ∈ C and µ−1y ∈ C,
we have

(λ+ µ)−1(x+ y) = λ

λ+ µ
(λ−1x) + µ

λ+ µ
(µ−1y) ∈ C.

Taking the infimum in λ and µ, we deduce that G(x+ y) ≤ G(x) +G(y).
Finally, we need only prove the first inclusion, for the other one is trivial (x = 1−1x ∈ G−1(]−∞, 1])

for all x ∈ C). If G(x) < 1, there exists 0 < λ < 1 such that λ−1x ∈ C. Since 0 ∈ C and C is convex,
we have x = λ(λ−1x) + (1− λ)0 ∈ C. This concludes the proof of the theorem.

We now introduce a new definition to state a useful corollary.

Definition 2.3.6. We say that a subset A ⊂ X is open (resp. closed) in rays if for all x ∈ X, the set
Ix = R∗

+ ∩
{
λ : λ−1x ∈ A

}
is open (resp. closed) relative to the interval I = R∗

+ = (0,∞).

Corollary 2.3.7. Let C be a convex and absorbent subset of X containing 0, and let G be its Minkowski
gauge. If C is open (resp. closed) in rays, then C = G−1(]−∞, 1[) (resp. C = G−1(]−∞, 1])). In either
case, C is balanced if and only if G is a semi-norm on X.

Proof. We only treat the case of C open in rays. By (2.3.1), we need only prove that C ⊂ G−1(]−∞, 1[).
Let x ∈ C. Then 1 ∈ Ix, and since Ix is open in rays, we deduce that there exists 0 < λ < 1 such that
λ ∈ Ix. In particular, we have G(x) ≤ λ < 1.

If G is a semi-norm, then C = G−1(]−∞, 1[) is trivially balanced, for G(λx) = |λ|G(x) ≤ G(x) < 1
for all x ∈ C and |λ| ≤ 1. Conversely, if C is balanced, for all ε > 0 fixed and x ∈ X, we have
(G(x) + ε)−1x ∈ C, which implies in particular that for all λ ∈ K∗, we have (|λ|(G(x) + ε))−1(λx) ∈ C,
so that G(λx) ≤ |λ|(G(x) + ε). Letting ε→ 0, we deduce that

G(λx) ≤ |λ|G(x).

Replacing λ ∈ K by λ−1, and x by λx, we get

G(x) ≤ |λ|−1G(λx),

which shows that G(λx) = |λ|G(x).

Thanks to the previous results, we deduce that for all i ∈ I, if Ni is the Minkowski gauge of Ui, then
Ni is a semi-norm, and Ui = N−1

i (] −∞, 1]). Therefore, we have proved that the family of semi-norms
Ni on X gives a neighbourhood base at 0. Notice that the family

{
N−1

i (]−∞, 1[)
}

i∈I
yields an open

basis of neighbourhood of 0.
Conversely, we immediately check that an arbitrary family of semi-norms on X endows X with a

structure of locally convex topological vector space. Such a family is called a defining family.
Summarising the previous discussion, we now state the following theorem.

Theorem 2.3.8. Let X be a locally convex topological vector space. Then, there exists a family of semi-
norms {Ni}i∈I on X such that

{
N−1

i (]−∞, 1[)
}

i∈I
(resp.

{
N−1

i (]−∞, 1])
}

i∈I
) is a neighbourhood base

at 0 of open (resp. closed) convex, and balanced subsets of X.
Furthermore, X is separated if and only if

sup
i∈I

Ni(x) > 0 for all x ∈ X \ {0} . (2.3.2)

Proof. We have already proven the first part, so we need only prove the second part. Since X is a
vector space, X is separated if and only if for all x0 ∈ X, there exists two open sets U1 and U2 such
that 0 ∈ U1, x0 ∈ U2 and U1 ∩ U2 = ∅. Assume that X is separated. Without loss of generality,
we can assume that U1 = X ∩ {x : N1(x) < 1} and U2 = X ∩ {x : N2(x0 − x) < 1}, where N1 and
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N2 are semi-norms. Since U1 and U2 have empty intersection, we deduce in particular that 0 /∈ U2,
i.e. N2(x0) = N2(x0 − 0) ≥ 1, which shows the second implication. If there exists i ∈ I such that
Ni(x0) = ε > 0. Therefore, U1 ∩

{
x : Ni(x) < ε

2
}

and U1 = X ∩
{
x : Ni(x) > ε

2
}

are disjoint open
neighbourhoods of 0 and x0 respectively.

2.4 Dual Space of a Topological Vector Space

On a topological vector space X, we define—as in the case of normed spaces—the space X ′ as the space
of continuous linear forms X → R. If X,Y are topological vector spaces, we let L (X,Y ) be the vector
space of continuous linear maps from X to Y .

Finally, we remark that the definition we gave of weak topology for the dual of a normed space also
makes sense for the dual of a topological vector space, and that allow us to define the natural topology
on distributions. Furthermore, provided that X is locally convex, if {Ni}i∈I is a family of semi-norms
defining the topology of X, we can define a strong topology on X ′, denoted by β(X ′, X), such that for
all sequence {f}n∈N ∈ X ′, we say that {fn}n∈N converges to f ∈ X ′ if and only if for all bounded subset
B ⊂ X, we have

sup
i∈I

sup
x∈B

Ni(fn(x)− f(x)) = 0.

Both topologies σ(X ′, X) and β(X ′, X) endow X with the topology of a locally convex topological space,
as one immediately verifies.

Remark 2.4.1. Contrary to the familiar case of Banach spaces where dual spaces generally offer a lot
of information, the dual of a locally convex topological vector space might be reduced to {0}, as the
example of Lp([0, 1]) shows when 0 < p < 1.

2.5 Distributions

2.5.1 General Definition and Topologies

Finally, we can move on to the definition of distributions.
Let Ω be an open set of Rd, and define the space space of smooth functions of compact support by

D(Ω) = C∞
c (Ω) = C∞(Ω) ∩ {φ : supp (φ) ⊂⊂ Ω}

We can also see it as the inductive limit of the spaces

DK(Ω) = C∞(Ω) ∩ {φ : supp(φ) ⊂ K} ,

where K ⊂ Ω ranges all compact subsets of Ω, that we will define below. Notice that

D(Ω) =
⋃

K⊂Ω
K compact

DK(Ω)

For all m ∈ N and compact subset K ⊂ D(Ω), define the semi-norm on D(Ω) by

∥φ∥m,K = sup
|α|≤m

∥Dαφ∥L∞(K) .

This topology on D(Ω) gives the latter space the If K is fixed, this family of semi-norms endows DK(Ω)
with a Fréchet space structure, where the metric is given by

dK(φ,ψ) =
∑
m∈N

1
2m

∥φ− ψ∥m,K

1 + ∥φ− ψ∥m,K

.
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Now, if {Kn}n∈N is an exhaustive sequence of compact sets of Ω, then the topological vector space
(D(Ω),

{
∥ · ∥m∈N

}
) can be equipped with a distance:

d(φ,ψ) =
∑
m∈N

∑
n∈N

1
2m+n

∥φ− ψ∥m,Kn

1 + ∥φ− ψ∥m,Kn

,

making it a Fréchet space. However, the dual of such a space is not the space of distributions D ′(Ω), but
the space of distributions with compact support E ′(Ω), and one checks that E (Ω) = (D(Ω),

{
∥ · ∥m∈N

}
) =

C∞(Ω), equipped with the compact-open topology: the topology of uniform convergence on all compact
for each Dαφ (α ∈ Nd).

The topology on D(Ω) is given by an inductive limiting procedure.

Definition 2.5.1. Let {Xi}i∈I a family of topological vector spaces, X be a vector space, fi : Xi → X
be a linear map. Then, the inductive (or final) topology on X is the biggest locally convex topology on
X such that each map fi is continuous, and we write X = lim−→Xi.

The same definition would make sense in the category of sets instead of the category (locally convex)
topological vector spaces.

Remark 2.5.2. 1. We see that this topology is defined in a very similar way than the weak topology,
although the base and target spaces are reverted—we also take the finest topology, not the coarsest
one, but in the category of locally convex topologies (otherwise, we would end up taking the discrete
topology on X).

2. Explicitly, a subset U ⊂ X is open if and only if f−1
i (U) is open for all i ∈ I.

3. Although the notation X = lim−→Xi might seem frightening, in practice, it poses no issues to check
if a set is open for the inductive limit topology.

Now, take as previously an exhaustive sequence of compact sets {Kn}n∈N ⊂ Ω. Then, as previously,
we have

D(Ω) =
⋃

n∈N
DKn(Ω),

and we endow D(Ω) with the inductive limit topology associated to the canonical injections ιn : Kn ↪→ Ω.
The space D(Ω) will always be equipped with this topology that makes it an inductive limit of Fréchet
spaces. In practice, the topology can be characterised as follows. For all {φn}n∈N, we have φn −→

n→∞
φ ∈

D(Ω) if and only if there exists a compact set K ⊂ Ω such that supp(φn) ⊂ K for all n ∈ N, and for all
m ∈ N, we have

lim
n→∞

∥φn − φ∥m,K = 0.

This result can be showed by exhibiting a suitable family of semi-norms that define the inductive topology
on D(Ω). We first select a sequence {Ωn}n∈N of open and relatively compact subsets of Ω such that
Ω0 = ∅, Ωn ⊂ Ωn+1 and

⋃
n∈N

Ωn = Ω. Then, for all decreasing sequence ε = {εn}n∈N ⊂ (0,∞) converging

to 0, and for all increasing sequence m = {mn}n∈N ⊂ N diverging to ∞, we define the semi-norm

∥φ∥ε,m = sup
n∈N

(
1
εn

sup
|α|≤mn

∥Dαφ∥L∞(Ω\Ωn)

)
.

First, we need to shows that for all (ε,m) as above, ∥ · ∥ε,m is continuous. By the definition of the
inductive limit topology, we need only show that the restriction of ∥ · ∥ε,m to any compact K ⊂ Ω is
continuous. However, for all compact K ⊂ Ω, there exists N ∈ N such that K ∩ Ω \ Ωn = ∅ for all
n ≥ N . In particular, we have for all φ ∈ DK(Ω)

∥φ∥ε,m = sup
1≤n≤N

1
εn

sup
|α|≤mn

∥Dαφ∥L∞(K) = ε−1
N sup

|α|≤mN

∥Dαφ∥L∞(K) = ε−1
N ∥φ∥K,mN

.
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Conversely, if U is a closed convex convex neighbourhood of 0 for the inductive limit topology, then we can
find ∥ · ∥ε,m such that U ⊃ D(Ω) ∩

{
φ : ∥φ∥ε,m ≤ 1

}
. By definition of the inductive limit topology, for

all n ∈ N, there exists mn ∈ N and δn > 0 such that ∥φ∥Ωn+2,mn
≤ δn implies that φ ∈ U . Furthermore,

we can assume without loss of generality that {δn}n∈N ⊂ (0,∞) is decreasing and m = {mn}n∈N ⊂ N is
increasing. Let {βn}n∈N be a smooth partition of unity, such that supp(βn) ⊂ Ωn+2 \Ωn and

∑
n∈N

βn = 1.

Then, for all φ ∈ D(Ω), we have

φ =
∑
n∈N

1
2n+1 (2n+1βnφ),

and by convexity of φ we deduce that φ ∈ U provided that 2n+1βnφ belongs to U . Furthermore, for all
n ∈ N, there exists 0 < Cn <∞ such that∥∥2n+1βnφ

∥∥
mn,Ωn+2

≤ Cn ∥φ∥mnΩn+2
.

We can also assume that {Cn}n∈N ⊂ (0,∞) is an increasing sequence. In particular, taking εn = C−1
n δn,

we have D(Ω) ∩
{
φ : ∥φ∥ε,m ≤ 1

}
⊂ U , which concludes the proof of the following result.

Theorem 2.5.3. Let Ω be an open subset of Rd, and let D(Ω) = C∞
c (Ω) the space of smooth functions of

compact support on Ω, and for all compact set K ⊂ Ω, let DK(Ω) = C∞(Ω)∩{φ : supp(φ) ⊂ K} ⊂ D(Ω),
that we endow with the topology of uniform convergence of all derivatives, that makes it a Fréchet spaces
with defining semi-norms given by

{
∥ · ∥m,K

}
m∈N

, where for all m ∈ N,

∥φ∥m,K = sup
|α|≤m

∥Dαφ∥L∞(K) for all φ ∈ DK(Ω).

Then, the inductive topology on D(Ω) is the inductive topology associated to all canonical injections
fK : DK(Ω)→ D(Ω), and we note

D(Ω) = lim−→DK(Ω).

The resulting space is a separated locally convex topological vector space. For all exhaustive sequence of
relatively compact subsets {Ωn}n∈N ⊂ Ω such that Ω0 = ∅ and Ωn ⊂ Ωn+1 for all n ∈ N, a defining
family of semi-norms is given by ∥ · ∥ε,m, where ε = {εn}n∈N ⊂ (0,∞) ranges over all decreasing
sequences converging to 0, and m = {mn}n∈N of ranges over all increasing sequences diverging to ∞,
and for all φ ∈ D(Ω), we have

∥φ∥ε,m = sup
n∈N

(
1
εn

sup
|α|≤mn

∥Dαφ∥L∞(Ω\Ωn)

)
. (2.5.1)

Remark 2.5.4. We stress out that this topology is not metrisable and does not have a countable base
of neighbourhoods at 0. It is not countable for the family of decreasing sequences converging to 0 has
the cardinal of the continuum.

Finally, we can define the space of distributions as follows.

Definition 2.5.5. The topological dual space of D(Ω) is called the space of distributions, and we denote
it by D ′(Ω). We endow it with the weak topology σ(D(Ω),D ′(Ω)).

We spoke about weak topology although we meant weak topology. However, since D ′(Ω) is a reflexive
space, the weak topology and the weak ∗ topology coincide, and this terminology is rather standard.

Remark 2.5.6. Analogously, we define complex-valued, or vector-valued definition by taking the product
spaces of distributions.

Thanks to Proposition 1.4.4, we deduce that a sequence {Tn}n∈N ⊂ D ′(Ω) converges to an element
T ∈ D ′(Ω) if and only if

Tn(φ) −→
n→∞

T (φ) for all φ ∈ D(Ω).
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Definition 2.5.7 (Support). By definition of the inductive topology, we deduce that a linear form
T : D(Ω)→ R belongs to D ′(Ω) if and only if for all compact K ⊂ Ω, there exists CK <∞ and mK ∈ N
such that

|T (φ)| ≤ CK ∥φ∥mK ,K = CK sup
|α|≤mK

∥Dαφ∥L∞(K) . (2.5.2)

The smallest such constant CK is denoted ∥T∥K , and the smallest integer mK ∈ N such that (2.5.2)
holds is called the order of T on K, denoted by ordK(T ). If

m = sup
K⊂Ω

K compact

ordK(T )

is finite, we say that T is a distribution of order ord(T ) = m. We denote by D
′m(Ω) the space of

distributions of order m ∈ N.

Remark 2.5.8. Analogously, we define complex-valued, or vector-valued definition by taking the product
spaces of distributions. Notice that distributions of support 0 are Radon measures.

Examples 2.5.9. 1. If f ∈ L1
loc(Ω), then the distribution T = f defined by integration such that

T (φ) =
∫

Ω
f φdx for all φ ∈ D(Ω)

is a distribution of order 0, with ∥T∥K = ∥f∥L1(K). More generally, if T = µ is a real Radon
measure, then

T (φ) =
∫

Ω
φdµ

is also a distribution of order 0, such that ∥T∥K = µ(K). An important example is the Dirac mass
at x0 ∈ Ω, given by

δx0(φ) = φ(x0).

2. The Dirac mass δa such that δa(φ) = φ(a) (a ∈ Ω) is a very important distribution (a measure, in
fact), that will have a crucial importance in several theorems for reasons that will be made clear
by convolution and Fourier transform.

3. Anticipating on the next section, for all a ∈ R define for all n ∈ N the distribution δ
(n)
a ∈ D ′(R)

by δ(n)
a (φ) = (−1)nφ(n)(a). Then, the following distribution

T =
∑
n∈N

δ(n)
n

has infinite order. Indeed, we see easily that for all n ∈ N, the restriction of T to B(0, n+ 1
2 ) has

order n.

4. The principal value integral (at 0) of a function f : R \ {0} → R such that f ∈ L1
loc(R \ {0}) is

defined by

p.v.f(φ) = lim
ε→0

∫
R\[−ε,ε]

f(x)φ(x)dx.

Under suitable conditions on f , p.v.f is a well-defined distribution, known as Cauchy principal
value. Take f(x) = 1

x . Then, by oddness of f , for all 0 < ε < R <∞, we have〈
p.v. 1

x
, f

〉
=
∫
R\[−ε,ε]

φ(x)dx
x

=
∫

[−R,−ε]∪[ε,R]
(φ(x)− φ(0))dx

x
+
∫
R\[−R,R]

φ(x)dx,
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and since φ is of class C1, the function φ(x)−φ(0)
x is bounded at 0, and for all 0 < R <∞, we have〈

p.v. 1
x
, f

〉
=
∫ −R

−∞
φ(x)dx

x
+
∫ R

−R

(φ(x)− φ(0))dx
x

+
∫ ∞

R

φ(x)dx
x
.

Taking R > 0 large enough such that supp(φ) ⊂ [−R,R], we deduce by Fubini’s theorem that〈
p.v. 1

x
, φ

〉
=
∫ R

−R

(φ(x)− φ(0))dx
x

= −
∫ 0

−R

(∫ 0

x

φ′(t)dt
)
dx

x
+
∫ R

0

(∫ x

0
φ′(t)dt

)
dx

x
. (2.5.3)

We first compute∫ 0

−R

(∫ 0

x

φ′(t)dt
)
dx

x
=
∫ 0

−R

(∫ 0

−R

φ′(t)1{x≤t≤0}dt

)
dx

x
=
∫ 0

−R

φ′(t)
(∫ t

−R

dx

x

)
dt

=
∫ 0

−R

φ′(t) log
(

t

−R

)
dt. (2.5.4)

Likewise, we have ∫ R

0

(∫ x

0
φ′(t)dt

)
dx

x
=
∫ R

0
φ′(t) log

(
R

t

)
dt, (2.5.5)

which implies that〈
p.v. 1

x
, φ

〉
= −

∫ R

−R

φ′(t) log
(
|t|
R

)
dt =

∫ R

−R

φ′(t) log |t|dt+ log(R)
∫ R

−R

φ′(t)dt

= −
∫
R
φ′(t) log |t|dt, (2.5.6)

since supp(φ) ⊂ [−R,R]. This expression easily shows that p.v. 1
x has order 1, and that the

distributional derivative (as defined in the next section) of x 7→ log |x| is p.v. 1
x . Indeed, for all

φ ∈ D(R), we have ∣∣∣∣∫
R
φ′(t) log |t|dt

∣∣∣∣ ≤
(∫

supp(φ′)
log |t|dt

)
∥φ′∥L∞(R) ,

which shows that p.v. 1
x has order at most 1. If this distribution had order 0, it would extend

to a Radon measure. We will therefore exhibit a bounded sequence {φn}n∈N in Cc(R) such that〈
p.v. 1

x , φn

〉
diverges. Now, let {φn}n∈N ⊂ C0

c (R) such that φn is odd, supp(φn) ⊂ [−2, 2], φn = φ0
on [−2, 2] \ [−1, 1], 

φn(x) = −1 for all − 1 ≤ x ≤ − 1
n

φn(x) = nx for all − 1
n
≤ x ≤ 1

n

φn(x) = 1 for all 1
n
≤ x ≤ 1.

This sequence is bounded in Cc(R) since supp(φn) ⊂ [−2, 2], and |φn| ≤ 1. However, we have〈
p.v. 1

x
, φn

〉
= lim

ε→0

(
2
∫ 2

1
φ0(x)dx

x
+ 2

∫ 1

1
n

dx

|x|
+ 2

∫ 1
n

ε

ndx

)

= 2
∫ 2

1
φ0(x)dx

x
+ 2 + 2 log(n) −→

n→∞
∞.

Therefore, we deduce that p.v. 1
x is a distribution of order exactly 1. By introducing φ(x)−φ(−x),

give an alternative proof of the above results.
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The first basic property of distributions is the multiplication by smooth functions. Recall that
E (Ω) = C∞(Ω) equipped with the compact-open topology (which makes it a Fréchet space).

Definition 2.5.10. For all T ∈ D ′(Ω) and f ∈ E (Ω), the product S = f T defined by

⟨f T, φ⟩ = ⟨T, f φ⟩ for all φ ∈ D(Ω)

is a distribution such that for all compact K ⊂ Ω, we have

ordK(f T ) ≤ ordK(φ). (2.5.7)

Remark 2.5.11. That f T ∈ D ′(Ω) follows immediately since fφ ∈ D(Ω) for all (f, φ) ∈ E (Ω)×D(Ω),
and the property of order is trivial by Leibniz formula.

Example 2.5.12. We have x ·
(
p.v. 1

x

)
= 1. Indeed, for all φ ∈ D(Ω),〈

x ·
(

p.v. 1
x

)
, φ

〉
=
〈

p.v. 1
x
, xφ

〉
= lim

ε→0

∫
R\[−ε,ε]

(
xφ(x)

)dx
x

=
∫
R
φ(x)dx = ⟨1, φ⟩ .

We saw above that p.v. 1
x was a derivative of a Radon measure (of a function, more precisely). This

fact is general to distributions of finite support, but we will prove it below (in Theorem 2.5.32) once we
define the notion of support.

The previous example also poses the question of division of distributions. Obviously, the division by
a non-zero function is always possible, and we will concentrate on isolated zeroes. This question has
immediate applications to partial different equations of constant coefficients.

2.5.2 Division of Distributions by a Function with Isolated Singularities

Assume that d = 1. Then, the problem is reduced to the following one. Let m ∈ N∗, and T ∈ D ′(R)
(the problem is local, so we can consider distributions on the whole space). We look for a distribution
S ∈ D ′(R) such that

xmS = T.

By induction, it suffices to treat the case m = 1. The existence follows by Hahn-Banach theorem.
Indeed, if S is a solution, then for all φ ∈ D(R) such that φ(0) = 0, we have ψ = x−1φ ∈ D(R), and
S(φ) = T (ψ). Therefore, we define S by this relation on the hyperplane H = D(R)∩{φ : φ(0) = 0}. By
the Hahn-Banach theorem, S admits a continuous extension to D(R), such that

xS = T.

If S1 and S2 are two solution, then X = S1 − S2 satisfies

xX = 0.

Therefore, X(φ) = 0 for all φ ∈ H, which implies that X = c δ0 for some c ∈ C. If m > 0, we have
X =

∑
|α|≤m

cαD
αδ0 (cα ∈ C). Therefore, all solutions differ by Dirac masses (and their derivatives) at 0.

This approach using a weak form of axiom of choice† is not very satisfying, and we will see below the
direct method of Hadamard’s finite part to deal with radial weights.

2.5.3 Fine Properties of Distribution Spaces

In order to understand the strong topology on β(D(Ω),D ′(Ω)) on D ′(Ω), we need to characterise the
bounded sets of D(Ω). This characterisation and its proof are surprisingly easy.

†Hahn-Banach theorem is strictly weaker than the axiom of choice, but Hahn-Banach and Krein-Milman theorem imply
the axiom of choice [8].
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Theorem 2.5.13. A subset B ⊂ D(Ω) is bounded in the inductive limit topology if and only if it is
contained and bounded in DK(Ω) for some compact K ⊂ Ω.

Proof. By definition of the inductive limit topology, any bounded set in DK(Ω) is bounded in D(Ω).
Conversely, let B be a bounded set of D(Ω). If B /∈ DK(Ω) for some compact K ⊂ Ω, then for all n ∈ N,
there exists φn ∈ B such that and xn ∈ Ω \ Ωn such that φn(xn) ̸= 0. Defining εn = n−1|φn(xn)|, the
semi-norm ∥ · ∥ε,{n}n∈N

would be unbounded on B, since

1
εn

sup
φ∈B

sup
|α|≤n

∥Dαφ∥L∞(Ω\Ωn) ≥
1
εn
|φn(xn)| = n −→

n→∞
∞.

This concludes the proof of the theorem.

Remark 2.5.14. This theorem permits to make precise what the convergence in β(D(Ω),D ′(Ω)) means.
See [13].

Theorem 2.5.15. The space D(Ω) is complete.

Proof. We only show the sequential completeness (the proof would be virtually unchanged for general
completeness, but force one to introduce uniform structures and filters). Let {φn}n∈N be a Cauchy
sequence. Then, for all (ε,m) there exists N ∈ N such that

∥φn − φm∥ε,m ≤ 1 for all m,n ≥ N.

In particular, we deduce that Dαφn converges locally uniformly for all |α| ≤ m towards some function
Dαφ, and we need only show that φ has compact support. Taking m = {0}n∈N, we deduce that for all
ε,

|φn(x)− φm(x)| ≤ εl for all x ∈ Ω \ Ωl

for all m,n ≥ N . In particular, we have |φn(x) − φ(x)| ≤ εl for all x ∈ Ω \ Ωn. Since φN has compact
support, we deduce that |φ(x)| ≤ εl for all x ∈ Ω \ Ωl for l large enough. Therefore, φ has compact
support choosing if φ(xl) ̸= 0 for some xl ∈ Ω \ Ωl the value εl = 1

2 |φ(xl)|.

Remark 2.5.16. The general proof works almost identically, but needs to use the notion of Cauchy
filters that will not be used elsewhere. Notice that in a topological vector space X, if {Ui}i∈I is any
neighbourhood base at 0, then a uniform structure is given by

∆ = {∆(Ui)}i∈I ,

where for all subset U ⊂ X, we have

∆(U) = X ×X ∩ {(x, y) : x− y ∈ U} .

Continuing in this direction, we may state alternatives of the three Banach theorems in the case of
linear maps on locally convex topological vector spaces. However, in applications, we study either maps
between Sobolev-type spaces (that are Banach), or pseudo-differential operators (not introduced in these
lectures) that are outside of this setting.

We will not study in more details the the properties of D ′(Ω), and simply mention that this space is
(in a precise sense) reflexive, so that linear forms on D ′(Ω) are induced by functions in D(Ω) (see [13],
Chapter 8).

2.5.4 Differentiation of Distributions

The fundamental idea of Schwartz (1945) is to show that by duality, one can define differentiation of dis-
tributions, and that this operation is continuous with respective to either topology—weak or strong—on
D ′(Ω).
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Definition 2.5.17. For all multi-index α ∈ Rd, and T ∈ D ′(Ω), we define DαT ∈ D ′(Ω) to be the
distribution satisfying

DαT (φ) = (−1)|α|T (Dαφ).

It satisfies ordK(DαT ) ≤ ordK(T ) + |α| for all compact K ⊂ Ω.

The continuity of this operation for the weak topology is trivial for

|T (Dαφ)| ≤ ∥T∥K ∥D
αφ∥m,K ≤ ∥φ∥m+|α|,K

holds for all compact subset K ⊂ Ω.
In early work, Schwartz had not introduced the minus sign ([36]), but the sign convention is the one

consistent with integration by parts.
Of course, if T = f ∈ C∞(Ω), integrating by parts, we deduce that〈

∂

∂xi
T, φ

〉
= −

〈
T,

∂

∂xi
φ

〉
= −

∫
Ω
f ∂xi

φdx =
∫

Ω
φ∂xi

f dx,

so that ∂xi
T = ∂xi

f . Sobolev spaces, which will make for half of those lectures, are sets of distributions
whose weak derivatives belong to some Lp space (see. Thinking about partial differential equation (energy
functionals), it becomes apparent why Sobolev spaces are the natural settings to solve equations, and
their good properties allows one to use (say) calculus of variation in order to build solutions.

Examples 2.5.18. Let H = 1R+ be the Heaviside function. Then, we have H ′ = δ0 in the sense of
distributions. Indeed, for all φ ∈ D(R), we have

⟨H ′, φ⟩ = −⟨H,φ′⟩ = −
∫
R
H(x)φ′(x)dx = −

∫ ∞

0
φ′(x)dx = φ(0) = ⟨δ0, φ⟩ .

We saw in the first example that for C1 functions by arcs, the usual derivative and the distributional
derivative. This is a general fact, the formula of “jumps” allows on to quantify the difference (both
quantities only differ up to Dirac masses).

Theorem 2.5.19. Let I ⊂ R an open interval, and f : I → R be a C1 function by arcs, i.e. a function
such that there exists inf I < a1 < · · · < an < sup I such that f |(ai,ai+1), f(inf I,a1) and f(an,sup I) are
functions of class C1. Then, we have

f ′ =
n−1∑
i=1

f ′1(ai,ai+1) + f ′1(inf I,a1) + f ′1(an,sup I) +
n∑

i=1

(
f ′(a+

i )− f ′(a−
i )
)
δai
,

where f ′(a±
i ) = lim

x→a±
i

f ′(x) for all i ∈ {1, · · · , n}.

Proof. The proof goes exactly as in Examples 2.5.18 and is omitted.

Remark 2.5.20. This formula has generalisations to higher dimension, but would force us to introduce
notions of differential geometry, that we consider to be outside the scope of those lectures.

The basic theorem about differentiation shows that the solution to an elliptic equation is generally
unique in D ′(Rd). There are deep theorems that involved Sobolev spaces—to be introduced in the next
chapter—and we will simply mention elementary results related to continuous functions and first order
derivatives.

Theorem 2.5.21. Let T ∈ D ′(Rd) be such that ∇T = 0. Then, there exists C⃗0 ∈ Cn such that T = C⃗0.
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Proof. Showing by induction that ∂xi
T = 0 implies that T is independent of xi,we need only show the

result for d = 1. Assume that T ′ = 0, and separating real and complex part, assume without loss of
generality that T is real-valued. For all φ ∈ D(R), we have φ = ψ′ for some ψ ∈ D(R) if and only if∫

R
φ(x)dx = 0. (2.5.8)

Denote by H the hyperplane of such functions. Indeed, provided that (2.5.8) holds, we deduce that the
following function

ψ(x) =
∫ x

−∞
φ(y)dy

belongs to D(R) since φ has compact support. Conversely, if φ = ψ′ with ψ ∈ D(R), we have∫ x

−∞
φ(y)dy = ψ(x)

And since ψ has compact support, there exists r ∈ R such that ψ(x) = 0 for all x ≥ r, which shows that
(2.5.8) holds in particular. Now, let θ ∈ D(R) such that∫

R
θ(x)dx = 1.

For all φ ∈ D(R), we have

ψ = φ− θ
∫
R
φdL 1 ∈ H,

which implies since T ′ = 0 that

0 = T (ψ) = T (φ)− T (θ)
∫
R
φdL 1,

or

T = c0 = T (θ).

This concludes the proof of the theorem.

The theorem is also true on a simply connected domain, since the result is local. More generally, we
have the following result.

Theorem 2.5.22. Let X ∈ C0(Rd,Rd) be a continuous vector-field. Assume that ∇T = X. Then, T is
a C1 function such that ∇T = X classically.

Proof. We only treat the case X ∈ C1(Rd) (see [35] for the general case). The condition ∇T = X shows
that in the distributional sense, the following identities hold

∂xiXj = ∂xjXi for all 1 ≤ i, j ≤ d. (2.5.9)

Since ∇X ∈ C0(Rd), the identities (2.5.9) hold for C0 functions, and we deduce by the Poincaré lemma
that there exists f ∈ C2(Rd) such that ∇f = X. Therefore, we have ∇(T − f) = 0 in D ′(Rd), which
shows that

T = f + C⃗0

for some C⃗0 ∈ Rd.

Remark 2.5.23. This theorem immediately generalises to the case X ∈ Ck,α(Rd,Rd) for some k ∈ N
and 0 ≤ α ≤ 1, since the equations become classical, and on simply connected domains. When we
introduce Sobolev spaces, we will be able to prove a Sobolev spaces version of the Poincaré lemma.
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2.5.5 Restriction, Support, and localisation of a Distribution

Definition 2.5.24 (Restriction). Let Ω′ ⊂ Ω be an open subset, and T ∈ D ′(Ω). Then, for all
φ ∈ D(Ω′), the extension by 0 of φ to Ω is an element of D(Ω) denoted by φ̃, and we define by duality
the restriction TΩ′ ∈ D ′(Ω′) by

⟨TΩ′ , φ⟩ = ⟨T, φ̃⟩ for all φ ∈ D(Ω′).

Then, TΩ′ ∈ D ′(Ω′), and for all compact K ⊂ Ω′, we have ordK(TΩ′) ≤ ordK(T ).

The definition is consistent with the one of restriction of functions.

Definition 2.5.25. If Ψ : Ω→ Ω′ is a diffeomorphism between two open sets of Rd, and T ∈ D ′(Ω), we
define T ◦Ψ ∈ D ′(Ω′) by duality as

⟨T ◦Ψ, φ⟩ = ⟨T, |det dΨ−1|φ ◦Ψ−1⟩ for all φ ∈ D(Ω′).

Remark 2.5.26. Notice that for a function T = f ∈ L1
loc(Ω), the change of variable formula shows that∫

Ω
f(Ψ(x))φ(x)dx =

∫
Ω′
f(y)φ(Ψ−1(y))|det dΨ−1(y)|dy.

The case of conformal transformations in Rd is one of the most important one. If τa : Rd → Rd, x 7→ x+a
is the translation by a ∈ Rd, we define for all T ∈ D ′(Rd)

⟨τaT, φ⟩ = ⟨T ◦ τa, φ⟩ =
〈
T, φ ◦ τ−1

a

〉
= ⟨T, τ−aφ⟩ .

For all rotation R ∈ O(d), we define

⟨RT,φ⟩ = ⟨T,R−1φ⟩,

and for all λ ∈ C \ {0}, we define

⟨Tλ, φ⟩ = |λ|−d⟨T, φλ−1⟩,

where φλ−1(x) = φ(λ−1(x)).

Proposition 2.5.27 (Principle of Localisation). Let Ω ⊂ Rd be an open subset of Rd, and {Ωi}i∈I

be an open covering of Ω. Suppose that {Ti}i∈I ∈
∏

i∈I D ′(Ωi) and that for all i, j ∈ I, we have
Ti|Ωi ∩ Ωj = Tj |Ωi ∩ Ωj. Then, there exists a unique distribution T ∈ D ′(Ω) such that TΩi

= Ti for all
i ∈ I.

Proof. Let
{

Ω′
j

}
j∈J

be a locally finite open covering such that Ω′
j is relatively compact in Ω, and Ω′

j ⊂ Ωi

for some i ∈ I. Then, we define the distribution T ′
j = Ti|Ω′

j if Ω′
j ⊂ Ωi. The compatibility hypothesis

shows that this is well-defined. Then, let {χj}j∈J be a partition of unity, i.e. such that χj ∈ D(Ω)

for all j ∈ J , 0 ≤ χj ≤ 1, supp(χj) ⊂ Ω′
j for all j ∈ J , and

∑
j∈J

χj = 1. For all φ ∈ D(Ω), we have

χjφ ∈ D(Ω′
j), which shows that if T as in the theorem exists, we have

T (φ) =
∑
j∈J

T ′
j(χjφ). (2.5.10)

Therefore, T is uniquely determined by the family {Xi}i∈I . Conversely, if supp(φ) ⊂ Ωi, since Ti|Ω′
j =

T ′
j |Ωi ∩ Ω′

j for all (i, j) ∈ I × J , we have

Ti(φ) =
∑
j∈J

Ti(χjφ) =
∑
j∈J

T ′
j(χjφ) = T (φ),

which shows that Ti = T |Ωi for all i ∈ I, and concludes the proof.
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Corollary 2.5.28. The support of T ∈ D ′(Ω) is the complementary of the union of all open sets Ωi ⊂ Ω
such that T |Ωi = 0. We denote this closed set by supp(T ) ⊂ Ω. We say that T has compact support if
supp(T ) is a compact subset of Ω.

Remark 2.5.29. The previous Proposition 2.5.27 shows that the definition is unambiguous.

Let us list without proofs a few easy properties of the support of distributions.

Proposition 2.5.30. 1. For all a ∈ Rd and α ∈ Nd, we have supp(Dαδa) = {a}.

2. supp(fT ) ⊂ supp(f) ∩ supp(T ) for all f ∈ C∞(Ω) and T ∈ D ′(Ω).

Let us show that distributions with compact support, are in one-to-one correspondence with the dual
of E (Ω) = C∞(Ω), which will justify the notation T ∈ E ′(Ω).

Theorem 2.5.31. Let E ′(Ω) be the dual space of E (Ω) = C∞(Ω). Then, T ∈ E ′(Ω) if and only if
T ∈ D ′(Ω) and T has compact support.

Proof. Let L be a continuous linear form on C∞(Ω). Then, by density of C∞
c (Ω) in C∞(Ω), we deduce

that L is entirely determined by its restrictions L0 on D(Ω). Since L0 is continuous, there exists a
compact set K ⊂ Ω and m ≥ 0 such that

|L(f)| ≤ C ∥φ∥m,K for all f ∈ C∞(Ω).

In particular, we have

|L0(φ)| ≤ C ∥φ∥m,K for all φ ∈ D(Ω).

Therefore, we have supp(L0) ⊂ K, and ord(L0) ≤ m. Conversely, if T ∈ D ′(Ω) has compact support,
and χ ∈ D(Ω) is such that χ = 1 on an relatively compact open neighbourhood Ω′ of supp(T ), then T
extends to a continuous linear form on C∞(Ω) by the formula

T (f) = T (χf) for all f ∈ C∞(Ω).

Furthermore, T has support order since ord(T ) ≤ ordΩ′(T ) < ∞ by the definition of continuity in the
distribution topology.

We can finally prove the structure theorem for distributions of finite order.

Theorem 2.5.32. Let T ∈ D
′m(Ω) be a distribution of finite order m ∈ N. Then, there exists Radon

measures µα (α ∈ Nd) such that

T =
∑

|α|≤m

Dαµα.

Furthermore, if T has compact support K, for all open neighbourhood U of K we can assume that
supp(µα) ⊂ U . Conversely, any finite sum of derivatives of Radon measure is an element of D

′m(Ω).

Proof. The converse statement is trivial.
By hypothesis, we deduce that for all sequence {φn}n∈N ⊂ D(Ω) such that ∥Dαφn∥L∞(Ω) −→n→∞

0, we
have T (φn) −→

n→∞
0. We now associate to each φ ∈ D(Ω) the N(d,m)-uple Φ = {Dαφ}|α|≤m ⊂ K (Ω),

the space of continuous functions with compact support. The previous discussion shows that the map
Φ 7→ T (φ) is a continuous linear form defined on the sub-vector spaces K (Ω)N(d,m) of elements Φ given
by Φ = {Dαφ}|α|≤m. Therefore, we deduce by the Hahn-Banach theorem that this linear form admits
an extension (denoted by L) on K (Ω)N(d,m). By the structure theorem of the dual space of K (Ω), we
deduce that there exits Radon measures {να}|α|≤m such that

L({fα}|α|≤m) =
∑

|α|≤m

∫
Ω
fαdνα.
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Taking {fα}|α|≤m = {Dαφ}|α|≤m for some φ ∈ D(Ω), we deduce that

T (φ) =
∑

|α|≤m

∫
Ω
Dαφdνα =

∑
|α|≤m

〈
(−1)|α|να, φ

〉
,

which concludes the proof with µα = (−1)|α|να.
We omit the part on compact support, that follows easily by the introduction of a suitable cut-off

function.

2.6 Convolution of Distributions

2.6.1 First definitions

As previously, we want to generalise the notion of convolution to the case of distributions. Notice that
whenever f, g, h ∈ D(Rd,R), we have

⟨f ∗ g, h⟩ =
∫
Rd

(f ∗ g)(x)h(x)dx =
∫
Rd

(∫
Rd

f(y)g(x− y)dy
)
h(x)dx

=
∫
Rd

f(y)
(∫

Rd

g(x− y)h(x)
)
dy =

∫
Rd

f(y)(g ∗ h)(−y)dy

=
∫
Rd

f(y)g̃ ∗ h(y)dy =
〈
f, (̃g ∗ h)

〉
,

where φ̃(x) = φ(−x) for all φ ∈ D(Rd) and x ∈ Rd. We can rewrite this expression as follows:

⟨fx, ⟨gy, φ(x+ y)⟩⟩ = ⟨gy, ⟨fx, φ(x+ y)⟩⟩ .

Indeed, we have

⟨gy, φ(x+ y)⟩ =
∫
Rd

g(y)φ(x+ y)dy,

so that by Fubini theorem

⟨fx, ⟨gy, φ(x+ y)⟩⟩ =
∫
Rd

f(x)
(∫

Rd

g(y)φ(x+ y)dy
)
dx

=
∫
Rd

f(x)
(∫

Rd

g(z − x)φ(z)dz
)
dx =

∫
Rd

(f ∗ g)(z)φ(z)dz,

where we made the change of variables z = x+ y. The second computation is analogous.
Therefore, we want to define the convolution of two distributions T1, T2 ∈ D ′(Rd) as the distribution

T = T1 ∗T2 which is the common value of ⟨T1,x, ⟨T2,y, φ(x+ y)⟩⟩ and ⟨T2,y, ⟨T2,x, φ(x+ y)⟩⟩. For general
distributions, ⟨T2,y, φ(x+ y)⟩ /∈ D(Rd), so the expression cannot be defined. However, if T1 (or T2) has
compact support, then x 7→ ⟨T2,y, φ(x+ y)⟩ is a C∞(Rd) function, and the first duality bracket makes
sense, whilst the second duality bracket makes sense for y 7→ ⟨T1,x, φ(x+ y)⟩ ∈ D(Rd). Let us show that
both expression are equal if T1 or T2 has compact support, and let us denote them by S1(φ) and S2(φ).
First assume that T1 ∈ D

′m(Rd). Then, the structure Theorem 2.5.32 shows that there exists a family
of Radon measures {µα}|α|≤m with compact support on Rd such that

T1 =
∑

|α|≤m

Dαµα.

By linearity, it suffices to treat the case T1 = Dαµ, which is equivalent to showing that S1(Dαφ) and
S2(Dαφ) coincide, where T is replaced by µ. Finally, we need only treat the case T1 = µ. We therefore
need to show that ∫

Rd

⟨T2,y, φ(x+ y)⟩ dµ(x) =
〈
T2,y,

∫
Rd

φ(x+ y)dµ(x)
〉
.
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If T2 has compact support, a similar reduction shows that we can assume that T2 = ν is a Radon
measure, in which case the identity S1(φ) = S2(φ) is nothing else than Fubini theorem. If T2 does not
have compact support, we let {χn}n∈N ⊂ D(Rd) be a sequence such that χn = 1 on B(0, n). Then,

⟨(χnT2)y, φ(x+ y)⟩ −→
n→∞

⟨T2,y, φ(x+ y)⟩

uniformly as x stays within a compact domain of Rd. Therefore, we have∫
Rd

⟨(χnT2)y, φ(x+ y)⟩ dµ(x) −→
n→∞

∫
Rd

⟨T2,y, φ(x+ y)⟩ dµ(y)

and since y 7→
∫
Rd φ(x+ y)dµ(x) ∈ D(Rd), we also trivially have〈

(χnT2)y,

∫
Rd

φ(x+ y)dµ(x)
〉
−→

n→∞

〈
T2,y,

∫
Rd

φ(x+ y)dµ(x)
〉
.

Since the equality between the left-hand sides of holds for all n ∈ N, this concludes the proof.
Therefore, the equality is proved for (T1, T2) ∈ D ′(Rd)× E ′(Rd) and (T1, T2) ∈ E ′(Rd)×D ′(Rd). By

induction, we can define the convolution of an arbitrary finite number of distributions, provided that
their supports are all compact but one at most.

Proposition 2.6.1. For all (S, T, U) ∈ E ′(Rd)×D ′(Rd)× E ′(Rd), we have

1. S ∗R = T ∗ S.

2. (S ∗ T ) ∗ U = S ∗ (T ∗ U).

3. δ0 ∗ T = T ∗ δ0 = T .

4. Dα(S ∗ T ) = DαS ∗ T = S ∗DαT .

5. supp(S ∗ T ) ⊂ supp(S) + supp(T ).

Proof. We need only check the first property in the case of two Radon measures µ and ν on Rd. Notice
that by Fubini’s theorem, we have

(µ ∗ ν)(φ) =
∫
Rd

(∫
Rd

φ(x+ y)dν(y)
)
dµ(x) =

∫
Rd×Rd

φ(x+ y)d(µ× ν)(x, y)

=
∫
Rd×Rd

φ(y + x)d(ν × µ)(x, y) =
∫
Rd

(∫
Rd

φ(x+ y)dµ(y)
)
dν(x) = (ν ∗ µ)(φ).

The proof of 2. is analogous and we omit it, while the proof of 3. is trivial.
For the proof of 4., we have in the case of two Radon measures ν and ν

⟨Dα(µ ∗ ν), φ⟩ = (−1)|α|
∫
Rd

(∫
Rd

Dα
yφ(x, y)dν(y)

)
dµ(x) = ⟨µx, ⟨Dανy, φ(x+ y)⟩⟩

= ⟨(µ ∗Dαν), φ⟩ ,

and we prove similarly that Dα(µ ∗ ν) = Dαµ ∗ ν. The general proof is similar.
Finally, we prove the statement on supports. Since S has compact support, the following function

y 7→ ⟨Sx, φ(x+ y)⟩

is an element of D(Rd). Indeed, it vanishes whenever supp (x 7→ φ(x + y)) = y + supp(φ) and supp(S)
have vanishing intersection. In other words, supp(y 7→ ⟨Sx, φ(x+ y)⟩) ⊂ supp (S) − supp (φ). There-
fore, ⟨Ty, ⟨Sx, φ(x+ y)⟩⟩ vanishes provided that supp(T ) ∩ (supp(S)− supp(φ)) = ∅, or supp (φ) ∩
(supp(S) + supp(T )) = ∅. Therefore, we have supp(S ∗ T ) ⊂ supp(S) + supp(T ).
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Remark 2.6.2. We spoke above of tensor product of distributions, and this is how Schwartz historically
(see [35], Chapitre 6) defined the convolution. However, it is not necessary to introduce this notion in
order to define the convolution, and we omit the discussion of tensor products completely.

We see in particular that DαT = Dαδ0 ∗ T , so that all (linear) partial differential equations may be
seen as convolution equations. We will see in the next section a way to transform a large class of such
convolution equations to the afore-mentioned problem of division of distributions.

The reader has probably already shown that the solution of the Laplace equation ∆u = f (for f
sufficiently smooth) in Rd (d ≥ 2) is given by

u = Gd ∗ f,

where Gd is the fundamental solution of the Laplacian, given by

Gd(x) =


− 1

(d− 2)β(d)
1

|x|d−2 for d ≥ 3

1
2π log |x| for d = 2,

where β(d) = H d−1(Sd−1). The usual proof using integration by parts shows that ∆Gd = δ0, but we
will check this fact below by a different method.

2.6.2 A First Extension: Distributions of Convolutive Supports

Now, we extend the notion of convolution to the case of distributions having convolutive supports.

Definition 2.6.3 (Convolutive Supports). Let A and B be two closed subsets of Rd. We say that (A,B)
is convolutive (or that A and B are convolutive) if for all 0 < R <∞, there exists ρ(R) <∞ such that

A×B ∩ {(a, b) : |a+ b| < R} ⊂ B(0, ρ(R))×B(0, ρ(R)).

More generally, a family {Fi}i∈I of closed sets is convolutive if for all subset J ⊂ I, and for all 0 < R <∞,
there exists ρ(R) <∞ such that

∏
j∈J

Fj ∩

(xj)j∈J :

∣∣∣∣∣∑
j∈J

xj

∣∣∣∣∣ < R

 ⊂∏
j∈J

B(0, ρ(R))

Proposition 2.6.4. If A and B are convolutive sets, A+B is a closed subset of Rd.

Proof. Let {xn = an + bn}n∈N ⊂ A+B be a convergent sequence (call the limit x ∈ Rd). Then {xn}n∈N
is bounded, and by the convolutiveness property, we deduce that both {an}n∈N and {bn}n∈N are bounded
sequences. Therefore, up to a subsequence, we have an −→

n→∞
a ∈ A and bn −→

n→∞
b ∈ B since A and B

are closed. By unicity of the limit, we deduce that x = a+ b ∈ A+B. QED.

Theorem 2.6.5. For all couple of distributions S, T ∈ D ′(Rd) whose supports are convolutive, and for
all sequence {χn}n∈N ⊂ D(Rd) such that χn = 1 on B(0, n), define for all φ ∈ D(Rd)

⟨S ∗ T, φ⟩ = lim
n→∞

⟨(χnS) ∗ (χnT ), φ⟩ . (2.6.1)

Then, for all φ ∈ D(Rd), the sequence on the right-hand side of (2.6.1) is constant for n ∈ N large
enough. We call S ∗ T the convolution of S and T , and it does not depend on the choice of the sequence
{χn}n∈N as above.

Furthermore, all properties of Proposition 2.6.1 are satisfied for this generalised convolution.
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Proof. Assume that supp(φ) ⊂ B(0, R). We will show that the sequence ⟨(χnS) ∗ (χnT ), φ⟩ is constant
for n large enough. If n,m ≥ ρ(R), we have

⟨(χnS) ∗ (χnT )− (χmS) ∗ (χmT ), φ⟩
= ⟨((χn − χm)S) ∗ (χnT ), φ⟩+ ⟨(χnS) ∗ ((χn − χm)T ), φ⟩ .

If the first term does not vanish, then supp(φ) ∩ (supp ((χn − χm)S) + supp(χnT )) ̸= ∅. However, if
x ∈ supp(φ) ∩ (supp ((χn − χm)S) + supp(χnT )), then x = y + z, where |y| > n ≥ ρ(R), while |x| < R
since x ∈ supp(φ) ⊂ B(0, R). However, since (y, z) ∈ supp(S) × supp(T ), those conditions contradict
the hypothesis on convolutiveness of those those distributions.

Therefore, we see that the limit (2.6.1) defines a distribution.,Now, assume that supp(φ) and supp(S)+
supp(T ) are disjoint. Then, we have a fortiori supp(φ) ∩ (supp(χnS) + supp(χnT )) = ∅ for all n ∈ N,
which shows by (2.6.1) that ⟨S ∗ T, φ⟩ = 0.

The proofs of the other properties are similar, and we omit them.

Remark 2.6.6. The convolution product is not associative in general, as the following example shows:{
(1 ∗ δ′

0) ∗H = 0
1 ∗ (δ′

0 ∗H) = 1 ∗ (δ0 ∗H ′) = 1 ∗ (δ0 ∗ δ0) = 1 ∗ δ0 = δ0.

Finally, we introduce a last extension of convolution thanks to a new class of distributions that happen
to be proto-Sobolev spaces (anticipating on the next chapter, they correspond to W−∞,p). We will do
so in a new section.

2.6.3 A Second Extension: the D ′
Lp(Rd) Spaces of Distributions

Definition 2.6.7. Let

DLp(Rd) = C∞(Rd) ∩
{
f : Dαf ∈ Lp(Rd) for all α ∈ Nd

}
We equip it with the family of semi-norm ∥Dα( · )∥Lp(Rd) where α ∈ Nd, which makes it a Fréchet space.

We also define B(Rd) = DL∞(Rd), and

Ḃ(Rd) = B(Rd) ∩
{
φ : Dαφ(x) −→

|x|→∞
0 for all α ∈ Rd

}
.

Remark 2.6.8. We only define this space on Rd since it will only be used for convolution and Fourier
transform, but one could define it on an arbitrary open subset Ω ⊂ Rd.

Theorem 2.6.9. D(Rd) is dense in DLp(Rd) for p <∞ and in Ḃ(Rd).

Proof. Let f ∈ DLp(Rd), and {χn}n∈N ⊂ D(Rd) such that χn = 1 on B(0, n). Then, we have for all
α ∈ Nd by Leibniz’s formula and Minkowski’s inequality(∫

Rd

|Dαf −Dα(χnf)|p dx
) 1

p

≤

(∫
Rd\B(0,n)

(1− χn)p|Dαf |pdx

) 1
p

+
∑
β≤α
β ̸=0

(∫
Rd\B(0,n)

|Dβχn||Dα−βf |pdx

) 1
p

≤ ∥Dαf∥Lp(Rd\B(0,n)) −→n→∞
0

by dominated convergence, provided that ∥∇χn∥L∞(Rd) is bounded. But this is very easy to find such a
sequence, by taking a regularisation (by convolution, say) of

ψn(x) =


1 for all |x| ≤ n

− 1
n
|x|+ 2 for all n < |x| < 2n

0 for all |x| ≥ 2n.
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Therefore, the proof of the theorem is complete.

Definition 2.6.10. For 1 < p ≤ ∞, we define D ′
Lp(Rd) ⊂ D ′(Rd) as the dual of DLp′ (Rd), where

1
p

+ 1
p′ = 1, that we equip with the weak topology. We also define B′(Rd) = D ′

L∞(Rd).

Theorem 2.6.11. For 1 < p <∞, the space DLp(Rd) is reflexive, and in particular, the dual of D ′
Lp(Rd)

is DLp′ . Furthermore the dual of D ′
L1(Rd) is B(Rd).

We do not prove those theorems here, since they will be proved in a different setting in the next
chapter.

Theorem 2.6.12. A distribution T ∈ D ′
Lp(Rd) if and only if T is a finite sum of derivatives of Lp

functions. Equivalently, T ∈ D ′
Lp(Rd) if and only if for all φ ∈ D(Rd), the regularised distribution T ∗φ

belongs to Lp(Rd).

We also omit the proof.

Remark 2.6.13. Anticipating on the next chapter, we see that for 1 < p ≤ ∞, we have T ∈ D ′
Lp(Rd) if

and only if there exists m ∈ N such that T ∈W−m,p(Rd) = (Wm,p′(Rd)). In other words,

D ′
Lp(Rd) =

⋃
m∈N

W−m,p(Rd).

This is why we need not prove those results here, and prove the decomposition in derivatives of Lp

functions for each space W−m,p(Rd), which is relatively easy. See [35] p. 199− 205 for more details on
this general approach.

Theorem 2.6.14. 1. If T ∈ D ′
Lp(Rd) and f ∈ DLq (Rd), the product f T belongs to D ′

Lr (Rd) for
r ≥ 1, provided that 1

r
≤ 1
p

+ 1
q

.

2. If S ∈ D ′
Lp(Rd), T ∈ D ′

Lq (Rd), and 1
p

+ 1
q
−1 ≥ 0, then we can define the convolution product S ∗T

and S ∗ T ∈ D ′
Lr (Rd).

Proof. The existence of a convolution product in D ′(Rd) follows immediately from the decomposition
of S and T into a sum of derivatives of Lp and Lq functions. However, since this decomposition is
not-unique, we must needs prove that the convolution is independent of the chosen decompositions.
Therefore, assume that

S =
∑

|α|≤m

Dαfα T =
∑

|β|≤n

Dβgβ .

Then, for all |α| ≤ m and |β| ≤ n, define

Dαfα ∗Dβgβ = Dα+β(fα ∗ gβ).

Since fα ∈ Lp(Rd) and gβ ∈ Lq(Rd), we have fα ∗ gβ ∈ Lr(Rd), and Dαfα ∗Dβgβ ∈ D ′
Lr (Rd). Therefore,

we define the convolution of S and T as

S ∗ T =
∑

|α|≤m
|β|≤n

Dα+β(fα ∗ gβ).

Since the role of S and T is symmetric, assume that we have the alternative decomposition

S =
∑

|α|≤m

Dαf ′
α.
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Now, let

U =
∑

|α|≤m
|β|≤n

Dα+β(f ′
α ∗ gβ).

For all φ ∈ D(Rd), we have

U(φ) =
∑

||α|≤m
|β|≤n

〈
f ′

α ∗ gβ , (−1)|α|+|β|Dαφ
〉

=
∑

|α|≤m
|β|≤n

〈
f ′

α, g̃β ∗
(

(−1)|α|+|β|Dα+βφ
)〉

=
〈 ∑

|α|≤m

Dαf ′
α,
∑

|β|≤n

g̃β ∗
(

(−1)|β|Dβφ
)〉

=
〈
S,
∑

|β|≤n

g̃β ∗
(

(−1)|β|Dβφ
)〉

= ⟨S ∗ T, φ⟩ .

Therefore, the definition is independent of the chosen decomposition by density of D(Rd) in DLp′ (Rd).

2.7 Tempered Distributions and Fourier Transform

In this section, all functions will be complex valued unless stated otherwise (which will never happen).
As previously, we want to define the Fourier transform by duality. Explicitly, for all T ∈ D ′(Rd) and
φ ∈ D(Rd), we want to define 〈

T̂ , φ
〉

= ⟨T, φ̂⟩

where

F (φ)(ξ) = φ̂(ξ) =
∫
Rd

φ(x)e−ix·ξdx.

Recall the following basic facts on the Fourier transform.

Theorem 2.7.1 (Riemann-Lebesgue lemma). Let f ∈ L1(Rd). Then f̂ ∈ C0(Rd), and

lim
|ξ|→∞

f̂(ξ) = 0. (2.7.1)

The basic algebraic properties of the Fourier transform are listed below.

Proposition 2.7.2. Let f, g ∈ L1(Rd). Then, the following properties are verified.

1. For all λ ∈ C, we have

F (λ f + g) = λF (f) + F (g).

2. If m ∈ N et |x|mf ∈ L1(Rd), then f̂ ∈ Cm(Rd,C), and for all |α| ≤ m, we have

Dαf̂(ξ) = (−i)|α|
∫
R
xαf(x)e−ix·ξdx.

3. If f ∈ Cm(Rd,C) for some n ∈ N, and Dαf ∈ L1(Rd) for all |α| ≤ m, then for all |α| ≤ m, we
have

F (Dαf)(ξ) = i|α|ξαF (f)(ξ).

Theorem 2.7.3. Let f ∈ L1(Rd).
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1. (Fourier Inversion Formula) If f̂ ∈ L1(Rd), then for all x ∈ Rd, we have

f(x) = 1
(2π)d

∫
Rd

f̂(ξ)eix·ξdξ = 1
(2π)d

F (F (f))(−x).

2. (Plancherel Identity) For all f ∈ L2(Rd), we have f̂ ∈ L2(Rd) and∫
Rd

|f(x)|2dx = 1
(2π)d

∫
R
|f̂(ξ)|2dξ. (2.7.2)

3. (Convolution Property) For all f, g ∈ L1(Rd), we have

F (f ∗ g) = F (f) · F (g). (2.7.3)

Remark 2.7.4. In other words, we have F 2 = (2π)d, Id ◦ ι, où ι(x) = −x.

However, the definition cannot make sense for all distributions. Indeed, for all φ ∈ D(Rd), there
exists R > 0 such that

φ̂(ξ) =
∫

B(0,R)
φ(x)e−ix·ξdx.

In particular, the function φ̂ can be extended to a pluri-holomorphic function, and the maximum principle
implies that φ̂ does not have compact support unless φ = 0. In particular, φ̂ /∈ D(Rd) for all φ ̸= 0, and
the expression ⟨T, φ̂⟩ does not make sense in general. Therefore, we are confronted with the problem of
finding a topological vector space S ⊂ C∞(Rd) ∩ L1(Rd) such that D(Rd) ⊂ S, and with respect to the
Fourier inversion formula, that possesses the following invariance property: F (S) = S. Furthermore, we
want to find a space on which the previous operation of differentiation is compatible. In other words, we
require that for all T ∈ S′ (the dual of S), for all φ ∈ S, α ∈ Nd, the following quantities are well-defined

⟨F (DαT ), φ⟩

and

⟨Dα(F (T )), φ⟩.

Using both definitions of Dα and F , we get

⟨F (DαT ), φ⟩ = ⟨DαT,F (φ)⟩ = (−1)|α|⟨T,DαF (φ)⟩ = ⟨T,F (xαφ)⟩ = ⟨F (T ), xαφ⟩,

whilst

⟨Dα(F (T )), φ⟩ = (−1)α⟨F (T ), Dαφ⟩.

Combining both properties, we are led to the axioms

xβDαφ ∈ S for all φ ∈ S and for all α, β ∈ Nd. (2.7.4)

Furthermore, the stability condition F (S) = S for Fourier transform shows that for all α, β ∈ Nd, there
exists ψ ∈ S such that

xβDαφ = F (ψ).

In particular, the Riemann-Lebesgue lemma implies that

xβDαφ(x) −→
|x|→∞

0. (2.7.5)

Therefore, both properties (2.7.4) and (2.7.5) lead to the definition of the following minimal space S (Rd),
that happens to be a Fréchet space, once equipped with a natural set of semi-norms.
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Definition 2.7.5. The Schwartz space S (Rd), or space of rapidly decreasing function, is defined as
follows:

S (Rd) = C∞(Rd) ∩
{
φ : sup

x∈Rd

|xβ ||Dαφ(x)| <∞ for all (α, β) ∈ Nd × Nd

}
.

The previous discussion shows that S (Rd) is the minimal space satisfying the desirable axioms of
Fourier transform—we want to take the smallest function space so that the dual space is the largest
possible. It happens to be a solution to our problem, as we will easily check.

Theorem 2.7.6. For all α, β ∈ Nd, define the semi-norm ∥ · ∥α,β on S (Rd) such that for all φ ∈ S (Rd),

∥φ∥α,β =
∥∥xβDαφ

∥∥
L∞(Rd) . (2.7.6)

Then, the topological vector space (S (Rd), {∥ · ∥α,β}) is a Fréchet space, and the closure of D(Rd) for
the induced topology is S (Rd).

Furthermore, the Schwartz space is stable under Fourier transform: F (S (Rd)) = S (Rd).

Proof. Step 1: Stability under Fourier transform.
We first show that S (Rd) is stable under F , since we trivially have D(Rd) ⊂ S (Rd). The inverse

Fourier formula will then show that F (S (Rd)) = S (Rd). Let φ ∈ S (Rd). Then, for all α, β ∈ Nd,
and we have xαDβf ∈ L1(Rd), which shows by the Riemann-Lebesgue lemma (Theorem 2.7.1) and
Proposition 2.7.2 that

∥φ̂∥α,β = sup
ξ∈Rd

|ξβ ||Dαφ̂(ξ)| = sup
ξ∈Rd

|F (xαDβφ)(ξ)|

Now, we have for all ξ ∈ Rd

∣∣F (xαDβφ)(ξ)
∣∣ =

∣∣∣∣∫
Rd

xαDβφ(x)e−ix·ξdx

∣∣∣∣
≤
∫

B(0,1)
|xα||Dβφ(x)|dx+

∥∥xα|x|2dDβφ
∥∥

L∞(Rd)

∫
Rd\B(0,1)

dx

|x|2d

≤ α(d) ∥φ∥β,α + β(d)
d
∥φ∥β,α+2d e0

= α(d)
(
∥φ∥β,α + ∥φ∥β,α+2d e0

)
,

where e0 = (1, · · · , 1). Finally, we get the inequality

∥φ̂∥α,β ≤ α(d)
(
∥φ∥β,α + ∥φ∥β,α+2d e0

)
. (2.7.7)

Therefore, we have F (S (Rd)) ⊂ S (Rd), which shows as we said above that F (S (Rd)) = S (Rd),
since F −1 = (2π)−dF ◦ ι.

Step 2: Density of test functions in the space of Schwartz functions.
Let φ ∈ S (Rd), and {ηn}n∈N ⊂ D(Rd) such that ηn : Rd → [0, 1], ηn = 1 on B(0, n) and supp(ηn) ⊂

B(0, n+ 1) for all n ∈ N, and consider φn = ηnφ. Then, we have for all (p, α) ∈ N× Nd

sup
x∈Rd

(1 + |x|)p|Dα(φn(x)− φ(x))| ≤ sup
x∈B(0,n+1)\B(0,n)

(1− ηn)(1 + |x|)p|Dαφ(x)|

+
∑
β≤α
β ̸=0

(
α

β

)
sup

x∈B(0,n+1)\B(0,n)
|Dβηn(x)Dα−βφ(x)|

≤ sup
x∈B(0,n+1)\B(0,n)

(1 + |x|)p|Dαφ(x)|+ C
∑
β≤α
β ̸=0

sup
x∈B(0,n+1)\B(0,n)

(1 + |x|)p|Dα−βφ(x)| −→
n→∞

0.

This concludes the proof of this lemma.
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Step 3: Fréchet property.
It is very easy to show that S (Rd) is a topological vector space, and since its topology is defined by a

countable family of semi-norms, it is metrisable. Finally, the Cauchy property follows mutadis mutandis
from the steps of the proof of Theorem 2.5.15 and we omit this easier proof.

We can now move to the definition of tempered distributions.

Definition 2.7.7. The space of of tempered distributions, denoted by S ′(Rd) is the dual space of the
Schwartz space S (Rd).

Since D(Rd) is a dense subset of S (Rd), a tempered distribution T ∈ S ′(Rd) can also be seen as an
element of D ′(Rd), and it is defined by its values on D(Rd).

Definition 2.7.8. For all T ∈ S ′(Rd), its Fourier transform F (T ) = T̂ is the tempered distribution
such that for all φ ∈ S (Rd), we have

⟨F (T ), φ⟩ = ⟨T,F (φ)⟩.

That the Fourier transform maps S ′(Rd) into S ′(Rd) follows from the above discussion and the
invariance property of S (Rd) by F . By the Fourier inversion formula, the Fourier transform is in fact
an isometry.

Examples 2.7.9. 1. We have F (1) = (2π)dδ0. Indeed, by the Fourier inversion formula, we have

⟨F (1), φ⟩ =
∫
Rd

φ̂(ξ)dξ =
∫
Rd

φ̂(ξ)eiξ·0dξ = (2π)dφ(0) = (2π)dδ0(φ).

Likewise, we have

⟨F (δ0), φ⟩ = φ̂(0) =
∫
Rd

φ(x)e−ix·0dx = ⟨1, φ⟩,

which shows that δ̂0 = 1 and 1̂ = (2π)dδ0, which is obviously consistent with the Fourier inversion
formula.

2. Likewise, computing the Fourier transform of polynomials (that are trivially tempered distribu-
tions) is easy. Fix some α ∈ Nd. Then, we have

⟨F (xα), φ⟩ =
∫
Rd

ξαφ̂(ξ)dξ = (2π)di|α|Dαδ0(φ)

Indeed, for all x ∈ Rd, we have by integration by parts and the Fourier inversion formula∫
Rd

ξαφ̂(ξ)eix·ξdξ = i|α|Dα
x

∫
Rd

φ̂(ξ)eix·ξdξ = i|α|Dα
x

(
(2π)dφ(x)

)
= (2π)di|α|Dαφ(x).

Therefore, we have

x̂α = (2π)di|α|Dαδ0,

while

⟨F (Dαδ0), φ⟩ = (−1)|α|Dαφ̂(0) = (−1)|α|Dα
ξ

(∫
Rd

φ(x)e−ix·ξdx

)
|ξ=0

= (−1)|α|
∫
Rd

(−i)|α|xαφ(x)dx = ⟨i|α|xα, φ⟩,

which implies that

D̂αδ0 = i|α|xα.

Once more, we see that those results are consistent with the Fourier inversion formula.
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3. Let us now compute the Fourier transform of v.p. 1
x
∈ S ′(R). We have by Example 2.5.12 the

identity

x · v.p. 1
x

= 1.

Let u ∈ S ′(R) such that û = v.p. 1
x

. Then, recalling that −̂i δ′
0 = x, we have

F (−i δ′
0)F (u) = 1 = F (δ0).

Furthermore, by the property of Fourier transform on convolution, we have

F (−i δ′
0)F (u) = F (−i δ′

0 ∗ u) = −iF (δ0 ∗ u′) = −iF (u′),

and the previous equation becomes

−iF (u′) = F (δ0).

Since F is an automorphisme on S ′(Rd), we deduce that

u′ = i δ0 = iH ′,

where H is the Heaviside function. Therefore, we have

(u− iH)′ = 0.

We deduce that there exists c ∈ C such that

u = iH + c.

However, since v.p. 1
x is an odd distribution, its (inverse) Fourier transform is an odd distribution

(the proof is immediate by a change of variable), which implies that c = − i
2 , and

F −1
(

v.p. 1
x

)
(ξ) = i

2sgn(ξ).

The inverse Fourier transform (notice the change of sign!) shows that

F

(
v.p. 1

x

)
(ξ) = −i π sgn(ξ).

Conversely, we have (without using tricks this time)

⟨F (sgn(x)), φ⟩ = −
∫ 0

−∞
φ̂(ξ)dξ +

∫ ∞

0
φ̂(ξ)dξ = lim

ε→0

(
−
∫ −ε

− 1
ε

φ̂(ξ)dξ +
∫ 1

ε

ε

φ̂(ξ)dξ
)
.

The truncation that we have made allows us to use Fubini’s theorem and get

−
∫ −ε

− 1
ε

φ̂(ξ)dξ +
∫ 1

ε

ε

φ̂(ξ)dξ =
∫
R
φ(x)

(
−
∫ −ε

− 1
ε

e−ixξ +
∫ 1

ε

ε

e−ixξdξ

)

= −2i
∫
R
φ(x)

(∫ 1
ε

ε

sin(x · ξ)dξ
)

= −2i
∫
R
φ(x)

cos(εx)− cos
(

x
ε

)
x

dx

= −i
∫
R

φ(x)− φ(−x)
x

(
cos(εx)− cos

(x
ε

))
dx.

Notice that for all φ ∈ S (R), we have (by dominated convergence for example)∫
R

φ(x)− φ(−x)
x

cos(εx)dx −→
ε→0

∫
R

φ(x)− φ(−x)
x

dx =
〈

p.v. 1
x
, φ

〉
.
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On the other hand, since ψ(x) = φ(x)−φ(−x)
x ∈ S (R), the Riemann-Lebesgue lemma shows that∫

R
ψ(x) cos

(x
ε

)
dx = Re

∫
R
ψ(x)eiε−1xdx −→

ε→0
0,

which finally shows that

F (sgn(ξ)) = −2ip.v. 1
x
. (2.7.8)

Therefore, we have

−2π sgn(ξ) = F 2(sgn(ξ)) = −2iF
(

p.v. 1
x

)
= −2i (−iπ sgn(ξ)) = −2π sgn(ξ)

as the Fourier inversion formula predicts.

For other examples, refer to [13] (p. 385).
The Hilbert transform H : S (R)→ S ′(R) is defined by

H(φ) =
(

1
π

p.v. 1
x

)
∗ φ,

that is, for all x ∈ R,

H(φ)(x) = lim
ε→0

∫
|y|>ε

φ(x− y)
πy

dy.

Then, the previous result and Parceval formula show that H extends to an isometry H : L2(R)→ L2(R),
since

Ĥ(φ) = i sgn(ξ)φ̂,

so that ∫
R
|H(φ)(x)|2dx = 1

2π

∫
R
|Ĥ(φ)(ξ)|2dξ = 1

2π

∫
R
|φ̂(ξ)|2dξ =

∫
R
|φ(x)|2dx.

In fact, H belongs to a general class of bounded operators that well-behaved on Lp spaces, called
Calderón-Zygmund operators. They are the basic objects studied in harmonic analysis, but their study
goes beyond the scope of this course.

Application to the Laplace equation.
Let d ≥ 2, f ∈ S (Rd) and u ∈ S ′(Rd) such that

∆u = f.

Then, we have

−|ξ|2û(ξ) = f̂(ξ),

which shows that

u = F −1
(
− 1
|ξ|2

f̂(ξ)
)

= −F −1
(

1
|ξ|2

)
∗ f for d ≥ 2,

whilst

u = −F −1
(

p.v. 1
|ξ|2

)
∗ f for d = 2.
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We see that for n ≥ 2, since the Fourier transform of a positive distribution is positive, the Fourier
transform of radial distribution is radial, and the Fourier transform of a homogenous function of degree
α > 0 (which is a tempered distribution in particular) is a homogenous distribution of degree −α − d,
we deduce that

F −1
(

1
|ξ|2

)
(x) = cd

|x|d−2

for some cd > 0. Therefore, we have

u(x) = −cd

∫
Rd

f(y)
|x− y|d−2 dy.

In order to compute the constant cd > 0, we integrate by parts for r > 0∫
Rd\B(x,r)

∆u(y)
|x− y|d−2 dy

= −
∫

∂B(x,r)

(
1

|x− y|d−1 ∂νu(y)− −(d− 2)(x− y)
|x− y|d

· x− y
|x− y|

u(y)
)
dH d−1(y)

= −(d− 2)
∫

∂B(x,r)

u(y)
rd−1 dH

d−1 +
∫

∂B(x,r)

∂νu(y)
rd−2 dH d−1

−→
r→0
−(d− 2)H d−1(Sd−1)u(x) = −(d− 2)β(d)u(x),

where the sign is due to the negative orientation of ∂B(x, r), and the limit follows from the continuity
of u at x, and the bound ∣∣∣∣∣

∫
∂B(x,r)

∂νu(y)
rd−2 dH d−1

∣∣∣∣∣ ≤ β(d)r ∥∇u∥L∞(Rd) −→r→0
0.

Finally, we get for d ≥ 3

u(x) = − 1
(d− 2)β(d)

∫
Rd

f(y)
|x− y|d−2 dy.

For d = 2, we need to define the notion of (Hadamard) finite part in more generality.

Proposition 2.7.10. Let d ≥ 1, and m ≥ d. Then, there exists a rational fraction Q in ε−1 and log(1/ε)
such that for all φ ∈ D(Rd), we have∫

Rd\B(0,ε)
|x|−mφ(x)dx = P

(
1
ε
, log

(
1
ε

)
, {Dαφ(0)}α∈Nd

)
+Rε(φ),

where each monomial of P diverges for a suitable choice of φ as ε → 0, and where Rε(φ) converges
to a limit as ε → 0. Then, this limit is a distribution of finite order max {1, [m]− d}, that we denote
f.p.|x|−m (where “ f.p.” stands for finite part).

Remark 2.7.11. This process of renormalisation has a fundamental importance in physics (see [41] and
[2], [3] for mathematical applications of those ideas).

Proof. It follows immediately from the Taylor formula. By symmetry, all non-even polynomials in the
Taylor expansion of φ have zero integral. Furthermore, since φ has compact support, there exists R > 0
such that∫

Rd\B(0,ε)
|x|−mφ(x)dx =

∫
BR\Bε(0)

|x|−mφ(x)dx

=
∑

|α|≤[m]−d

1
α!D

αφ(0)
∫

BR\Bε(0)

xα

|x|m
dx+

∫
BR\Br(0)

O(|x|d−1+m−[m]).
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Then, we see that the last term in the right-hand side of the last equation is bounded as ε → 0. Now,
using polar coordinates, we have∫

BR\Bε(0)

xα

|x|m
dx =

∫ R

ε

1
rm−d−|α|+1

(∫
Sd−1

yαdH d−1
)
dr.

If some αj is odd, then by symmetry, we have∫
Sd−1

yαdH d−1 = 0.

Otherwise, if α = 2β ∈ (2N)d, then∫
Sd−1

yαdH d−1 =
∫

Sd−1

d∏
j=1
|yj |2βjdH d−1 = F (β).

To compute this integral, we use a trick of Federer ([15], 3.2.13). Recall that for all z ∈ C∩{z : Re (z) > 1},
the Gamma function is defined by

Γ(z) =
∫ ∞

0
tz−1e−tdt.

Now, making the change of variable t = y2, we deduce that

Γ(z) = 2
∫ ∞

0
y2z−1e−y2

dy =
∫
R
|y|2z−1e−y2

dy.

Therefore, we deduce by the Fubini theorem and polar coordinates that
d∏

j=1
Γ(zj) =

∫
Rd

d∏
j=1
|yj |2zj−1e−|y|2

dL dy =
∫

Sd−1

d∏
j=1
|yj |2zj−1dH d−1(y)

∫ ∞

0
r2

∑d
j=1 zj−1e−r2

dr

= 1
2Γ

 d∑
j=1

zj

∫
Sd−1

d∏
j=1
|yj |2zj−1dH d−1(y).

Therefore, we have

∫
Sd−1

d∏
j=1
|yj |2zj−1dH d−1(y) =

2
d∏

j=1
Γ(zj)

Γ

 d∑
j=1

zj

 . (2.7.9)

In particular, we deduce that

F (β) =

2
d∏

j=1
Γ
(
βj + 1

2

)
Γ
(
|β|+ 1

2
) =

2
d∏

j=1
Γ
(
αj + 1

2

)
Γ
(

|α|+d
2

) .

Finally, we have provided that m /∈ N∑
|α|≤[m]−d

1
α!D

αφ(0)
∫

BR\Bε(0)

xα

|x|m
dx

=
∑

|α|≤[m]−d

α∈(2N)d

1
α!

2
d∏

j=1
Γ
(
αj + 1

2

)
Γ
(

|α|+d
2

) 1
m− d− |α|

(
1

εm−d−|α| −
1

Rm−d−|α|

)
Dαφ(0).
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For m ∈ N and |α| = m− d, we have

1
α!D

αφ(0)
∫

BR\Bε(0)

xα

|x|m
dx = 1

α!

2
d∏

j=1
Γ
(
αj + 1

2

)
Γ
(

m
2
) log

(
R

ε

)
Dαφ(0).

Therefore, the polynomials are given by the formulae above, and the claim on the order follows immedi-
ately from those explicit formulae.

In the case d = 2 and m = 2, we have∫
R2\B(0,ε)

φ(x)
|x|2

dx =
∫

BR\Bε(0)

φ(0) +O(|x|)
|x|2

dx

= 2π log
(

1
ε

)
φ(0)− 2π (logR)φ(0) +

∫
BR\Bε(0)

φ(x)− φ(0)
|x|

dx.

Therefore, we deduce that for all φ ∈ D(R2), we have〈
f.p. 1
|x|2

, φ

〉
= lim

ε→0

(∫
R2\B(0,ε)

φ(x)
|x|2

dx− 2π log
(

1
ε

)
φ(0)

)
.

In particular, we have〈
F

(
f.p. 1
|x|2

)
, φ

〉
= lim

ε→0

(∫
R2\B(0,ε)

φ̂(ξ)
|ξ|2

dξ − 2π log
(

1
ε

)
φ̂(0)

)

= lim
ε→0

∫
B 1

ε
\B(0,ε)

φ̂(ξ)
|ξ|2

dξ − 2π log
(

1
ε

)∫
R
φ(x)dx

 .

To compute the Fourier transform of F , the direct approach is impracticable. However, since this
distribution is positive and radial, its Fourier transform is also radial and can easily be computed by
an approximating method. Indeed, the Fourier transform is a continuous map S ′(Rd) → S ′(Rd). In
particular, if a sequence {Tn}n∈N ⊂ S ′(Rd) converges towards a tempered distribution T ∈ S (Rd), we
have

F (Tn) −→
n→∞

F (T ).

Notice that the sequence 1
|x|2−ε diverges in S (R2) as ε → 0, so we need to proceed in a different way.

However, in dimension d = 2, using the link of harmonic functions and holomorphic functions, we easily
see that the Green’s function is given by G(x) = 1

2π log |x|. In particular, we must show that the inverse
Fourier transform of −f.p. 1

|x|2 is (up to constant terms) log |x|, or, equivalently, that the Fourier transform
of log |x| is (up to Dirac masses at 0) −2π f.p. 1

|x|2 . We first compute the Fourier transform of functions
|x|α in Rd for α ∈ C non-singular (the meaning of this word will be clarified later).

First assume that −d < α < 0. Then, since |x|α is a radial positive function of degree α, which implies
that its Fourier transform is a radial positive distribution of degree −d−α. For |α| < d

2 , |x|α ∈ D ′
L2(Rd),

which implies that its Fourier transform is a function. The above properties shows that there exists
cα ∈ R∗

+ such that

F (|x|α)(ξ) = cα

|ξ|d+α
.

To compute the constant cα > 0, we use a trick due to Deny (see [35]). Recall that for all β > 0, we have

F (e−β|x|2
) =

(
π

β

) d
2

e− |ξ|2
4β .
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Therefore, using the Parceval formula with β = 1
2 , we find that∫

Rd

|x|αe− |x|2
2 dx = cα

(2π) d
2

∫
Rd

|ξ|−d−αe− |ξ|2
2 dξ.

The integral on the left-hand side converges for α > −d, and the one of the right-hand side for −d−α >
−d, i.e. for α < 0. Therefore, both integral converge as expected. Now, using polar coordinates, we
deduce that ∫

Rd

|x|αe− |x|2
2 dx = β(d)

∫ ∞

0
rα+d−1e− r2

2 dr = β(d)
∫ ∞

0
(2t)

α+d−1
2 e−t dt√

2t

= 2
α+d

2 −1β(d)
∫ ∞

0
t

α+d
2 −1e−tdt = 2

α+d
2 −1Γ

(
α+ d

2

)
β(d),

by making the change of variable

r =
√

2t =⇒ dr = dt√
2t
.

Therefore, replacing α by −α− d, we get∫
Rd

|ξ|−d−αe− |ξ|2
2 dξ = 2

−α
2 −1Γ

(
−α2

)
β(d),

which finally implies that

cα = (2π) d
2 2α+ d

2
Γ
(

α+d
2
)

Γ
(
−α

2
) = 2α+dπ

d
2

Γ
(

α+d
2
)

Γ
(
−α

2
) ,

and

F (|x|α) (ξ) = 2α+dπ
d
2

Γ
(

α+d
2
)

Γ
(
−α

2
) 1
|ξ|α+d

− d

2 < α < 0. (2.7.10)

Exchanging α into −α − d, we see that (2.7.10) is true for all −d < α < 0. Furthermore, by analytic
continuation, this formula is also true for 0 > Re (α) > −d, and extends outside of poles of the two
Gamma functions to all values α ∈ C, as long as one replaces the functions by their principal values.
For poles of Γ, the regularisation is more complicated, and we will (refer to [35]) first treat the case of
interest of α = d = 2.

Now, we will first compute the Fourier transform of log |x|, which will en passant give us an approx-
imation of f.p. 1

|x|2 , that could also be found directly.

First, notice that for all x ∈ R2 \ {0}, we have

log |x| = lim
ε→0

ε−1 (1− |x|−ε
)
.

Therefore, we also get

ε−1(1− |x|−ε) −→
ε→0

log |x| in S ′(R2).

Now, recalling Examples 2.7.9 1), we get

F
(
ε−1 (1− |x|−ε

))
= ε−1

(
(2π)2δ0 − 22−επ

Γ
(
1− ε

2
)

Γ
(

ε
2
) |ξ|−2+ε

)
.

Recall the following Taylor and Laurent expansions:

Γ(z) = 1− γ(z − 1) +O((z − 1)2)

Γ(z) = 1
z
− γ +O(z),
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where γ is the Euler constant. Therefore, we have

22−επ
Γ(1− ε

2 )
Γ
(

ε
2
) = 4π

(
1− ε log(2) +O(ε2)

) 1 + γ
2 ε+O(ε2)

2
ε (1− γ

2 ε+O(ε2))
= 2πε

(
1 + (γ − log(2))ε+O(ε2)

)
Since Γ(z) = 1

z +O(1) as z → 0, and Γ(1) = 1, we get

22−επ
Γ
(
1− ε

2
)

Γ
(

ε
2
) |ξ|−2+ε = 2πε

(
1 + (γ − log(2))ε+O(ε2)

)
|ξ|−2+ε.

Notice that for all φ ∈ D(R2,R), we have (provided that supp(φ) ⊂ B(0, R) for some R > 0∫
R2

φ(x)
|x|2−ε

dx =
∫

B(0,R)

φ(0)
|x|2−ε

dx+
∫
R2

φ(x)− φ(0)
|x|2−ε

dx = 2πR
ε

ε
φ(0) +

∫
B(0,R)

φ(x)− φ(0)
|x|2

dx.

Therefore, we have〈
ε−1 (2πδ0 − ε(1 +O(ε))|ξ|−2+ε

)
, φ
〉

= 2π 1−Rε

ε
φ(0)−

∫
B(0,R)

φ(x)− φ(0)
|x|2

dx

− 2π(γ − log(2))Rεφ(0) +O(ε)
∫

B(0,R)

φ(x)− φ(0)
|x|2

dx+O(ε)φ(0)

−→
ε→0
−2π log(R)φ(0)−

∫
B(0,R)

φ(x)− φ(0)
|x|2

dx− 2π(γ − log(2))φ(0).

Since 〈
f.p. 1
|x|2

, φ

〉
= lim

ε→0

(∫
R2\B(0,ε)

φ(x)
|x|2

dx− 2π log
(

1
ε

)
φ(0)

)

= lim
ε→0

(∫
BR\Bε(0)

φ(x)
|x|2

dx− 2π log
(

1
ε

)
φ(0)

)

= lim
ε→0

(∫
BR\Bε(0)

φ(0)
|x|2

− 2π log
(

1
ε

))
+
∫

BR\Bε(0)

φ(x)− φ(0)
|x|2

dx

= 2π log(R)φ(0) +
∫

BR\Bε(0)

φ(x)− φ(0)
|x|2

dx,

we deduce that

F (log |x|)(ξ) = −2π f.p. 1
|ξ|2
− (2π)2(γ − log(2))δ0. (2.7.11)

Conversely, the previous discussion shows that

1
|x|2−ε

− 2π
ε
δ0 −→

ε→0
f.p. 1
|x|2

in S ′(R2).

Using formula (2.7.10), we get

F

(
1

|x|2−ε

)
(ξ) = 2επ

Γ
(

ε
2
)

Γ
(
1− ε

2
) |ξ|−ε = π(1 + ε log(2) +O(ε2))

2
ε − γ +O(ε)

1 + γ
2 ε+O(ε2) |ξ|

−ε

= 2π
ε

(1 + (log(2)− γ)ε+O(ε2))|ξ|−ε.

First, we trivially have ε|ξ|−ε −→
ε→0

0 in S ′(R2), and since δ̂0 = 1, we have

F

(
1

|x|2−ε
− 2π

ε
δ0

)
= 2π

ε

(
|ξ|−ε − 1

)
+ 2π(log(2)− γ)|ξ|−ε +O(ε)|ξ|−ε
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−→
ε→0
−2π log |ξ| − 2π(γ − log(2)) in S ′(R2). (2.7.12)

Notice that since F 2(log |x|) = (2π)2 log |x|, formula (2.7.11) implies that

(2π)2 log |ξ| = −2πF

(
f.p. 1
|x|2

)
− (2π)2(γ − log(2)),

or

F

(
f.p. 1
|x|2

)
= −2π log |ξ| − 2π(γ − log(2)),

which is indeed the formula given by (2.7.12). Notice that the previous computations show that

∆ log |x| = ∆
(

F

(
− 1

2π f.p. 1
|x|2

)
+ (γ − log(2))δ0

)
= −F

(
−|x|2

(
− 1

2π f.p. 1
|x|2

)
− (γ − log(2))|x|2δ0

)
= F

(
1

2π

)
= 2π δ0.

We recover the classical formula

u(x) = 1
2π

∫
R2

log |x− y|f(y)dy,

for the solution of the equation ∆u = f in R2 (for f ∈ S (Rd)).
We saw that computing Fourier transforms of distributions may be rather challenging. However,

there is an easy way in the case of distributions with compact support. Let OM (Rd) ⊂ C∞(Rd) be the
space of polynomial growth functions, i.e. such that for all φ ∈ OM (Rd), and for all α ∈ N, there exists
m = m(φ, α) ∈ N such that (1 + |x|)−mDαφ ∈ L∞(Rd).

Proposition 2.7.12. Let T ∈ E ′(Rd). Then, T̂ ∈ OM (Rd), and for all ξ ∈ Rd, we have

T̂ (ξ) = ⟨T, x 7→ e−ix·ξ⟩.

Proof. Since T has compact support, and x 7→ e−ix·ξ ∈ E (Rd) = C∞(Rd), we deduce that the function
ψ(ξ) = ⟨T, x 7→ e−ix·ξ⟩ is well-defined and continuous in ξ. Furthermore, by the derivation theorem for
distributions depending on a parameter, ψ ∈ C∞(Rd), and for all α ∈ Nd, we have

Dαψ(ξ) = ⟨T, (−i)|α|xαe−ix·ξ⟩

Therefore, if K ⊂ Rd is a compact set containing the support of T , and T has order m ∈ N, we deduce
that

|Dαψ(ξ)| ≤ C sup
x∈K,|β|≤m

∣∣Dβ
x

(
xαe−ix·ξ)∣∣ ≤ Cα(1 + |ξ|)m.

Using the theorem of integration under the bracket, we deduce that

⟨ψ,φ⟩ =
∫
Rd

〈
Tx, e

−ix·ξφ(ξ)
〉
dξ =

〈
Tx,

∫
Rd

e−ix·ξφ(ξ)dξ
〉

= ⟨T, φ̂⟩ =
〈
T̂ , φ

〉
,

which shows that T̂ = ψ.

Finally, we prove in a rather general setting the exchange formula between convolution and Fourier
transforms.

Theorem 2.7.13. If S ∈ E ′(Rd) and T ∈ S ′(Rd), then the following formula holds:

F (S ∗ T ) = F (S)F (T ). (2.7.13)
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Proof. Notice that the product makes sense in S ′(Rd) since F (S) has a polynomial growth at infin-
ity thanks to Proposition 2.7.12. Using the structure Theorem 2.5.32, and the identity F (DαU) =
(−1)|α|ξαF (U) for all U ∈ S ′(Rd), we need only prove this formula for S = µ, where µ is a Radon
measure. Let {φn}n∈N ⊂ S (Rd) be a sequence such that φn −→

n→∞
T in the weak topology. Then, for all

n ∈ N, we classically have

F (µ ∗ φn) = F (µ)F (φn).

Furthermore, since µ has compact support, the formula

⟨µ ∗ φn, ψ⟩ =
〈
φn, µ ∗ ψ̃

〉
shows that µ ∗φn converges to µ ∗T = S ∗T in S ′(Rd). Therefore, we obtain formula (2.7.13) by taking
n→∞.

2.8 Appendix

Let us compute the Fourier transform of log |x| in Rd for any d ≥ 1. As previously, we have

log |x| = lim
ε→0

1
ε

(
1− |x|−ε

)
.

Now, we have

F

(
1
ε

(
1− |x|−ε

))
= 1
ε

(
(2π)dδ0 − 2d−επ

d
2

Γ
(

d
2 −

ε
2
)

Γ
(

ε
2
) |ξ|−d+ε

)

= 1
ε

(
(2π)dδ0 − 2dπ

d
2 (1− ε log(2) +O(ε2))

Γ
(

d
2
)
− 1

2 Γ′ (d
2
)
ε+O(ε)2

2
ε

(
1− γ

2 ε+O(ε2)
) |ξ|−d+ε

)

= (2π)d

ε
δ0 − 2d−1π

d
2 Γ
(
d

2

)
|ξ|−d+ε + 2dπ

d
2 ε

(
γ

2 −
1
2

Γ′ (d
2
)

Γ
(

d
2
) − log(2)

)
|ξ|−d+ε.

Let φ ∈ D(Rd) and R > 0 such that supp(φ) ⊂ B(0, R). Then, using polar coordinates ([15] 3.2.13)

⟨|x|−d+ε, φ⟩ =
∫

BR\Bε(0)
ε|x|−d+εφ(x)dx = φ(0)

∫
BR\Bε(0)

dx

|x|d−ε
+
∫

BR\Bε(0)

φ(x)− φ(0)
|x|d−ε

dx

= β(d)
ε

Rεφ(0) +
∫

BR\Bε(0)

φ(x)− φ(0)
|x|d−ε

dx, (2.8.1)

where we wrote β(d) = H d−1(Sd−1). Since the right-hand side of (2.8.1) is bounded as ε → 0, we
deduce that 〈

ε|x|−d+ε, φ
〉
−→
ε→0

β(d)φ(0) = ⟨β(d)δ0, φ⟩ ,

i.e.

lim
ε
ε|x|−d+ε = β(d)δ0 in S ′(Rd).

Recall by the previous computation (take (2.7.9) with zj = 1
2 for all 1 ≤ j ≤ d) that

β(d) = H d−1(Sd−1) =
2 Γ
( 1

2
)d

Γ
(

d
2
) = 2π d

2

Γ
(

d
2
) .

Therefore, we have for all φ ∈ D(Rd)〈
(2π)d

ε
δ0 − 2d−1π

d
2 Γ
(
d

2

)
|ξ|−d+ε, φ

〉
= (2π)dφ(0)

ε
− 2d−1π

d
2 × 2π d

2

Γ
(

d
2
)Rεφ(0)

ε
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− 2d−1π
d
2

∫
BR\Bε(0)

φ(x)− φ(0)
|x|d−ε

dx

= (2π)d 1−Rε

ε
φ(0)− 2d−1π

d
2

∫
BR\Bε(0)

φ(x)− φ(0)
|x|d−ε

dx

−→
ε→0
−(2π)d log(R)− 2d−1π

d
2

∫
BR\Bε(0)

φ(x)− φ(0)
|x|d

dx = −2d−1π
d
2 f.p. 1

|x|d
.

Finally, we get

F (log |x|) (ξ) = −2d−1π
d
2 f.p. 1

|ξ|d
+ 2d+1 πd

Γ
(

d
2
) (−γ2 + 1

2
Γ′ (d

2
)

Γ
(

d
2
) + log(2)

)
δ0

= −2d−2Γ
(
d

2

)
β(d) f.p. 1

|ξ|d
+ (2π)d

Γ
(

d
2
) (2 log(2)− γ +

Γ′ (d
2
)

Γ
(

d
2
) ) δ0, (2.8.2)

and we check that this formula coincide with the previous one for d = 2 since Γ(1) = 1 and Γ′(1) = −γ.
We also get

(2π)d log |ξ| = −2d−1π
d
2 F

(
f.p. 1
|x|d

)
(ξ) + (2π)d

Γ
(

d
2
) (2 log(2)− γ +

Γ′ (d
2
)

Γ
(

d
2
) ) ,

or

F

(
f.p. 1
|x|d

)
(ξ) = −2π d

2 log |ξ|+ 2π d
2

Γ
(

d
2
) (2 log(2)− γ +

Γ′ (d
2
)

Γ
(

d
2
) )

= −Γ
(
d

2

)
β(d) log |x|+ β(d)

(
2 log(2)− γ +

Γ′ (d
2
)

Γ
(

d
2
) ) . (2.8.3)

We will also check that directly, using the formula

1
|x|d−ε

− β(d)
ε

δ0 −→
ε→0

f.p. 1
|x|d

in S ′(R2).

Indeed, we have for all φ ∈ D(Rd) such that supp(φ) ⊂ B(0, R),〈
1

|x|d−ε
− β(d)

ε
δ0, φ

〉
=
∫

B(0,R)

φ(x)
|x|d−ε

dx− β(d)
ε

φ(0)

=
∫

B(0,R)

φ(0)
|x|d−ε

dx+
∫

B(0,R)

φ(x)− φ(0)
|x|d−ε

dx− β(d)
ε

φ(0)

=
∫ R

0

1
rd−ε

(∫
Sd−1

φ(0)dH d−1
)
rd−1dr +

∫
B(0,R)

φ(x)− φ(0)
|x|d−ε

dx− β(d)
ε

φ(0)

= β(d)φ(0)
∫ R

0

dr

r1−ε
dr +

∫
B(0,R)

φ(x)− φ(0)
|x|d−ε

dx

= β(d)R
ε − 1
ε

φ(0) +
∫

B(0,R)

φ(x)− φ(0)
|x|d−ε

dx− β(d)
ε

φ(0)

−→
ε→0

β(d) log(R)φ(0) +
∫

B(0,R)

φ(x)− φ(0)
|x|d

dx =
〈

p.f. 1
|x|d

, φ

〉
,

since ∫
Rd\B(0,ε)

φ(x)
|x|d

dx =
∫

BR\Bε(0)

φ(0)
|x|d

+
∫
Rd\B(0,ε)

φ(x)− φ(0)
|x|d

dx

= β(d) log
(

1
ε

)
φ(0) + β(d) log(R)φ(0) +

∫
B(0,R)

φ(x)− φ(0)
|x|d

dx.
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Now, we have by (2.7.10)

F

(
1

|x|d−ε
− β(d)

ε
δ0

)
= 2επ

d
2

Γ
(

ε
2
)

Γ
(

d−ε
2
) 1
|ξ|ε
− β(d)

ε
.

Now, recalling that β(d) = 2π d
2

Γ
(

d
2
) , we deduce that

2επ
d
2

Γ
(

ε
2
)

Γ
(

d−ε
2
) = (1 + ε log(2) +O(ε2))π d

2

2
ε − γ +O(ε)

Γ
(

d
2
)
− 1

2 Γ′
(

d
2
)
ε+O(ε2)

= 2π d
2

Γ
(

d
2
) (1 +

(
2 log(2)− γ +

Γ′ (d
2
)

Γ
(

d
2
) ) ε+O(ε2)

)
.

Therefore, we have

2επ
d
2

Γ
(

ε
2
)

Γ
(

d−ε
2
) 1
|ξ|ε
− β(d)

ε
= β(d)

ε
(|ξ|−ε − 1) + β(d)

(
2 log(2)− γ +

Γ′ (d
2
)

Γ
(

d
2
) ) |ξ|−ε

−→
ε→0
−β(d) log |ξ|+ β(d)

(
2 log(2)− γ +

Γ′ (d
2
)

Γ
(

d
2
) ) .

Notice that for d = 1, and for all φ ∈ D(R) such that supp(φ) ⊂ [−R,R], we have∫
R\[−ε,ε]

φ(x)
|x|

dx = 2
∫ R

ε

φ(0)
x

dx+
∫

[−R,−ε]∪[ε,R]

φ(x)− φ(0)
|x|

dx

= 2 log
(

1
ε

)
φ(0) + 2 log(R)φ(0) +

∫
[−R,−ε]∪[ε,R]

φ(x)− φ(0)
|x|

dx.

Therefore, we have 〈
f.p. 1
|x|
, φ

〉
= lim

ε→0

(∫
R\[−ε,ε]

φ(x)
|x|

dx− 2 log
(

1
ε

)
φ(0)

)

= 2 log(R)φ(0) +
∫ R

−R

φ(x)− φ(0)
|x|

dx.

We have ∫ R

0

φ(x)− φ(0)
|x|

dx =
∫ R

0

1
|x|

(∫ x

0
φ′(t)dt

)
dx =

∫ R

0
φ′(t)

(∫ R

0

1{0≤t≤x}

|x|
dx

)
dt

=
∫ R

0
φ′(t) log

(
R

t

)
dt

= −
∫ R

0
φ′(t) log |t|dt− log(R)φ(0),

whilst ∫ 0

−R

φ(x)− φ(0)
|x|

dx =
∫ 0

−R

φ′(t) log |t|dt− log(R)φ(0),

Therefore, we deduce that〈
f.p. 1
|x|
, φ

〉
= −

∫ ∞

0
φ′(t) log |t|dt+

∫ 0

−∞
φ′(t) log |t|dt = −⟨sgn(x) log |x|, φ′⟩

=
〈
d

dx
(sgn(x) log |x|) , φ

〉
,
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which shows that

f.p. 1
|x|

= d

dx
(sgn(x) log |x|) , (2.8.4)

whilst

p.v. 1
x

= d

dx
(log |x|) . (2.8.5)

Remark 2.8.1. Notice that for any L1
loc function u in S ′(Rd) whose Fourier transform is a L1

loc function
(or a finite part or principal value function), its Fourier transform is given for all non-singular values by
the limit

lim
ε→0

∫
B 1

ε
(0)
e−ix·ξu(x)dx.

However, this formula is of almost none practical use, even for u(x) = log |x|. What are the needed
algebraic transformations that would allow one to make appear the Euler constant γ? Therefore, we see
that the idea of Taylor expansions and limits is the most efficient way to compute Fourier transforms of
rather complicated functions.
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Chapter 3

Sobolev Spaces

Let Ω be an open set of Rd for some d ≥ 1, that we choose connected for convenience.

3.1 Definition and Basic Properties

Definition 3.1.1. Let m ∈ N and 1 ≤ p ≤ ∞. A function u : Ω → R belongs to the Sobolev
space Wm,p(Ω) if and only if for all |α| ≤ m, we have Dαu ∈ Lp(Ω). If p = 2, we commonly write
Wm,2(Ω) = Hm(Ω). We equip Wm,p(Ω) with the following norm

∥u∥Wm,p(Ω) =
∑

|α|≤m

∥Dαu∥Lp(Ω) . (3.1.1)

Theorem 3.1.2. The space Wm,p(Ω) is a Banach space. The space Wm,p(Ω) is reflexive for 1 < p <∞
and separable for 1 ≤ p <∞. The space Hm(Ω) is a separable Hilbert space.

Proof. Step 1. Wm,p is a Banach space.
Let {un}n∈N ⊂Wm,p(Ω) be a Cauchy sequence. Since Lp(Ω) is a Banach space, there exists u ∈ Lp(Ω)

and for all 0 < |α| ≤ m, there exists uα ∈ Lp(Ω) such that un −→
n→∞

u and Dαun −→
n→∞

uα. Now, by
Hölder’s inequality, for all φ ∈ D(Ω), we have

|⟨un, φ⟩ − ⟨u, φ⟩| ≤ ∥un − u∥Lp(Ω) ∥φ∥Lp′ (Ω) −→n→∞
0.

Therefore, un −→
n→∞

u in the distributional sense, and since derivation is continuous under σ(D(Ω),D ′(Ω)),
we deduce that uα = Dαu for all |α| ≤ m, which concludes the proof.

Step 2. Other properties.
We have an isometry Wm,p(Ω)→ Lp(Ω)N(d,m) given by the natural map u 7→ {Dαu}|α|≤m, where

N(d,m) = card(Nd ∩ {α : |α| ≤ m} .

In particular, Wm,p(Ω) is a closed space of Lp(Ω)N(d,m), which implies the claims on reflexivity and
separability.

Remark 3.1.3. There are many generalisations of Sobolev spaces, using more complicated norms or
weaker notions than functions. We will not list them all, but let us nevertheless mention the important
class of function of bounded variations, commonly called BV functions, that are L1 functions whose
distributional derivative is a Radon measure. Those functions have applications to the study of minimal
surfaces, and we send to Giusti’s monograph for more details ([18]).
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Theorem 3.1.4. Let u ∈ Wm,p(Ω), with 1 ≤ p < ∞. Then, there exists a sequence {un}n∈N ⊂ D(Rd)
such that  ∥un − u∥Lp(Ω) −→n→∞

0

∥Dα(un − u)∥Lp(Ω′) −→n→∞
0 for all Ω′ ⊂⊂ Ω.

(3.1.2)

Proof. Let {ρn}n∈N ⊂ D(Rd) be an approximation of unity, i.e. a non-negative function with integral
1, support included in B(0, 1

n ), and such that ρn −→
n→∞

δ0 in D ′(Rd). Let vn = ρn ∗ (u1Ω). Then, the
classical results of convolution show that

∥un − u1Ω∥Lp(Ω) −→n→∞
0,

which shows the first part of (3.1.2). Now, fix some relatively compact open subset Ω′ of Ω, and let
χ ∈ D(Ω) such that χ = 1 on an open neighbourhood of Ω′. Then, for n ∈ N large enough, we have

ρn ∗ (χu) = ρn ∗ (u1Ω).

Indeed, we have

supp (ρn ∗ (χu)− ρn ∗ (u1Ω)) = supp(ρn ∗ ((1Ω − χ)u)) ⊂ supp(ρn) + supp(1Ω − χ) ⊂ Ω \ Ω′

for n ∈ N large enough. Indeed, supp (1Ω−χ) ⊂ Ω\Ω′ which is an open set, and since supp (ρn) ⊂ B(0, 1
n ),

for n large enough, we also have

B

(
0, 1
n

)
+ supp(1Ω − χ) ⊂ Ω \ Ω′.

Now, we have by Proposition 2.6.1

Dα(ρn ∗ (χu)) = ρn ∗ (uDαχ+ χDαu) in D ′(Rd).

In particular, we have

∥Dα(vn − u)∥Lp(Ω′) −→n→∞
0.

Finally, if η ∈ C∞(Ω) is such that η(t) = 1 for t ≤ 1 and η(t) = 0 for t ≥ 2, defining ηn(x) = η

(
|x|
n

)
,

the sequence {un = ηn vn}n∈N has the required properties.

Remark 3.1.5. More generally, the Meyers-Serrin theorem shows that for all u ∈Wm,p(Ω), there exists
{un}n∈N ⊂Wm,p(Ω) ∩ C∞(Ω) such that un −→

n→∞
u in Wm,p(Ω).

3.2 Basic Properties of Sobolev functions

We prove two propositions on the composition and change of variable.

Proposition 3.2.1 (Composition of Sobolev functions). Let 1 ≤ p ≤ ∞, and G ∈ C1(R) ∩ Lip(R) such
that G(0) = 0. Then, for all u ∈W 1,p(Ω), we have G ◦ u ∈W 1,p(Ω), ∇(G ◦ u) = G′(u)∇u, and

∥G ◦ u∥W1,p(Ω) ≤ Lip(G) ∥u∥W1,p(Ω) .

Proof. If L = Lip(G), we have by definition |G(x)| = |G(x)−G(0)| ≤ L|x| for all x ∈ Ω. Therefore, we
have |G(u)| ≤ L|u| and

∥G(u)∥Lp(Ω) ≤ L ∥u∥Lp(Ω) .
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Now, let us show that ∇(G ◦ u) = G′(u)∇u. Let {un}n∈N ⊂ D(Rd) such thatun −→
n→∞

u in Lp(Ω)

∇un −→
n→∞

∇u in Lp(Ω′) for all Ω′ ⊂⊂ Ω.

For all φ ∈ D(Ω,Rd), and for all n ∈ N, we have by Stokes theorem∫
Ω

(G ◦ un) divφdx = −
∫

Ω
G′(un)∇un ◦ φdx.

As G(un) −→
n→∞

G(u) in Lp(Ω) and G′(un)∇un −→
n→∞

G′(u)∇u in Lp(supp(φ) + B(0, ε)) for ε > 0 small
enough, we deduce that in the limit∫

Ω
(G ◦ u) divφdx = −

∫
Ω
G′(u)∇u · φdx.

For p = ∞, we apply the previous argument on Ω′ = supp(φ) + B(0, ε), and notice that u ∈ W 1,p(Ω′)
for all p <∞.

Remark 3.2.2. More generally, the result would hold for a Lipschitzian function.

Proposition 3.2.3 (Change of variable). Let Φ : U → V be a C1-diffeomorphism such that Jac(Φ) ∈
L∞(U) and Jac(Φ−1) ∈ L∞(V ). Then, for all u ∈ W 1,p(V ), we have u ◦ Φ ∈ W 1,p(U) and for all
1 ≤ i ≤ d, we have

∂xi
(u ◦ Φ)(y) = ∇u(Φ(y)) · ∂xi

Φ(y).

while

∥u ◦ Φ∥W1,p(U) ≤ C(Φ) ∥u∥W1,p(V ) .

Proof. The proof is similar and we omit it.

3.3 Extension Operator

A lot of properties of Sobolev spaces are easier to prove for the whole space. If Ω ̸= Rd, an extension
operator is a continuous linear map E : Wm,p(Ω) → Wm,p(Rd), such that E(u)|Ω = u for all u ∈
Wm,p(Ω). Those extension operators do not exist for all domains, and we will treat the simple case of
C1 open sets (there are many generalisations of this result, see [1]).

The notion of manifolds with boundary will be relevant in this chapter, so we identify Rd with
Rd−1 × R, and write x = (x′, xd) ∈ Rd−1 × R those coordinates.

Rd
+ = Rd ∩ {(x′, xd) : xd > 0}

Rd−1 = ∂Rd
+ = Rd−1 × {0} .

Definition 3.3.1. We say that an open subset Ω ⊂ Rd is of class Cm—or is a Cm domain—if Ω is a
C1 manifold with boundary. Explicitly, for all x ∈ ∂Ω, there exists r > 0 and a Cm diffeomorphism
φ : Rd → B(x, r) such that φ(Rd

+) = Ω ∩B(x, r), and φ(∂Rd
+) = ∂Ω ∩B(x, r).

Let us start by a simple lemma of extension by reflection. By induction, we need only prove the case
of derivatives of first order, and we will therefore restrict to this case in the rest of this section.

Lemma 3.3.2 (Extension Lemma). Let u ∈W 1,p(Rd
+), and u∗ : Rd → C defined by

u∗(x) =
{
u(x′, xd) for all xd > 0
u(x′,−xd) for all xd ≤ 0.

Then, u∗ ∈W 1,p(Rd), and

∥u∗∥Lp(Ω) = 2 ∥u∥Lp(Ω) , ∥∇u∗∥Lp(Ω) = 2 ∥∇u∥Lp(Ω) .
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Proof. First assume that u ∈ C∞(Rd
+), and fix some φ ∈ D(Rd). Let {θn}n∈N ⊂ C∞(R) be an even

function such that θn = 1 on R \ [− 1
n ,

1
n ] and supp(θn) = R \ [− 1

2n ,
1

2n ]. Furthermore, by approximating
a piece-wise linear function, we can assume that |θ′

n| ≤ 4n. Letting χn(x) = θn(xd), for all φ ∈ D(Rd)
and for all 1 ≤ i ≤ d− 1, we have∫

Rd

u∗ ∂xi
(χnφ) dx =

∫
Rd

+

u ∂xi
(χn(φ+ φ∗)) dx,

where φ∗(x) = φ(x,−xd), while∫
Rd

ũ ∂xd
(χnφ)dx =

∫
Rd

+

u ∂xd
(χn(φ− φ∗)) dx.

Then, we have for all 1 ≤ i ≤ d− 1∫
Rd

+

uχn ∂xi
(φ+ φ∗) dx =

∫
Rd

+

u ∂xi
(χn(φ+ φ∗))dx = −

∫
Rd

+

(φ+ φ∗)χn ∂xi
u dx

= −
∫
Rd

+

φχn∂xi
u∗dx.

Letting n→∞, we deduce that ∫
Rd

u ∂xi
φdx = −

∫
Rd

φ∂xi
u∗ dx,

while ∫
Rd

+

uχn ∂xd
(φ− φ∗))dx =

∫
Rd

+

uχn ∂xd
(χn(φ− φ∗))dx−

∫
Rd

+

u (φ− φ∗)∂xd
χn dx

= −
∫
Rd

+

χn(φ− φ∗) ∂xd
u dx−

∫
Rd

+

u (φ− φ∗)∂xd
χn dx.

Now, we have |φ(x, xd)− φ(x′,−xd)| ≤ 2 ∥∂xd
φ∥L∞(R) |xd| = C|xd|, so that∣∣∣∣∣

∫
Rd

+

u (φ− φ∗)∂xd
χn dx

∣∣∣∣∣ ≤
∫
{0<xd< 1

2n}
C|u||xd||θ′

n(xd)|dx ≤ 2C
∫
{0<xd< 1

2n}
|u|dx −→

n→∞
0,

where we used |θ′
n| ≤ 4n. Therefore, we have

∂xd
u∗ =

{
∂xd

u(x′, xd) for all xd > 0
− ∂xd

u(x′,−d) for all xd ≤ 0,

which concludes the proof of the lemma.

Using local charts, the obtention of a continuous extension operator is rather straightforward.

Theorem 3.3.3. Let Ω be a Cm domain of Rd with a bounded boundary. Then, there exists a continuous
extension operator T : Wm,p(Ω)→Wm,p(Rd) such that for all u ∈Wm,p(Ω),

1. Tu|Ω = u,

2. ∥Tu∥Lp(Rd) ≤ C ∥u∥Lp(Ω)

3. ∥Tu∥Wp(Rd) ≤ C ∥u∥Wp(Ω).

where the constant C depends only on Ω.
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Proof. As previously, by induction, we need only treat the case m = 1. Since ∂Ω is compact, there exists
finitely many points x1, · · · , xn ∈ ∂Ω such that

∂Ω ⊂
n⋃

i=1
B(xi, ri),

and C1 diffeomorphisms φi : Rd → B(xi, ri) such that φ(Rd
+) = Ω∩B(xi, ri) and φi(∂Rd

+) = ∂Ω∩B(x, r)
(1 ≤ i ≤ m). Then, if χ0, χ1, · · · , χn is a partition of unity associated to Rd \∂Ω, B(x1, r1), ..., B(xn, rn),
we write

u =
n∑

i=0
χiu =

n∑
i=0

ui.

We extend u0 by 0 and write u∗
0 = u0 1Ω. As supp(χ0) ⊂ Rd \ ∂Ω, u0 has compact support on Ω, and

therefore extends to Rd as an element of W 1,p(Rd). Furthermore, we have

∂xiu
∗
0 = θ0 (∂xiu0) 1Ω + (∂xiθ0)u1Ω. (3.3.1)

For all 1 ≤ i ≤ d, we have ∇θi ∈ L∞(Rd) since θi ∈ D(Rd). Therefore, the identity
n∑

i=0
θi = 1

shows that

∇θ0 = −
n∑

i=1
∇θi ∈ L∞(Rd),

and by

∥∇u∗
0∥Lp(Rd) ≤ ∥u0∥Lp(Ω) + ∥∇θ0∥L∞(Rd) ∥∇u0∥Lp(Ω) ≤

(
1 + ∥∇θ0∥L∞(Rd)

)
∥u∥W1,p(Ω) . (3.3.2)

Now, fix some 1 ≤ i ≤ n, and let vi = u ◦ φ|Rd
+ : Rd

+ → C. An immediate argument by density shows
that vi ∈W 1,p(Rd

+), and that

∇vi = ∇φ · ∇ui ◦ φ.

Extend vi by reflection to a map v∗
i : Rd → C using Lemma 3.3.2, and let wi = v∗

i ◦φ−1 : B(xi, ri)→ C.
Then, the previous comment on compositions shows that

∥wi∥W1,p(B(xi,ri)) ≤ C ∥u∥W1,p(Ω∩B(xi,ri)) .

Finally, setting u∗
i = χi wi 1Ω yields the following controlled extension:

Tu =
n∑

i=0
u∗

i .

This concludes the proof of the theorem.

Remark 3.3.4. The theorem holds under milder hypotheses; a strong local Lipschitzian condition (see
[1], Theorem 5.24) suffices by virtue of Stein Extension Theorem.

3.4 Sobolev Embedding Theorem

3.4.1 Super-Critical Case

As we mentioned previously, the Sobolev inequality shows that a distribution u such that ∇u ∈ Lp(Rd) is
in fact a locally Lq function for some exponent q > 1. Assuming that u belongs to some Lr space, we get
a global estimate. In particular, the Sobolev inequality is particularly easy to state for W 1,p functions.
The argument generalises to Wm,p spaces, and once more, we need only look at the case m = 1 to
deduce more general Sobolev inequalities. The results depend on the relation between 1 ≤ p ≤ ∞ and
the ambient dimension d.
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Theorem 3.4.1 (Sobolev). Assume that d ≥ 2, and let 1 ≤ p < d. Then, we have a continuous
embedding W 1,p(Rd) ↪−→ Lp∗(Rd), where

p∗ = dp

d− p
.

For d = 1, for all interval I ⊂ R, we have a continuous embedding W 1,p(I) ↪−→ C0(I), and

∥u∥L∞(I) ≤ C(I) ∥u∥W1,p(I) .

Proof. Part 1. Case d ≥ 2. We first assume that p = 1. For all u ∈ D(Rd), we have for all 1 ≤ i ≤ d by
the triangle inequality

|u(x)| =
∣∣∣∣∫ xi

−∞
∂xi

u(x1, · · · , xi−1, y, xi+1, · · · , xd)dy
∣∣∣∣

≤
∫
R
|∂xi

u(x1, · · · , xi−1, y, xi+1, · · · , xd)|dy = f(x̂i),

where x̂i = (x1, · · · , xi−1, xi+1, · · · , xd) ∈ Rd−1. Now, we use the following straightforward lemma.

Lemma 3.4.2. Let f1, · · · , fd ∈ Ld−1(Rd−1), and define

f(x) =
d∏

i=1
f(x̂i).

Then, f ∈ L1(Rd), and

∥f∥L1(Rd) ≤
d∏

i=1
∥fi∥Ld−1(Rd−1) . (3.4.1)

Proof. The case d = 2 simply corresponds to Fubini’s theorem:∫
R2
|f1(x1)||f2(x2)|dx1dx2 = ∥f1∥L1(R) ∥f2∥L1(R) .

Now, assume that the results holds for 2 ≤ i ≤ d− 1. Fixing xd, we have by Hölder’s inequality

∫
Rd−1

|f(x′, xd)|dx′ ≤ ∥fd∥Ld−1(Rd−1)

(∫
Rd−1

d−1∏
i=1
|f1(x̂i)|

d−1
d−2 dx′

) d−2
d−1

.

Applying the induction hypothesis to |f1|
d−1
d−2 , · · · , |fd−1|

d−1
d−2 , we deduce that(∫

Rd

d−1∏
i=1
|f1(x̂i)|

d−1
d−2 dx′

) d−2
d−1

≤
d−1∏
i=1
∥fi∥Ld−1(Rd−2) (xd),

and ∫
Rd−1

|f(x′, xd)|dx′ ≤ ∥fd∥Ld−1(Rd−1)

d−1∏
i=1
∥fi∥Ld−1(Rd−2) (xd).

Now, integrating in xd, the generalised Hölder’s inequality shows that∫
R

d−1∏
i=1
∥fi∥Ld−1(Rd−2) (xd)dxd ≤

d−1∏
i=1

∥∥∥∥fi∥Ld−1(Rd−2) (xd)
∥∥∥

Ld−1(R)
=

d−1∏
i=1
∥fi∥Ld−1(Rd−1) ,

which concludes the proof of the lemma.
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Therefore, we have

|u(x)|
d

d−1 ≤
d∏

i=1
fi(x̂i)

1
d−1 ,

which shows by the lemma that∫
Rd

|u|
d

d−1 dx ≤
d∏

i=1

∥∥∥∥f 1
d−1

i

∥∥∥∥
Ld−1(Rd−1)

=
d∏

i=1
∥fi∥

1
d−1
L1(Rd−1)

d∏
i=1
∥∂xi

u∥
1

d−1
L1(Rd) . (3.4.2)

We finally deduce that

∥u∥
L

d
d−1 (Rd)

≤
d∏

i=1
∥∂xiu∥

1
N

L1(Rd) ≤ ∥∇u∥L1(Rd) .

For a general exponent 1 < p < d, fix some t > 1 to be determined later, and apply (3.4.2) to |u|t−1u.
We get

∥u∥t

L
t d

d−1 (Rd)
≤ t

d∏
i=1

∥∥|u|t−1∂xi
u
∥∥ 1

d

L1(Rd) ≤ t ∥u∥
t−1
Lp′(t−1)(Rd)

d∏
i=1
∥∂xi

u∥
1
d

Lp(Rd) . (3.4.3)

Choosing t > 1 such that t d

d− 1 = p′(t− 1), we get

∥u∥Lp∗ (Rd) ≤
p(d− 1)
d− p

d∏
i=1
∥∂xiu∥

1
d

Lp(Rd) .

Using the density of D(Rd) in W 1,p(Rd) and Fatou lemma, we obtain the general proof.
Part 2. Now, we treat the case d = 1, and first establish an elementary lemma.

Lemma 3.4.3. Let g ∈ L1
loc(I), and fix some x0 ∈ I. Define

f(x) =
∫ x

x0

g(y)dy.

Then, we have f ∈ C0(I), and f ′ = g in D ′(I).

Proof. The continuity follows from the classical theorems of continuous dependence of the Lebesgue
integral (one can use the dominated convergence theorem for example). Now, for all φ ∈ D ′(I), we have
by Fubini’s theorem∫

I

f(x)φ′(x) dz =
∫

I

(∫ x

x0

g(y)dy
)
φ′(x)dx

= −
∫ x0

inf I

∫
I

g(y)φ′(x)1{x≤y≤x0}dxdy +
∫ sup I

x0

∫
I

g(y)φ′(x)1{x0≤y≤x}dxdy

= −
∫

I

(∫ x0

inf I

φ′(x)1{x≤y≤x0}dx

)
g(y)dy +

∫
I

(∫ sup I

x0

φ′(x)1{x0≤y≤x}dx

)
g(y)dy

= −
∫

I

(∫ y

inf I

φ′(x)dx
)
g(y)dy +

∫
I

(∫ sup I

y

φ′(x)
)
g(y)dy = −

∫
I

φ(y)g(y)dy,

where we used that φ has compact support in I. Therefore, we have in the distributional sense f ′ = g
in D ′(I) as claimed.

65



Thanks to the lemma and Theorem 2.5.21, we deduce that for all u ∈W 1,p(I) and for all x0 ∈ I, we
have

u(x)− u(x0) =
∫ x

x0

u′(y)dy.

Provided that I = R and u ∈ D(R), we obtain similarly the formula

u(x)|u(x)|p−1 =
∫ x

−∞
pu′(x)|u(x)|p−1dx,

so that by Hölder’s inequality

|u(x)|p ≤ p ∥u′∥Lp(R) ∥u∥
p−1
Lp(R) ,

so that

∥u∥L∞(R) ≤ p
1
p ∥u∥W1,p(R) .

The general result follows by density of D(R) in W 1,p(R), and generalises to an arbitrary interval I
thanks to the Extension Theorem 3.3.3.

Recall the following elementary interpolation result.

Lemma 3.4.4. Let (X,µ) be a measured space, 1 ≤ p < q ≤ ∞, and u ∈ Lp ∩ Lq(X,µ). Then,
u ∈ Lr(X,µ) for all p ≤ r ≤ q, and we have

∥u∥Lr(X) ≤ ∥u∥
α
Lp(X) ∥u∥

1−α
Lq(X) , (3.4.4)

where α ∈ [0, 1] is such that

1
r

= α

p
+ 1− α

q
(3.4.5)

Proof. Let p < r < q and 0 < α < 1 such that

r = αp+ (1− α)q.

By the Hölder’s inequality, for all 1 < s <∞, we have∫
X

|u|rdµ =
∫

X

|u|αp|u|(1−α)qdµ ≤
(∫

X

|u|αpsdµ

) 1
s
(∫

X

|u|(1−α)qs′
dµ

) 1
s′

.

We choose s such that {
αps = p

(1− α)qs′ = q

which leads to

α = p(q − r)
r(q − p)

or

α =
1
r −

1
q

1
p −

1
q

.

Since this last expression is equivalent to (3.4.5), we are done.

Corollary 3.4.5. Let 1 ≤ p < d, and u ∈ W 1,p(Rd). Then, for all p ≤ q ≤ p∗, we have a continuous
injection W 1,p(Rd) ↪−→ Lq(Rd) and there exists a universal constant C = C(p) <∞ such that

∥u∥Lq(Rd) ≤ C ∥∇u∥W1,p(Rd) . (3.4.6)
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3.4.2 Critical Case

Theorem 3.4.6. We have a continuous embedding

W 1,d(Rd) ↪−→ Lp(Rd) for all d ≤ p <∞.

Proof. Apply the inequality (3.4.3) with p = d to get

∥u∥t

L
t d

d−1 (Rd)
≤ t ∥u∥t−1

L
d(t−1)

d−1 (Rd)
∥∇u∥Ld(Rd) . (3.4.7)

Choosing t = d, we get

∥u∥d

L
d2

d−1 (Rd)
≤ d ∥u∥d−1

Ld(Rd) ∥∇u∥Ld(Rd) .

By interpolation, we deduce that u ∈ Lq for all d ≤ q ≤ d2

d−1 . Applying (3.4.7) with t = d+ 1, d+ 2, etc,
we deduce the statement of the theorem.

Remark 3.4.7. By the Poincaré-Wirtinger inequality (see Theorem 3.5.4 below), we have a more precise
result W 1,d(Rd) ↪→ BMO(Rd), where BMO is the space of bounded-mean oscillation functions. We say
that f ∈ BMO(Rd) if

∥f∥BMO = sup
r>0
−
∫

B(x,r)
|f − fB(x,r)|dL d <∞,

where

fB(x,r) = −
∫

B(x,r)
f dL d = 1

α(d)rd

∫
B(x,r)

f dL d.

This Banach space, that contains L∞ but is strictly greater that this space (log |x| ∈ BMO \ L∞, has
deep applications to partial differential equations, and the celebrated Stein-Fefferman result identifies it
as the pre-dual of the Hardy space. One studies such spaces in lectures about harmonic analysis (see
[37], [7]).

The Poincaré Wirtinger inequality, scaling considerations and the convexity of x←[ |x|d imply that(
−
∫

B(x,r)
|u− uB(x,r)|dL d

)d

≤ −
∫

B(x,r)
|u− uB(x,r)|ddL d ≤ C

∫
B(x,r)

|∇u|ddL d,

where C <∞ is independent of x ∈ Rd and r > 0.

3.4.3 Sub-Critical Case

Theorem 3.4.8. Assume that p > d. Then, W 1,p(Rd) ↪→ C0,α ∩ L∞(Rd), where α = 1 − d
p ∈ (0, 1).

Furthermore, there exists C <∞ such that

∥u∥L∞(Rd) ≤ C ∥u∥W1,p(Rd) (3.4.8)

and

|u(x)− u(y)| ≤ C ∥∇u∥Lp(Rd) |x− y| for a.e. x, y ∈ Rd. (3.4.9)

Remark 3.4.9. In other words, u admits a continuous and even Hölder-continuous representative.
Beware that when one deals with Sobolev functions, he does not always have the latitude to replace u by
its continuous representative. Indeed, generalised versions of the coarea formula ([15] 3.2.12) that holds
for W 1,p(Rd) functions (1 ≤ p ≤ ∞) are only valid for a specific choice of representative. One can find an
example a W 1,p-homeomorphism (for all 1 ≤ p < d) for which the corea formula is false. In other words,
the theorem would only hold for a discontinuous representative. One can find similar counter-examples
for W 1,d maps that are not homeomorpism. However, it cannot happen for p > d thanks to the Lusin
property—a map has the Lusin property if it maps negligible sets to negligible sets. The restriction on
the exponent p < d in the first counter-example is optimal for W 1,d homeomorphism satisfy the Lusin
property (see [21] for more details).
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Proof. Let u ∈ D(Rd). Then, for all x ∈ Rd, we have

u(x)− u(0) =
∫ 1

0

d

dt
u(tx)dt =

d∑
i=1

∫ 1

0
xi ∂xiu(tx)dt.

If we fix r > 0, and assume that x ∈ B(0, r), we get by the triangle inequality

|u(x)− u(0)| ≤ r
d∑

i=1

∫ 1

0
|∂xi

u(tx)|dt.

Integrating on B(x, r), we get

|uB(0,r) − u(0)| ≤ 1
α(d)rd−1

d∑
i=1

∫
B(0,r)

∫ 1

0
|∂xiu(tx)|dt. (3.4.10)

Now, we have for all 0 < t < 1

∫
B(0,r)

|∂xi
u(tx)|dx =

y=tx

1
td

∫
B(0,tr)

|∂xi
u(y)|dy ≤ 1

td

(∫
B(x,tr)

|∇u|pdL d

) 1
p (
α(d)(tr)d

) 1
p′

= α(d)
1

p′ r
d
p′

t
d
p

∥∇u∥Lp(B(0,r)) , (3.4.11)

and since d

p
< 1, we get by Fubini’s theorem, (3.4.10) and (3.4.11)

|uB(0,r) − u(0)| ≤ d

α(d)rd−1 × α(d)
1

p′ r
d
p′ ∥∇u∥Lp(B(0,r))

∫ 1

0

dt

t
d
p

= d

1− d
p

1
α(d)

1
p

r1− d
p ∥∇u∥Lp(B(0,r)) .

By translation, we deduce that for all x ∈ Rd and y ∈ B(x, r)

|u(y)− uB(x,r)| ≤
d

1− d
p

1
α(d)

1
p

r1− d
p ∥∇u∥Lp(B(x,r)) .

Using Lebesgue differentiation theorem (that is trivial of smooth functions), we deduce that

|u(x)− u(y)| ≤ d

1− d
p

1
α(d)

1
p

r1− d
p ∥∇u∥Lp(B(x,r)) ,

and by triangle inequality, we get

|u(y)− u(z)| ≤ 2d
1− d

p

1
α(d)

1
p

r1− d
p ∥∇u∥Lp(B(x,r)) for all y, z ∈ B(x, r),

which shows the second inequality. Choosing r = 2|x− y|, we get for all y ∈ Rd

|u(y)| ≤ |uB(x,2|y−x|)|+
22− d

p d

1− d
p

1
α(d)

1
p

|x− y|1− d
p ∥∇u∥Lp(B(x,r)) ≤ C ∥u∥W1,p(Rd) ,

which shows the first inequality. This proves the theorem in the case u ∈ D(Rd), and the general result
follows by density.
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3.4.4 General Result for W m,p(Ω)

Theorem 3.4.10. Let m ∈ N and 1 ≤ p <∞. We have the following results:

1. If 1
p
− m

d
> 0, then Wm,p(Rd) ↪−→ Lq(Rd) for q = d p

d− p
.

2. If 1
p
− m

d
= 0, then Wm,p(Rd) ↪−→ Lq(Rd) for all p ≤ q <∞.

3. If 1
p
− m

d
< 0, we have Wm,p(Rd) ↪−→ L∞(Rd). Furthermore, if α =

(
m− d

p

)
−
[
m− d

p

]
> 0,

and k =
[
m− d

p

]
, we have u ∈ Ck,α(Rd), and for all |β| ≤ k, we have

|Dβu(x)−Dβu(y)| ≤ C ∥u∥Wm,p(Rd) .

Proof. The proof is done by induction thanks to the previous embedding theorems, and we leave it to
the reader.

Corollary 3.4.11. Let Ω be a bounded open subset of class Cm and assume that ∂Ω is bounded. Then,
the following results hold:

1. If 1
p
− m

d
> 0, then Wm,p(Ω) ↪−→ Lq(Ω) for q = d p

d− p
.

2. If 1
p
− m

d
= 0, then Wm,p(Ω) ↪−→ Lq(Ω) for all p ≤ q <∞.

3. If 1
p
− m

d
< 0, we have Wm,p(Ω) ↪−→ L∞(Rd). Furthermore, if α =

(
m− d

p

)
−
[
m− d

p

]
> 0,

and k =
[
m− d

p

]
, we have u ∈ Ck,α(Rd), and for all |β| ≤ k, and for a.e. x, y ∈ Ω such that

B(x, 2|x− y|) ∪B(y, 2|x− y|) ⊂ Ω we have

|Dβu(x)−Dβu(y)| ≤ C ∥u∥Wm,p(Ω) |x− y|.

Remark 3.4.12. We recall that the hypothesis of Cm open subset could be weakened to Lipschitzian
subset by virtue of Stein Extension Theorem.

Theorem 3.4.13 (Rellich-Kondrachov). Assume that d ≥ 2, and that Ω is a bounded open subset of
class C1 of Rd. Then, we have

1. If p < d, then we have a compact embedding W 1,p(Ω) ↪−→ L∞(Ω) for all 1 ≤ q < p∗, where
p∗ = d p

d−p .

2. If p = d, then we have a compact embedding W 1,p(Ω) ↪−→ Lp(Ω) for all 1 ≤ p <∞.

3. If p > d, we have a compact embedding W 1,p(Ω) ↪−→ C0(Ω).

For all −∞ < a < b < ∞, we have a compact embedding W 1,p(]a, b[) ↪−→ C0([a, b]) for 1 < p ≤ ∞
and a compact embedding W 1,1(]a, b[) ↪−→ Lq(]a, b[) for all 1 ≤ q <∞.

Proof. Thanks to Ascoli’s theorem, we need only treat the case p < d.
We apply the following compactness criterion in Lp ([11], IV.25).

Theorem 3.4.14 (Riesz-Fréchet-Kolmogorov). Let Ω be an open subset of Rd, and U ⊂ Ω be a relatively
compact open subset. Let F be a bounded domain of Lp(Ω) with 1 ≤ p <∞. Assume that

∀ε > 0, ∃ δ > 0 such that ∥τhf − f∥Lp(U) < ε ∀h ∈ B(0, δ) and ∀f ∈ F ,

where τhf(x) = f(x+ h). Then, F|U is relatively compact in Lp(U).
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Fix some relatively compact open subset U ⊂ Ω, to be determined later, and let ε > 0. Using the
interpolation inequality from Lemma (3.4.4), for all 1 ≤ q < p∗, there exists 0 ≤ α < 1 such that

∥τhu− u∥Lp(U) ≤ ∥τhu− u∥α
L1(U) ∥τhu− u∥1−α

Lp∗ (U) ≤ |h|
α ∥∇u∥α

L1(U) ∥τhu− u∥1−α
Lp∗ (U)

≤ 21−α|h|α ∥∇u∥α
L1(U) ∥u∥

1−α
Lp∗ (U) = C|h|α < ε

provided that h is small enough. On the other hand, we have by Hölder’s inequality

∥u∥Lq(Ω\U) ≤ ∥u∥Lp∗ (Ω)
(
L n(Ω \ U)

)1− q
p∗
< ε,

provided that L n(Ω \ U) is small enough.
We omit the proof of the case d = 1 which is very similar.

3.5 The Space Wm,p
0 (Ω)

3.5.1 Definition and first properties

Definition 3.5.1. Let 1 ≤ p < ∞. We define Wm,p
0 (Ω) = D(Ω)

W m,p

the closure of the space of
compactly supported smooth functions in Ω for the Wm,p topology. For p = 2, we write Hm

0 (Ω) =
Wm,2

0 (Ω). The space W 1,p
0 (Ω) is a separable Banach space, and a reflexive space for 1 < p <∞. Hm

0 (Ω)
is a Hilbert space for the standard scalar product associated to Hm(Ω).

Wm,p
0 functions are functions whose traces up to the derivatives of order m−1 vanish on the boundary.

However, in order to make the idea of trace precise, one needs to introduce fractional Sobolev spaces,
that will be mentioned later in the course. We will therefore only prove two classical inequalities of
fundamental importance.

Furthermore, in order to solve boundary problems for partial differential equations, the notion of
trace is not formally needed in simple cases. Indeed, if g ∈W 1,p(Ω), then we define the space

W 1,p
g (Ω) = W 1,p(Ω) ∩

{
u : u− g ∈W 1,p

0 (Ω)
}

of Sobolev functions whose trace on the boundary is g. This is not completely satisfactory for it requires
to be able to extend g, but we will treat below the easier case of traces in Hs(Ω) (where s ∈ R).

3.5.2 Poincaré Inequalities

Theorem 3.5.2 (Poincaré Inequality). Let 1 ≤ p < ∞, Ω be a bounded subset. Then, there exists a
universal constant CP <∞ such that

∥u∥Lp(Ω) ≤ CP ∥∇u∥Lp(Ω) for all u ∈W 1,p
0 (Ω). (3.5.1)

Proof. Let φ ∈ D(Ω), and R > 0 be such that Ω ⊂ Rd ∩ {x : |xd| ≤ R}. Then, we have

φ(x′, xd) =
∫ xd

−R

∂xd
φ(x′, t)dt.

By Hölder’s inequality, we deduce that

|φ(x′, xd)|p ≤ (2R)p−1
∫ R

−R

|∂xd
φ(x′, t)|pdt.

Therefore, Fubini’s theorem implies that∫
Ω
|φ(x)|pdx ≤ (2R)p

∫
Ω
|∂xd

φ|pdx,

which yields the announced inequality by density of D(Ω) in W 1,p
0 (Ω).
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Remark 3.5.3. The proof shows that the statement is true for a set that is bounded in a single direction.
Theorem 3.5.4 (Poincaré-Wirtinger Inequality). Let 1 ≤ p < ∞, and Ω be a bounded domain of Rd.
Then, there exists a universal constant CP W <∞ such all u ∈W 1,p(Ω), we have∫

Ω
|u− uΩ|p ≤ CP W

∫
Ω
|∇u|pdx, (3.5.2)

where

uΩ = −
∫

Ω
u dL d = 1

L d(Ω)

∫
Ω
u dL d

is the mean of u on Ω.

Proof. We argue by contradiction, and let {un}n∈N∗ ⊂W 1,p(Ω) such that

∥un − unΩ∥Lp(Ω) = 1

∥∇un∥Lp(Ω) ≤
1
n
.

Let vn = un − unΩ. Then, {vn}n∈N is bounded in W 1,p(Ω), which implies by the Rellich-Kondrachov
Theorem 3.4.13 that up to a subsequence, we have vn −→

n→∞
v ∈ Lp(Ω) strongly, which implies in particular

that ∥v∥Lp(Ω) = 1, and vΩ = 0. However, we also have by Fatou lemma

∥∇v∥Lp(Ω) ≤ lim inf
n→∞

∥∇vn∥Lp(Ω) = 0.

Therefore, v is constant, but the condition vΩ = 0 implies that v = 0, contradiction.

3.6 The Dual Spaces W−m,p′(Ω)

Definition 3.6.1. For all 1 ≤ p <∞ and m ∈ N, we denote by W−m,p′(Ω) the dual space of Wm,p
0 (Ω).

Theorem 3.6.2. For all F ∈W−m,p′(Ω), there exists fα ∈ Lp′(Ω) (α ∈ Nd) such that

⟨F, u⟩ =
∑

|α|≤m

∫
Ω
fα D

αu dL d for all u ∈Wm,p
0 (Ω). (3.6.1)

Proof. The proof is, mutadis mutandis, the same as the one of Theorem 2.5.32, provided that one
replaces compactly supported continuous functions by Lp functions. Indeed, let N(d,m) = card(Nd ∩
{α : |α| ≤ m}) ∈ N, and let T : Wm,p

0 (Ω)→ Lp(Ω)N(d,m), u 7→ ({Dαu}|α|≤m). Then, T is an isometry of
Wm,p

0 (Ω) into Lp(Ω)N(d,m). Let T−1 : T (Wm,p
0 (Ω))→Wm,p

0 (Ω), and

L : T (Wm,p
0 (Ω))→ R

{gα}|α|≤m 7→
〈
F, T−1({gα}|α|≤m

〉
.

By Hahn-Banach theorem, this continuous linear form admits a continuous linear extension to Lp(Ω)N(d,m),
that preserves the norm, that we denote by Φ : Lp(Ω)N(d,m)+1 →Wm,p

0 (Ω). According to the Riesz rep-
resentation theorem, there exists fα ∈ Lp′(Ω) such that〈

Φ, ({gα}α∈Nd)
〉

=
∑

|α|≤m

∫
Ω
fα gα dL

d for all g ∈ Lp(Ω)N(d,m).

Therefore, we have

∥Φ∥(Lp(Ω)N(d,m))′ = max
α∈Nd

|α|≤m

{
∥fα∥Lp′ (Ω)

}
,

which concludes the proof of the theorem.

Remark 3.6.3. In general, the functions fα are not unique. Notice that our previous theorem on
DLp(Rd) is proven.
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3.7 The Hilbert Spaces Hs(Rd)

3.7.1 Basic Properties

Those spaces will be the first examples of interpolation spaces, and they are easy to define.

Definition 3.7.1. For all s ∈ R define

Hs(Rd) = S ′(Rd) ∩
{
u : (1 + |ξ|2) s

2 F (u) ∈ L2(Rd)
}
,

and equip it with the following norm:

∥u∥Hs(Rd) =
(∫

Rd

(1 + |ξ|2)s|û(ξ)|2dξ
) 1

2

. (3.7.1)

Remark 3.7.2. In the case of S1, the space Hs(S1) is defined as follows:

Hs(S1) = D ′(S1) ∩
{
u : (1 + |n|) s

2 û ∈ l2(Z)
}
,

where for all n ∈ Z, we have

û(n) =
〈
u, e−inθ

〉
.

We equip Hs(S1) with the following norm:

∥u∥Hs(Z) =
(∑

n∈Z
(1 + |n|2)s|û(n)|2

) 1
2

. (3.7.2)

Theorem 3.7.3. For all s ∈ R, Hs(Rd) is a separable Hilbert space, and for m ∈ Z, Hm(Rd) =
Wm,2(Rd) with equivalent norms.

Proof. The following quantity

⟨u, v⟩s =
∫
Rd

(1 + |ξ|2)sû(ξ)v̂(ξ)dξ (3.7.3)

is a scalar product on Hs, and the map u 7→ (1 + |ξ|2) s
2 û is an isometric bijection between Hs and L2.

Since L2(Rd) is complete, we deduce that Hs is complete for the norm above. We need only treat the
second part in the case m ≥ 0. By the properties of the Fourier transform, for all u ∈ S ′(Rd), we have
F (Dαu) = i|α|ξαû, which shows by Parseval identity that

∥Dαu∥L2(Rd) = 1
(2π) d

2

(∫
Rd

|ξα|2|û(ξ)|2dξ
) 1

2

. (3.7.4)

Notice that here exists constants 0 < Cm <∞ such that

C−1
m (1 + |ξ|2)m ≤

∑
|α|≤m

|ξα|2 ≤ Cm(1 + |ξ|2)2. (3.7.5)

Indeed, for all |α| ≤ m, we have

|ξα|2 ≤ |ξ|2|α| ≤ (1 + |ξ|2)m,

while ∑
|α|≤m

|ξα|2 ≥ 1 +
m∑

j=1
|ξm

j |2 ≥ C1(1 + |ξ|2m) ≥ C2(1 + |ξ|2)m

thanks to the binomial formula. Finally, we deduce by (3.7.4) and (3.7.5) that both Hm(Rd) norms are
equivalent.

72



Theorem 3.7.4. D(Rd) is dense in Hs(Rd).

Proof. We first show that S (Rd) is dense in Hs(Rd). Indeed, the inverse isometry of u 7→ (1 + |ξ|2) s
2 û

is the map v 7→ F −1((1 + |ξ|2)−s) ∗F −1(v) = (2π)−dF ((1 + |ξ|2)−s) ∗ v̂(−ξ), which sends S (Rd) into
S (Rd) since (1 + |ξ|2)−s ∈ OM (Rd) has polynomial growth. By density of S (Rd) in L2(Rd), we deduce
that S (Rd) is dense in Hs(Rd).

Now, notice that for all φ ∈ S (Rd), we have

∥φ∥Hs(Rd) =
(∫

Rd

(1 + |ξ|2)s|φ̂(ξ)|2dξ
) 1

2

≤
∥∥(1 + |ξ|2)s+dφ̂

∥∥
L∞(Rd)

∫
Rd

dξ

(1 + |ξ|2)d

=
√
β(d)
2d

∥∥(1 + |ξ|2)s+dφ̂
∥∥

L∞(Rd) ≤
√
β(d)
2d 2|s|+d−1

(
∥φ̂∥L∞(Rd) +

∥∥∥|ξ|2(|s|+d)φ̂
∥∥∥

L∞(Rd)

)
≤
√
β(d)
2d 2|s|+d−1

(
∥φ̂∥L∞(Rd) + (|s|+ 1 + d)|s|+d

d∑
i=1

∥∥∥|ξj |2([s]+1+d)φ̂
∥∥∥

L∞(Rd)

)

=
√
β(d)
2d 2|s|+d−1

∥φ̂∥0,0 + (|s|+ 1 + d)|s|+d
d∑

j=1
∥φ̂∥2([s]+1+d)ej ,0

 ,

where we recall that the norms ∥ · ∥α,β (α, β ∈ Nd) are defined in (2.7.6), and (e1, · · · , ed) is the canonical
basis of Rd. Using the inequality (2.7.7), we deduce by density of D(Rd) ib S (Rd) that D(Rd) is dense
in Hs(Rd).

3.7.2 Duality

Theorem 3.7.5 (Duality). For all s ∈ R, for all L ∈ (Hs(Rd))′, there exists a unique v ∈ H−s(Rd)
such that

L(u) = ⟨u, v⟩ =
∫
Rd

u(x) v(x) dx for all u ∈ Hs(Rd).

Proof. First, for all (u, v) ∈ Hs(Rd)×H−s(Rd), we have by Parseval identity:

⟨u, v⟩ = 1
(2π)n

∫
Rd

û(ξ)v̂(−ξ)dξ.

In particular, we deduce that

| ⟨u, v⟩ | = 1
(2π)n

∣∣∣∣∫
Rd

(1 + |ξ|2) s
2 û(ξ) (1 + |ξ|2)− s

2 v̂(ξ) dξ
∣∣∣∣ ≤ 1

(2π)n
∥u∥Hs(Rs) ∥v∥H−s(Rd) ,

which shows that the map Lv : u 7→ ⟨u, v⟩ is a continuous linear form on Hs(Rd), i.e. an element of
(Hs(Rd))′, and that furthermore, we have

∥Lv∥(Hs(Rd))′ ≤
1

(2π)n
∥v∥H−s(Rd) . (3.7.6)

In fact, we have the equality in (3.7.6), as we will see it below.
Conversely, let L ∈ (Hs(Rd))′, and consider the isometric map T : Hs(Rd) → L2(Rd), u 7→ (1 +

|ξ|2) s
2 û. Then, T is an linear continuous isometry. Consider the map T−1 : T (Hs(Rd)) → Hs(Rd), and

as previously, the map

F : T (Hs(Rd))→ R
v 7→

〈
L, T−1(v)

〉
.
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By Hahn-Banach theorem, this linear map extends to a continuous linear map Φ : L2(Rd)→ R. Thanks
to Riesz-Fréchet representation theorem (on the dual space of a Hilbert space), there exists f ∈ L2(Rd)
such that

Φ(u) =
∫
Rd

f(x) v(x) dx for all v ∈ L2(Rd).

If v = (1 + |x|2) s
2 û for some u ∈ Hs(Rd), the Parseval identity implies that

L(u) = Φ(u) =
∫
Rd

(1 + |x|2) s
2 f(x)û(x)dx = 1

(2π)d

∫
Rd

F ((1 + |x|2) s
2 f)(ξ)F (û)(−ξ)dξ

=
∫
Rd

h(ξ)u(ξ)dξ,

where h = F ((1 + |x|2) s
2 f) ∈ H−s(Rd) by definition, since

ĥ(ξ) = F 2((1 + |x|2) s
2 f) = (2π)d(1 + |ξ|2) s

2 f(−ξ),

and f ∈ L2(Rd). This concludes the proof of the theorem.

3.7.3 Traces

Theorem 3.7.6. For all s > 1
2 , the operator γ : S (Rd)→ S (Rd−1), such that

γ(φ)(x′) = φ(x′, 0),

admits a unique continuous linear extension Hs(Rd)→ Hs− 1
2 (Rd).

Proof. Fix some φ ∈ S (Rd). Thanks to the Fourier inversion formula and Fubini’s theorem, we have
for all x′ ∈ Rd−1

ψ(x′) = φ(x′, 0) = 1
(2π)d

∫
Rd−1×R

φ̂(ξ′, ξd)ei x′·ξ′
dξ′dξd

= 1
(2π)d−1

∫
Rd−1

(∫
R
φ̂(ξ′, ξd)dξd

)
ei x′·ξ′

dξ′.

Using once more the inverse Fourier formula, we deduce that

ψ̂(ξ′) = 1
2π

∫
R
φ̂(ξ′, t)dt = 1

2π

∫
R

(
φ̂(ξ′, t)(1 + |ξ′|2 + t2) s

2
)

(1 + |ξ′|2 + t2)− s
2 dt.

Since s > 1
2 , we have∫

R

dt

(1 + |ξ′|2 + t2)s
= 1

(1 + |ξ′|2)s− 1
2

∫
R

dt

(1 + t2)s
= cs

(1 + |ξ′|2)s− 1
2
<∞,

which implies by Cauchy-Schwarz inequality that

|ψ̂(ξ′)|2 ≤ cs

(2π)2
1

(1 + |ξ′|2)s− 1
2

∫
R
(1 + |ξ′|2 + t2)s|φ̂(ξ′, t)|2dt.

Another application of Fubini’s theorem shows that

∥γ(φ)∥2
Hs− 1

2 (Rd−1)
=
∫
Rd−1

(1 + |ξ′|2)s− 1
2 |ψ̂(ξ′)|2dξ′

≤ cs

(2π)2

∫
Rd

(1 + |ξ|2)s|φ̂(ξ)|2dξ = cs

(2π)2 ∥u∥
2
Hs(Rd)

By density of S (Rd) in Hs(Rd), we deduce that γ : Hs(Rd)→ Hs− 1
2 (Rd−1) is a continuous linear map

such that

∥γ∥ ≤ 1
2π

(∫
R

1
(1 + t2)s

) 1
2

= 1
π

√
s

2s− 1 ,

which concludes the proof of the theorem.
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Remark 3.7.7. In particular, if we have a continuous trace operator H1(BR2(0, 1))→ H
1
2 (S1) (where

Hs(S1) is defined in (3.7.2)), and more generally, the trace theorem is true for a C1 domain, but requires
to define the fractional Sobolev space, which will be seen later on.

Those results have applications to the solvability of the Dirichlet problem for H 1
2 data, which is

crucial in many applications (see [9], and the exercises).

3.8 Link between fractional derivatives and fractional Sobolev
spaces

3.8.1 Fractional derivatives

For all locally integrable function f : R → R, and for all n ∈ N, one shows by induction that the n-th
primitive of f that vanishes at 0 is given by

Inf(x) = 1
Γ(n)

∫ x

0
(x− t)n−1f(t)dt, (3.8.1)

where Γ is the Euler Γ function, such that for all z ∈ C ∩ {z : Re (z) > 0}, we have

Γ(z) =
∫ ∞

0
tze−t dt

t
. (3.8.2)

This is the Mellin transform of the function t 7→ e−t. By analogy, we define for all α > 0 the fractional
integral of order α > 0 by

Iαf(x) = 1
Γ(α)

∫ x

0
(x− t)α−1f(t)dt, (3.8.3)

well-defined for x > 0, and that one can eventually extend by analytic continuation to all values of x
outside a half-line of the complex plane. In particular, to define the α-derivative—where α ∈ (0, 1)—we
assert that

Dαf(x) = d

dx
I1−αf(x) = d

dx

(
1

Γ(1− α)

∫ x

0

f(t)
(x− t)α

dt

)
(3.8.4)

is a good notion of fractional derivative. If α = [α] + α′, we define

Dαf(x) = Dα′
f ([α])(x). (3.8.5)

Indeed, the properties of the Γ function and the β integral

B(α, β) =
∫ 1

0
tα−1(1− t)β−1dt = Γ(α)Γ(β)

Γ(α+ β) (3.8.6)

show by Fubini’s theorem that

IαIβf(x) = Iα

(
t 7→ 1

Γ(β)

∫ t

0
(t− s)β−1f(s)ds

)
(x)

= 1
Γ(α)Γ(β)

∫ x

0
(x− t)α−1

(∫ t

0
(t− s)β−1f(s)ds

)
dt

= 1
Γ(α)Γ(β)

∫ x

0
(x− t)α−1

(∫ x

0
(t− s)β−11{0≤s≤t}f(s)ds

)
dt

= 1
Γ(α)Γ(β)

∫ x

0
f(s)

(∫ x

s

(x− t)α−1(t− s)β−1dt

)
ds. (3.8.7)
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Making the linear change of variable t− s = u, we get∫ x

s

(x− t)α−1(t− s)β−1dt =
∫ x−s

0
(x− s− u)α−1uβ−1du

= (x− s)α−1
∫ x−s

0

(
1− u

x− s

)α−1
uβ−1du

=
u=(x−s)v

(x− s)α−1
∫ 1

0
(1− v)α−1((x− s)v)β−1(x− s)dv

= (x− s)α+β−1B(α, β)

= Γ(α)Γ(β)
Γ(α+ β) (x− s)α+β−1. (3.8.8)

Putting together (3.8.7) and (3.8.8), we deduce that

IαIβf(x) = 1
Γ(α+ β)

∫ x

0
(x− s)α+β−1f(s)ds

which shows that IαIβf = Iα+βf . Therefore, we also have DαDβf = Dα+βf whenever both expressions
make sense.

Example 3.8.1. Let us check that on an explicit example, with f(x) = x and α = β = 1
2. Recalling

that Γ
(

1
2

)
=
√
π, we have

I 1
2x = 1√

π

∫ x

0

t√
x− t

dt = 1√
π

{[
−2 t
√
x− t

]x
0 + 2

∫ x

0

√
x− t dt

}
= 2√

π

[
−2

3(x− t) 3
2

]x

0
= 4

3
√
π
x

3
2 ,

which implies that

D 1
2x = d

dx

(
4

3
√
π
x

3
2

)
= 2√

π

√
x.

Now, we compute D 1
2
√
x. We have

I 1
2
√
x = 1√

π

∫ x

0

√
t

x− t
dt = 1√

π

{[
−2
√
t(x− t)

]x

0
+
∫ x

0

√
x

t
− 1 dt

}
=

x
t =y

x√
π

∫ ∞

1

√
y − 1 dy

y2 .

Now, making the change of variable y − 1 = u2, we get∫ ∞

1

√
y − 1 dy

y2 =
∫ ∞

0

2u2

(1 + u2)2 du

=
[
− 1

1 + u2 · u
]∞

0
+
∫ ∞

0

du

1 + u2

= [arctan(u)]∞0 = π

2 ,

which shows that

I 1
2
√
x =

√
π

2 x,

and

D 1
2
√
x = d

dx
I 1

2
√
x =

√
π

2 ,
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so that

D 1
2D 1

2x = D 1
2

(
2√
π

√
x

)
= 1 = d

dx
x

as expected.

Now, in order to allow for negative values of x, we will define the partial integral for Schwarz functions,
and then generalise it to tempered distributions.

Definition 3.8.2. Let f ∈ S (Rd). For all 1 ≤ j ≤ d and for all α ∈ (0, 1), define

Iα
j f(x) = 1

Γ(α)

∫ xj

−∞
(xj − t)α−1f(x1, · · · , xj−1, t, xj+1, · · · , xd)dt (3.8.9)

and

Dα
j f(x) = ∂

∂xj
I1−α

j f(x)

= ∂

∂xj

(
1

Γ(1− α)

∫ xj

−∞

f(x̂j , t)
(xj − t)α

dt

)
, (3.8.10)

where x̂j = (x1, · · · , xj−1, 0, xj+1, xd) and we write by abuse of notation

f(x̂j , t) = f(x̂j + t ej).

The α-gradient of f is defined by

Dαf = (Dα
1 f, · · · ,Dα

d f) . (3.8.11)

For all α > 0, if α = [α] + α′, where α′ ∈ (0, 1), we define

Dα
j = Dα′

j

(
∂[α]

∂x
[α]
j

f

)
(x). (3.8.12)

3.8.2 Computation in Fourier space

Now, taking the partial Fourier transform in xj , if

Pα(t) = 1
tα

1{t>0},

then we have

Pα(t) + Pα(−t) = 1
|t|α

.

Now, recall that by (2.7.10), we have in Rd

F (x 7→ |x|α) (ξ) = 2α+dπ
d
2

Γ
(

α+d
2
)

Γ
(
−α

2
) 1
|ξ|α+d

− d < α < 0.

Taking d = 1 and replacing α by −α, we get

F

(
x 7→ 1

|x|α

)
(ξ) = 21−α Γ

( 1−α
2
)

Γ
(

α
2
) 1
|ξ|1−α

.

Therefore, we first obtain

F
(
Pα + P̃α

)
(ξ) = 21−α Γ

( 1−α
2
)

Γ
(

α
2
) 1
|ξ|1−α

. (3.8.13)
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if φ̃(x) = φ(−x). Since Pα ∈ D ′
L2(R) for 0 < α < 1

2 , its Fourier transform is a function, and we have in
particular

F (t 7→ Pα(−t))(ξ) = P̂α(−ξ),

which gives

P̂α(ξ) + P̂α(−ξ) = 21−α
√
π

Γ
( 1−α

2
)

Γ
(

α
2
) 1
|ξ|1−α

.

Now, recalling (2.7.8), we have

F (x 7→ sgn(x))(ξ) = −2ip.v.1
ξ
,

and

Pα(t)− Pα(−t) = sgn(t)
|t|α

. (3.8.14)

The Fourier transform of this function is also a function for 0 < α <
1
2 , and since it is an odd function,

its Fourier transform is odd, purely imaginary and homogenous of degree 1− α. Therefore, we have

F

(
x 7→ sgn(x)

|x|α

)
(ξ) = −i cα

sgn(ξ)
|ξ|1−α

for some cα ∈ R \ {0}. We will determine the constant thanks to the Parseval formula. Now, let
G(x) = e− x2

2 . Then, we have

Ĝ(ξ) =
√

2πG(ξ).

Furthermore, the properties of the Fourier transform imply that

F (x 7→ xG(x))(ξ) =
∫
R
x e− x2

2 e−i x ξdx =
∫
R
i
∂

∂ξ

(
e−x2

e−i x ξ
)
dx

= i
∂f̂

∂ξ
(ξ) = i

∂

∂ξ

(√
2πe− ξ2

2

)
= −i

√
2π ξ e− ξ2

2 .

Using the Parseval identity, we deduce that for all function f ∈ D ′
L2(R), we have∫

R
f(x)x e− x2

2 dx = 1
2π

∫
R
f̂(ξ)−i

√
2π ξ e− ξ2

2 dξ

= i√
2π

∫
R
f̂(ξ) ξ e− ξ2

2 dξ. (3.8.15)

This formula is well-suited for odd functions. Applying the formula to f(x) = sgn(x)
|x|α , we deduce that∫

R

sgn(x)
|x|α

x e− x2
2 dx = i√

2π

∫
R

(
−i cα

sgn(ξ)
|ξ|1−α

)
ξ e− ξ2

2 dξ

= cα
1√
2π

∫
R

sgn(ξ)
|ξ|1−α

ξ e− ξ2
2 dξ

= cα
1√
2π

∫
R
|ξ|α e− ξ2

2 dξ.

where we used sgn(x)x = |x| valid for all x ∈ R \ {0}. Finally, we obtain∫
R
|x|1−α e− x2

2 dx = cα
1√
2π

∫
R
|ξ|αe− ξ2

2 dξ. (3.8.16)
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Now, we compute by polar coordinates∫
R
|x|1−α e− x2

2 dx = 2π
∫ ∞

0
r1−αe− r2

2 r dr

=
r2
2 =t

2π
∫ ∞

0
(2t)

1−α
2 e−tdt

= 2π 2
1−α

2 Γ
(

1 + 1− α
2

)
= 2π 2

1−α
2

1− α
2 Γ

(
1− α

2

)
= π
√

21− α
2 α

2
Γ
(

1− α
2

)
,

where we used the formula Γ(z + 1) = z Γ(z). Therefore, we get

π
√

21− α
2 α

2
Γ
(

1− α
2

)
= cα

1√
2π
× π
√

2 α

2 1−α
2

Γ
(α

2

)
,

which finally gives

cα = 2
√
π

1− α
α 2α

Γ
( 1−α

2
)

Γ
(

α
2
) .

We deduce that

F

(
x 7→ sgn(x)

|x|α

)
(ξ) = −i 2

√
π

1− α
α 2α

Γ
( 1−α

2
)

Γ
(

α
2
) sgn(ξ)
|ξ|1−α

(3.8.17)

which is valid for all 0 < Re (α) < 1 by analytic continuation. Let us check this formula thanks to the
Fourier inversion formula. We have

F

(
x 7→ sgn(x)

|x|1−α

)
(ξ) = −i 2

√
π

α

(1− α) 21−α

Γ
(

α
2
)

Γ
( 1−α

2
) sgn(ξ)
|ξ|α

.

Therefore, we have

F 2
(
x 7→ sgn(x)

|x|α

)
(ξ) = −i 2

√
π

1− α
α 2α

Γ
( 1−α

2
)

Γ
(

α
2
) ×(−i 2√π α

(1− α) 21−α

Γ
(

α
2
)

Γ
( 1−α

2
) sgn(ξ)
|ξ|α

)

= −(2
√
π)2 1

2
sgn(ξ)
|ξ|α

= −2π sgn(ξ)
|ξ|α

= 2π sgn(−ξ)
|ξ|α

which coincides with the formula given by the inverse Fourier transform.
By (3.8.14), we deduce that

F
(
Pα − P̃α

)
(ξ) = −i 21−α

√
π

1− α
α

Γ
( 1−α

2
)

Γ
(

α
2
) sgn(ξ)
|ξ|1−α

(3.8.18)

= −i sgn(ξ)1− α
α

F
(
Pα + P̃α

)
(ξ).

Recalling (3.8.13), we finally get

F

(
x 7→ 1

|x|α
1{x>0}

)
(ξ) = 1

2

(
21−α

√
π

Γ
( 1−α

2
)

Γ
(

α
2
) 1
|ξ|1−α

− i 21−α
√
π

1− α
α

Γ
( 1−α

2
)

Γ
(

α
2
) sgn(ξ)
|ξ|1−α

)
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=
√
π

2α

Γ
( 1−α

2
)

Γ
(

α
2
) (

1− i1− α
α

sgn(ξ)
)

1
|ξ|1−α

.

Now, thinking of the constant involved in the definition of the fractional derivative, we can simplify this
formula thanks to Legendre’s duplication formula and the Euler’s reflection formula:

Γ(2z) = 22z−1
√
π

Γ(z)Γ
(
z + 1

2

)
Γ(z)Γ(1− z) = π

sin(πz) .

Therefore, we have

Γ(1− z) = 22( 1−z
2 )−1
√
π

Γ
(

1− z
2

)
Γ
(

1− z

2

)
= 1√

π

1
2z

Γ
(

1− z
2

)
× π

sin
(

πz
2
) 1

Γ
(

z
2
)

=
√
π

sin
(

πz
2
) 1

2z

Γ
( 1−z

2
)

Γ
(

z
2
) ,

which finally gives
√
π

2z

Γ
( 1−z

2
)

Γ
(

z
2
) = sin

(πz
2

)
Γ(1− z),

and

F

(
x 7→ 1

|x|α

)
(ξ) = sin

(πα
2

)
Γ(1− α)

(
1− i1− α

α
sgn(ξ)

)
1

|ξ|1−α
. (3.8.19)

Now, recall that

Dα
j f(x) = ∂

∂xj

(
1

Γ(1− α)

∫ xj

−∞

f(x̂j , t)
(xj − t)α

dt

)
= 1

Γ(1− α)
∂

∂xj
(Pα ∗ f(x̂j , · )) (xj).

Using the product formula for the Fourier transform of a convolution and the elementary algebraic
identity F (∂xjS) = i ξjF (S) valid for all tempered distribution S ∈ S ′(Rd), we deduce that

F (Pα ∗ f(x̂j , · ))(ξj) = P̂α(ξ)f̂(x̂j , ξj) = sin
(πα

2

)
Γ(1− α)

(
1− i1− α

α
sgn(ξj)

)
1

|ξj |1−α
f̂(x̂j , ξj),

and

F
(
Dα

j f
)

(x̂j , ξj) = i sin
(πα

2

)(
1− i 1− α

α
sgn(ξj)

)
ξj

|ξj |
|ξj |αf̂(x̂j , ξj). (3.8.20)

Therefore, we obtain

F (Dα
j f)(ξ) = Fx̂j

(
x̂j 7→ F

(
Dα

j f
)

(x̂j , ξj)
)

(ξ̂j)

= i sin
(πα

2

)(
1− i 1− α

α
sgn(ξj)

)
ξj

|ξj |
|ξj |αf̂(ξ)

= sin
(πα

2

)(1− α
α

+ i sgn(ξj)
)
|ξj |αf̂(ξ), (3.8.21)

and

|F (Dα
j f)(ξ)| = sin

(πα
2

)√
1 + (1− α)2

α2 |ξj |α|f̂(ξ)|

= dα|ξj |α|f̂(ξ)|. (3.8.22)

Therefore, we have proved the following theorem.
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Theorem 3.8.3. For all s > 0, the following norm

∥u∥Hs(Rd) =
∑

α≤[s]

∥Dαu∥L2(Rd) +
∑

|α|=[s]

∥∥∥Ds−[s]Dαu
∥∥∥

L2(Rd)

is equivalent to the norm ∥ · ∥Hs(Rd) defined in (3.7.1) on Hs(Rd).

Proof. By the Parseval identity and (3.8.22), we deduce that for all α ∈ Nd, we have∫
Rd

|Dαu(x)|2dx = 1
(2π)d

∫
Rd

|ξα|2|û(ξ)|,

while ∫
Rd

|Ds−[s]Dαu(x)|2dx =
d2

s−[s]

(2π)d

∫
Rd

d∑
j=1
|ξj |s−[s]|ξα|2|û(ξ)|2dξ.

Noticing that there exists 0 < Cm <∞ such that

C−1
m (1 + |ξ|2)s ≤ 1 +

∑
|α|≤m

d∑
j=1
|ξj |s−[s]|ξα|2 ≤ Cm(1 + |ξ|2)s.

we conclude the proof as in

Remark 3.8.4. An equivalent norm would be given by

∥u∥Hs(Rd) = ∥u∥L2(Rd) +
∑

|α|=[s]

∥∥∥Ds−[s]Dαu
∥∥∥

L2(Rd)
.

3.9 Fractional Sobolev spaces in the non-Hilbertian case

3.9.1 Fractional Laplacian and fractional Sobolev spaces

Since the two characterisations of fractional Sobolev spaces coincide, we can find another equivalent
norm thanks to the introduction of the fractional Laplacian. Recall that by the properties of the Fourier
transformation, for all u ∈ S (Rd), we have

F (∆u)(ξ) = −|ξ|2û(ξ).

By analogy, for all 0 < s < 1, we define the fractional Laplacian on S (Rd) by

F ((−∆)su)(ξ) = |ξ|2sû(ξ). (3.9.1)

Therefore, we formally have

(−∆)su(x) = F −1 (ξ 7→ |ξ|2sû(ξ)
)

(x) = (2π)dF −1 (ξ 7→ |ξ|2s
)
∗ u(x).

For 0 < s < 1, (−∆)s is not a differential operator, but a pseudo-differential operator given formally
by a convolution with a tempered distribution, and which is standardly used to define fractional Sobolev
spaces. Indeed, one first shows that for all u ∈ S (Rd), we have

(−∆)su(x) = cs p.v.
∫
Rd

u(x)− u(y)
|x− y|d+2s

dy,

where

cs = s 22s

π
d
2

Γ
(
s+ d

2
)

Γ(1− s) . (3.9.2)
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Notice that the principal value is not indeed if s < 1
2 . Let us shows that this formula holds (we will

however not directly prove it from the definition in (3.9.1)). First, a change of variable allows one to get
rid of the principal value, and to get

(−∆)su(x) = −cs

2

∫
Rd

u(x+ y) + u(x− y)− 2u(x)
|y|d+2s

dy.

Let us compute the Fourier transform of this function. We have by Fubini’s theorem since all integrals
are absolutely convergent

F ((−∆)su)(ξ) = −
∫
Rd

(−∆)su(x)e−i x·ξdx

= −cs

2

∫
Rd

(∫
Rd

u(x+ y) + u(x− y)− 2u(x)
|y|d+2s

dy

)
e−i x·ξdx

= −cs

2

∫
Rd

1
|y|d+2s

(∫
Rd

(u(x+ y) + u(x− y)− 2u(x))e−i x·ξdx

)
dy

= −cs

2

∫
Rd

1
|y|d+2s

(
ei y·ξ + e−i y·ξ − 2

)
û(ξ)dy

= csû(ξ)
∫
Rd

1− cos(y · ξ)
|y|d+2s

dy

= csc
′
s|ξ|2sû(ξ),

where we used the identity

I(ξ) =
∫
Rd

1− cos(y · ξ)
|y|d+2s

dz = c′
s|ξ|2s.

Notice that I is a radial function, as one immediately checks by making a rotation and using the parity
of cos. If ξ ̸= 0, making a change of variable y = z

|ξ|
, we get

I(ξ) =
∫
Rd

1− cos
(
z · ξ

|ξ|

)
∣∣∣ z

|ξ|

∣∣∣d+2s
|ξ|d dz = |ξ|2sI

(
ξ

|ξ|

)
= |ξ|2sI(e1)

= |ξ|s
∫
Rd

1− cos(z1)
|z|d+2s

dz

= c′
s|ξ|s

by radiality. Therefore, we deduce that

cs = I(e1)−1.

Let us compute cs. Taking polar coordinates, we find by taking polar coordinates ([15], 3.2.13)

I(e1) =
∫
Rd

1− cos(x1)
|x|d+2s

dx = 2
∫
Rd

sin2 (x1
2
)

|x|d+2s
dx = 2

∫
Sd−1

(∫ ∞

0

sin2 ( ry1
2
)

r1+2s
dr

)
dH d−1(y)

= 2
∫

Sd−1

∫ ∞

0

sin2
(

r|y1|
2

)
r1+2s

dr

 dH d−1(y)

=
r|y1|

2 =t

21−2s

∫
Sd−1

(
|y1|2s

∫ ∞

0

sin2(t)
t1+2s

dt

)
dH d−1(y)

= 21−2s

(∫ ∞

0

sin2(t)
t1+2s

dt

)(∫
Sd−1

|y1|2sdH d−1(y)
)
.
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Now, remember (2.7.9)

∫
Sd−1

d∏
j=1
|yj |2zj−1dH d−1(y) =

2
d∏

j=1
Γ(zj)

Γ

 d∑
j=1

zj

 .

Taking z1 = s+ 1
2 and zj = 1

2 for all 2 ≤ j ≤ d, we get

∫
Sd−1

|y1|2sdH d−1(y) = 2π
d−1

2
Γ
(
s+ 1

2
)

Γ
(
s+ d

2
) ,

where we used Γ
( 1

2
)

=
√
π. For the second integral, see the Appendix 3.9.3, where we prove that

21−2s

(∫ ∞

0

sin2(t)
t1+2s

dt

)
=
√
π

s22s+1
Γ(1− s)
Γ
(
s+ 1

2
) ,

which finally gives

c−1
s = I(e1) = π

d
2

s22s

Γ(1− s)
Γ
(
s+ d

2
) , (3.9.3)

which allows us to recover (3.9.2).
This prompts one to make the following definition.

Definition 3.9.1. For all 1 ≤ p ≤ ∞, and s > 0 such that s /∈ N, define

W s,p(Ω) = W [s],p(Ω) ∩
{
u : for all |α| = [s], [Dαu]pW(s−[s]),p(Ω) =

∫
Ω

∫
Ω

|Dαu(x)−Dαu(y)|p

|x− y|d+p(s−[s]) dxdy <∞
}
,

that we equip with the norm

∥u∥Ws,p(Ω) = ∥u∥W[s],p(Ω) +
∑

|α|=[s]

[Dαu]W(s−[s]),p(Ω).

Remarks 3.9.2. 1. Thanks to what precedes, the definition coincides with the one of Hs for p = 2
and Ω = Rd. If Ω is an extension domain, the definition can be replaced with the one involving
fractional derivatives.

2. For p =∞, we simply recover the Hölder space C [s],γ(Ω), where

γ = d

p
+ s− [s].

The study of pseudo-differential operators is the topic of harmonic analysis, and goes beyond the
scope of these lecture notes. However, let us remark that harmonic analysis gives a completely satisfying
solution to the question relating the fractional derivatives and fractional Sobolev spaces.

Theorem 3.9.3. For all 1 ≤ p ≤ ∞ and s > 0, define

W̃ s,p(Rd) = S ′(Rd) ∩
{
u : (1 + |ξ|2) s

2 û = v̂, where v ∈∈ Lp(Rd)
}
,

and the associated norm

∥u∥W̃s,p(Rd) =
(∫

Rd

∣∣F −1 (ξ 7→ (1 + |ξ|2) s
2 û(ξ)

)
(x)
∣∣p dx) 1

p

.

For all 1 < p <∞, and for all s > 0, we have W̃ s,p(Rd) = W s,p(Rd) with equivalent norms.
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The identity (3.8.22) implies in turns the following theorem.

Theorem 3.9.4. For all 1 ≤ p ≤ ∞ and s > 0, define on

Ws,p(Rd) = S ′(Rd) ∩
{
u : Dαu ∈ Lp(Rd) for all α ∈ Rd

+ such as |α| ≤ s
}

and the associated norm

∥u∥Ws,p(Rd) =
∑

α≤[s]

∥Dαu∥Lp(Rd) +
∑

|α|=[s]

∥∥∥Ds−[s]Dαu
∥∥∥

Lp(Rd)
.

For all 1 < p <∞, and for all s > 0, we have Ws,p(Rd) = W s,p(Rd) with equivalent norms.

For p = 1, the theorem does not apply for Calderón-Zygmund operators do not generally map L1

to L1. Indeed, elliptic regularity shows that for all 1 < p < ∞ and f ∈ Lp(Rd), if u solves in the
distributional sense

∆u = f,

then u ∈W 2,p(Rd). However, this result is false for p = 1. In Fourier, notice that

F (∂2
xixi

u)(ξ) = −ξiξj û(ξ) = ξi

|ξ|
ξj

|ξ|
(−|ξ|2û(ξ))

= ξi

|ξ|
ξj

|ξ|
F (∆u)(ξ)

= ξi

|ξ|
ξj

|ξ|
f̂(ξ).

We see in particular by the Parseval formula that∥∥∇2u
∥∥

L2(Rd) = Cd ∥f∥L2(Rd) .

By showing that the inverse Fourier transform of iξj

|ξ|
is a Calderón-Zygmund operator∗, we deduce that

Lp boundedness for all 1 < p < ∞. If one wants to obtain a L1 estimate, a estimate of f in the Hardy
space H 1(Rd) (the pre-dual space of BMO(Rd); it is a subspace of L1(Rd)) is necessary.

3.9.2 Return to the case p = 2

Let us prove that both notions coincide for p = 2.

Theorem 3.9.5. For all s > 0, we have W s,2(Rd) = Hs(Rd) with equivalent norms.

Proof. It suffices to treat the case 0 < s < 1 thanks to the properties of the Fourier transform. The
proof is an easy consequence of the Parseval formula. We have by Fubini’s theorem and a linear change
of variable ∫

Rd

∫
Rd

|u(x)− u(y)|2

|x− y|d+2s
dxdy =

∫
Rd

(∫
Rd

|u(z + y)− u(y)|2 dy
)

dz

|z|d+2s

= 1
(2π)d

∫
Rd

(∫
Rd

|F (τzu− u) (ξ)|2 dξ
)

dz

|z|d+2s
,

where we wrote as previously τzf(x) = f(x+ z). Since

F (τzy)(ξ) =
∫
Rd

u(x+ z)e−i x·ξdx =
x+z=y

ei z ξû(ξ).

∗Equal to p.v.
x

|x|d+1 up to a constant.
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This identity implies that∫
Rd

∫
Rd

|u(x)− u(y)|2

|x− y|d+2s
dxdy = 1

(2π)d

∫
Rd

(∫
Rd

|ei z·ξ − 1|2|û(ξ)|2dξ
)

dz

|z|d+2s

= 1
2d−1πd

∫
Rd

(∫
Rd

1− cos(z · ξ)
|z|d+2s

dz

)
|û(ξ)|2dξ

= c′
s

2d−1πd

∫
Rd

|ξ|2s|û(ξ)|2dξ,

where we used the identity

I(ξ) =
∫
Rd

1− cos(z · ξ)
|z|d+2s

dz = c′
s|ξ|2s.

Notice that I is a radial function, as one immediately checks by making a rotation and using the parity
of cos. If ξ ̸= 0, making a change of variable z = y

|ξ| , we get

I(ξ) =
∫
Rd

1− cos
(
y · ξ

|ξ|

)
∣∣∣ y

|ξ|

∣∣∣d+2s
|ξ|d dy = |ξ|2sI

(
ξ

|ξ|

)
= |ξ|2sI(e1)

= |ξ|2s

∫
Rd

1− cos(y1)
|y|d+2s

dy

= c′
s|ξ|2s

by radiality. This concludes the proof of the theorem.

Using Theorem 3.7.5, we deduce the following result that permits to unify all notions of fractional
derivatives.

Corollary 3.9.6. For all s > 0 such that s /∈ N, the semi-norms

[u]Hs(Rd) =
∑

|α|=[s]

∥∥∥Ds−[s]Dαu
∥∥∥

L2(Rd)

and

[u]Ws,2(Rd) =
∑

|α|=[s]

(∫
Ω

∫
Ω

|Dαu(x)−Dαu(y)|p

|x− y|d+2(s−[s]) dxdy

) 1
2

are equivalent. In particular, Hs(Rd) = W s,2(Rd) with equivalent norms.

3.9.3 Appendix

Let us compute the integral

J(s) =
∫ ∞

0

1− cos(t)
t1+2s

dt = 21−2s

∫ ∞

0

sin2(t)
t1+2s

dt,

where 0 < s < 1. Integrating by parts, we get

J(s) =
[
− 1

2s
1− cos(t)

t2s

]∞

0
+ 1

2s

∫ ∞

0

sin(t)
t2s

dt

= 1
2s

∫ ∞

0

sin(t)
t2s

dt.

Since J(s) < ∞ for all 0 < s < 1, we deduce that the integral above converges for all 0 < s < 1 (which
is trivial for 1

2 < s < 1). For 0 < s <
1
2 , this integral is known (up to a change of variable t = u2) as the
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Fresnel integral, and can be easily computed with the help of a standard positive quarter-disk contour.
We get after computations

J(s) = 1
2s sin

(
(1− 2s)π2

)
Γ(1− 2s).

Therefore, we have

c−1
s = 2π

d−1
2

Γ
(
s+ 1

2
)

Γ
(
s+ d

2
) × 1

2s sin
(

(1− 2s)π2

)
Γ(1− 2s)

= 1
s
π

d−1
2

1
Γ
(
s+ d

2
) sin

(
(1− 2s)π2

)
Γ
(
s+ 1

2

)
Γ(1− 2s).

Now, recall the formulas

Γ(2z) = 22z−1
√
π

Γ(z)Γ
(
z + 1

2

)
Γ(z)Γ(1− z) = π

sin(πz) .

We get

sin
(

(1− 2s)π2

)
= sin

(
π

(
1
2 − s

))
= π

Γ
( 1

2 − s
)

Γ
( 1

2 + s
) .

Therefore, we get

sin
(

(1− 2s)π2

)
Γ
(
s+ 1

2

)
Γ(1− 2s) = π

Γ(1− 2s)
Γ
( 1

2 − s
) = π

Γ
(
2
( 1

2 − s
))

Γ
( 1

2 − s
)

= π
2(1−2s)−1
√
π

Γ (1− s)

=
√
π

1
22s

Γ(1− s),

which finally gives

c−1
s = 1

s
π

d−1
2

1
Γ
(
s+ d

2
) ×√π 1

22s
Γ(1− s)

= 1
s22s

π
d
2

Γ(1− s)
Γ
(
s+ d

2
) .

Notice that by analytic continuation, the formula proven for 0 < s <
1
2 is true for all s ∈ C such that

0 < Re(s) < 1.

3.10 Sobolev Spaces on Manifolds

We end this section with some comments on Sobolev spaces between Riemannian manifolds. A possible
definition is the following. If Mm and Nn are Riemannian manifolds, by Nash’s isometric embedding
theorem ([27]), we can consider Nn as a subset of Rd with the induced metric from the canonical
embedding ι : Nn → Rd. Then, define

W s,p(Mm, Nn) = W s,p(Mn,Rd) ∩ {u : u(x) ∈ Nn for almost every x ∈Mm} ,

where Mm is equipped with its natural measure induced by its volume form (equivalently, we can consider
the m-dimensional Hausdorff measure on Mm induced by its Riemannian distance).

In this general setting, very little is known in general, and questions of density of smooth functions
are difficult. Furthermore, one cannot embed W s,p(Mm, Nn) with a structure of a Banach manifold in
general (this is only possible provided that sp > m).

For further reading, one may look at Hélein’s book ([22], and in the case of maps with values to the
circle S1, Brezis-Mironescu’s new 500-page-long monograph! (Cf. [?])
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