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Exercise 1. For the convenience of the readability and without loss of generality we can
suppose that f is non-negative, namely f : X → [0,∞]. The exercise is an application of
Tonelli theorem. Denote by

Xf := {(x, t) ∈ X × [0,+∞) : t < f(x)}

the hypograph of the function f and observe that for every x ∈ X it holds
∫ f(x)
0

1dt = f(x).
Therefore∫

X

f(x)dx =

∫
X

(∫ f(x)

0

1dt

)
dx =

∫
X

(∫ +∞

0

χ[0,f(x)](t)dt

)
dx =

∫
X×[0,+∞)

χXf
dtdx,

where in the last equality we used Tonelli theorem. R ecall that in Tonelli theorem we have
the assumption µ be a σ finite measure. Again by Tonelli theorem,∫

X×[0,+∞)

χXf
dtdx =

∫ +∞

0

(∫
X

χXf
(t, x)dx

)
dt =

∫ +∞

0

|{x ∈ X : f(x) > t}| dt.

This concludes the first part of the exercise, the second part follows the same computations
with the only modification that ∫ f(x)

0

ptp−1dt = f(x)p.

For the third part we notice that we cannot use Tonelli theorem. So we argue in the following
way, if f(x) = aχA for some a ∈ [0,∞] and A ⊂ X measurable, then the identity is straightfor-
ward. Let us suppose that f(x) =

∑N
j=1 aiχAj

for some aj ≥ 0 and Aj measurable, then there
exists {bi}ni=1 such that 0 ≤ b1 < b2 < ... < bn and measurable sets {Bi}i such that

f(x) =
n∑
i=1

biχBi
,

therefore we have ∫
X

f(x)dµ(x) =
n∑
i=1

biµ(Bi)

On the other hand (defining b0 = 0)∫ ∞
0

µ(x :
n∑
j=1

bjχBj
(x) > t)dt =

n∑
i=1

∫ bi

bi−1

µ(x :
n∑
j=1

bjχBj
(x) > t)dt

=
n∑
i=1

n∑
j=i

µ(Bj)(bi − bi−1) =
n∑
j=1

j∑
i=1

(bi − bi−1)µ(Bj) =
n∑
j=1

bjµ(Bj).
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Using monotone convergence theorem we can prove that the identity is true for any function f
non-negative.

Exercise 2. Let {ρε}ε>0 be a standard family of mollifiers. Since f ∈ L1(Rn), then we know
that f ∗ ρε → f in L1(Rn) as ε→ 0. Thus, up to subsequences, we can assume that

(f ∗ ρε) (x)→ f(x) for a.e. x ∈ Rn, as ε→ 0 . (1)

By hypothesis we have that, for any ε > 0,

(f ∗ ρε) (x) =

∫
Rn

f(y)ρε(x− y) dy = 0 , (2)

since ρε ∈ C∞c (Rn). Putting together (1) and (2) we conclude that f(x) = 0 for almost every
x ∈ Rn.

Exercise 3 Let us fix a sequence {xn}n such that ‖xn − x‖X → 0. We estimate

‖Tn(xn)− T (x)‖Y ≤ ‖Tn(xn)− Tn(x)‖Y + ‖Tn(x)− T (x)‖Y

for the second term we observe that

‖Tn(x)− T (x)‖Y → 0

by assumption, whereas we estimate the first term as

‖Tn(xn)− Tn(x)‖Y ≤ ‖Tn‖L(X,Y )‖xn − x‖X .

Using that Tn(x)→ T (x) for all x ∈ X and T ∈ L(X, Y ) we get by Banach Steinhaus that

supn‖Tn‖L(X,Y ) <∞

and therefore we conclude that

‖Tn‖L(X,Y )‖xn − x‖X → 0

as n→∞.

Exercise 4 Let us define
T : X → Y ∗

as T (x) = a(x, ·) ∈ L(Y,R). The goal is to show that T is a bounded operator indeed

sup‖y‖Y ≤1 |a(x, y)| = sup‖y‖Y ≤1 < T (x), y >Y ∗,Y≤ ‖T (x)‖Y ∗ ≤ ‖T‖L(X,Y ∗)‖x‖X

for all x ∈ X, from which the thesis follows. Using Corollary 1.2.4 it is sufficient to fix y ∈ Y
and prove that

sup‖x‖X≤1 < T (x), y >Y ∗,Y≤ C

and this follows from the linearity and continuity in x of the bilinear operator a(x, y).

Exercise 5 For every x ∈ `p set Tn(x) =
∑n

i=1 aixi, so that Tn(x) → T (x) =
∑∞

i=1 aixi for
avery x ∈ `p. Therefore, applying Banach Steinhaus, if follows that there exists a constant
C > 0 such that

supn |Tn(x)| ≤ C‖x‖`p
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for any x ∈ `p. Therefore (if p > 1) choosing x = {xn}n such that xn = ap
′−1
n we get that

‖a‖p
′

`p′
= supn |Tn(x)| ≤ C‖a‖p

′/p

`p′

conclusing that ‖a‖`p′ ≤ C.

Exercise 6 (1) implies (2) because χA is an Lp
′

function for any A ⊂ Ω of finite measure. The
same for p = 1. To see that the sequence is bounded you can use Proposition 1.3.3.
(2) implies (1) because the vector space spanned by characteristic function χA with A ⊂ Ω of
finite measure are dense in Lp

′
(this is not true if p′ =∞ and the space Ld(Ω) =∞).

Exercise 7 Suppose f is continuous and let U be a neighbourhood of f(x). By definition of
neighbourhood there is an open set A ⊂ Y such that f(x) ∈ A ⊂ U : the open set V = f−1(A)
is a neighbourhood of x and f(V ) ⊂ U .
Conversely, suppose f is continuous at every point and let A be an open set in Y . If x ∈ f−1(A)
then A is a neighbourhood of f(x) and there is a neighbourhood Vx of x such that f(Vx) ⊂ A.
This amounts to saying Vx ⊂ f−1(A). By definition there exists Ux open such that x ∈ Ux and
Ux ⊂ Vx. Therefore f−1(A) is an open set because it is union of open sets

f−1(A) =
⋃

x∈f−1(A)

Ux.
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