

Distribution & Interpolation Spaces – Solution sheet 1

Exercise 1. We first show that $f * g$ is continuous.

Let $x_n \rightarrow x$ in \mathbb{R}^n . Since $f, g \in C_c(\mathbb{R}^n)$, there exists a constant $M > 0$ such that $|f|, |g| \leq M$ for all $x \in \mathbb{R}^n$. Thus the sequence of functions $h_n(y) = f(y)g(x_n - y)$ satisfies

$$\begin{aligned} h_n(y) &\rightarrow f(y)g(x - y) \quad \forall y \in \mathbb{R}^n, \\ |h_n(y)| &\leq M^2 \chi_{\text{spt } f}(y) \in L^1(\mathbb{R}^n), \end{aligned}$$

where $\chi_\Omega(y)$ denotes the characteristic function of the set Ω . Thus, by dominated convergence, we have

$$\lim_{x_n \rightarrow x} (f * g)(x_n) = \int_{\mathbb{R}^n} \lim_{x_n \rightarrow x} f(y)g(x_n - y) dy = \int_{\mathbb{R}^n} f(y)g(x - y) dy = (f * g)(x),$$

which shows the continuity of $f * g$.

Now, if $x \notin \text{spt } f + \text{spt } g$, we have that

$$(f * g)(x) = \int_{\mathbb{R}^n} f(y)g(x - y) dy = \int_{\text{spt } f} f(y)g(x - y) dy = 0,$$

since $g(x - y) = 0$ for all $y \in \text{spt } f$ by our choice of x . This proves

$$\text{spt } (f * g) \subset \text{spt } f + \text{spt } g.$$

To conclude we need still to observe that $f * g \in L^1(\mathbb{R}^n)$ and satisfies the desired estimate. Since we showed that $f * g$ is continuous and with compact support, then $f * g$ is bounded and bounded measurable functions with compact support belong to $L^1(\mathbb{R}^n)$.

By Tonelli theorem

$$\begin{aligned} \|f * g\|_{L^1(\mathbb{R}^n)} &= \int_{\mathbb{R}^n} \left| \int_{\mathbb{R}^n} f(y)g(x - y) dy \right| dx \\ &\leq \int_{\mathbb{R}^n} \int_{\mathbb{R}^n} |f(y)g(x - y)| dy dx \\ &= \int_{\mathbb{R}^n} \int_{\mathbb{R}^n} |f(y)g(x - y)| dx dy \\ &= \int_{\mathbb{R}^n} |f(y)| \int_{\mathbb{R}^n} |g(x - y)| dx dy \\ &= \int_{\mathbb{R}^n} |f(y)| \|g\|_{L^1(\mathbb{R}^n)} dy \\ &= \|f\|_{L^1(\mathbb{R}^n)} \|g\|_{L^1(\mathbb{R}^n)}. \end{aligned}$$

Exercise 2. We have that $|f_k| \leq |f|$ and $f_k(x) \rightarrow f(x)$ for almost every $x \in \mathbb{R}^n$. Thus by dominated convergence

$$f_k \rightarrow f \text{ in } L^1(\mathbb{R}^n).$$

The functions f_k are bounded by construction, moreover

$$|f_k * g(x)| \leq \int_{\mathbb{R}^n} |f_k(y)g(x-y)| dy \leq \|f_k\|_{L^\infty(\mathbb{R}^n)} \|g\|_{L^1(\mathbb{R}^n)} \leq k \|g\|_{L^1(\mathbb{R}^n)}$$

and

$$\int_{\mathbb{R}^n} |f_k * g(x)| dx = \int_{\mathbb{R}^n} \int_{\mathbb{R}^n} |f_k(y)| |g(x-y)| dy dx = \|f_k\|_{L^1(\mathbb{R}^n)} \|g\|_{L^1(\mathbb{R}^n)} \leq \|f\|_{L^1(\mathbb{R}^n)} \|g\|_{L^1(\mathbb{R}^n)},$$

thus ensuring that $f_k * g \in L^1 \cap L^\infty(\mathbb{R}^n)$ for every k . Note that, also, $f * g \in L^1(\mathbb{R}^n)$ since

$$\begin{aligned} \int_{\mathbb{R}^n} |(f * g)(x)| dx &\leq \int_{\mathbb{R}^n} \int_{\mathbb{R}^n} |f(y)| |g(x-y)| dy dx = \int_{\mathbb{R}^n} \int_{\mathbb{R}^n} |f(y)| |g(x-y)| dx dy \\ &= \int_{\mathbb{R}^n} |f(y)| \int_{\mathbb{R}^n} |g(x-y)| dx dy = \|f\|_{L^1(\mathbb{R}^n)} \|g\|_{L^1(\mathbb{R}^n)} < \infty. \end{aligned}$$

By direct computation we then conclude

$$\begin{aligned} \int_{\mathbb{R}^n} |(f_k * g)(x) - (f * g)(x)| dx &\leq \int_{\mathbb{R}^n} \int_{\mathbb{R}^n} |f_k(y) - f(y)| |g(x-y)| dy dx \\ &\leq \|g\|_{L^1(\mathbb{R}^n)} \|f_k - f\|_{L^1(\mathbb{R}^n)} \rightarrow 0. \end{aligned}$$

Exercise 3.

i) Let

$$\begin{aligned} H : \mathbb{R}^n \times \mathbb{R}^n &\rightarrow [-\infty, +\infty] \\ (x, y) &\mapsto f(x-y)g(y) \end{aligned}$$

Since f, g are measurable, then also H is measurable. Following the computations already done in Exercise 1, we show that $H \in L^1(\mathbb{R}^n \times \mathbb{R}^n)$: by Tonelli theorem

$$\begin{aligned} \int_{\mathbb{R}^n \times \mathbb{R}^n} |H(x, y)| d(x \times y) &= \int_{\mathbb{R}^n} \left(\int_{\mathbb{R}^n} |f(x-y)| |g(y)| dx \right) dy \\ &= \int_{\mathbb{R}^n} |g(y)| \left(\int_{\mathbb{R}^n} |f(x-y)| dx \right) dy \\ &= \int_{\mathbb{R}^n} |g(y)| \|f\|_{L^1(\mathbb{R}^n)} dy \\ &= \|f\|_{L^1(\mathbb{R}^n)} \|g\|_{L^1(\mathbb{R}^n)} \\ &< \infty. \end{aligned}$$

Hence, by Fubini theorem, for almost every $x \in \mathbb{R}^n$, the section

$$\begin{aligned} H_x : \mathbb{R}^n &\rightarrow [-\infty, +\infty] \\ y &\mapsto H(x, y) = f(x-y)g(y) \end{aligned}$$

is integrable, and the function

$$I_H : \mathbb{R}^n \rightarrow \mathbb{R}$$

$$x \mapsto I_H(x) = \begin{cases} \int_{\mathbb{R}^n} H_x(y) dy & \text{if } H_x \text{ is integrable,} \\ 0 & \text{otherwise} \end{cases}$$

belongs to $L^1(\mathbb{R}^n)$. Therefore we define $f * g$ to be (the equivalence class) of the function I_H in $L^1(\mathbb{R}^n)$. The estimate follows again by Fubini theorem and the previous computation:

$$\begin{aligned} \|f * g\|_{L^1(\mathbb{R}^n)} &= \int_{\mathbb{R}^n} \left| \int_{\mathbb{R}^n} H_x(y) dy \right| dx \\ &\leq \int_{\mathbb{R}^n} \int_{\mathbb{R}^n} |H_x(y)| dy dx \\ &= \|H\|_{L^1(\mathbb{R}^n \times \mathbb{R}^n)} \\ &= \|f\|_{L^1(\mathbb{R}^n)} \|g\|_{L^1(\mathbb{R}^n)}. \end{aligned}$$

ii) If $r = \infty$, then it becomes the usual Hölder inequality, indeed

$$|(f * g)(x)| \leq \int_{\mathbb{R}^n} |f(y)| |g(x - y)| dy \leq \|f\|_{L^p(\mathbb{R}^n)} \|g(x - \cdot)\|_{L^{p'}(\mathbb{R}^n)} = \|f\|_{L^p(\mathbb{R}^n)} \|g\|_{L^{p'}(\mathbb{R}^n)},$$

where $\|g(x - \cdot)\|_{L^{p'}(\mathbb{R}^n)}$ means that the norm is computed in the y variable, for a fixed $x \in \mathbb{R}^n$.

If $p = \infty$ (the case $p' = \infty$ is analogous) then we need to have $p' = 1$ and consequently $r = \infty$. Thus the proof runs as in the previous case.

Suppose now that $r, p, p' < \infty$. We rewrite

$$f(y)g(x - y) = \left(f(y)^p g(x - y)^{p'} \right)^{\frac{1}{r}} f(y)^{1 - \frac{p}{r}} g(x - y)^{1 - \frac{p'}{r}}.$$

Note that

$$\frac{1}{r} + \frac{1}{\frac{p}{1 - \frac{p}{r}}} + \frac{1}{\frac{p'}{1 - \frac{p'}{r}}} = \frac{1}{r} + \frac{r - p}{rp} + \frac{r - p'}{rp'} = \frac{1}{p} + \frac{1}{p'} - \frac{1}{r} = 1.$$

Thus, by using the Hölder inequality with 3 indexes, we have

$$\int_{\mathbb{R}^n} f(y)g(x - y) dy \leq \left(\int_{\mathbb{R}^n} g(x - y)^{p'} f(y)^p dy \right)^{\frac{1}{r}} \|f\|_{L^p(\mathbb{R}^n)}^{1 - \frac{p}{r}} \|g\|_{L^{p'}(\mathbb{R}^n)}^{1 - \frac{p'}{r}}.$$

By taking the L^r -norm on both sides we get

$$\|f * g\|_{L^r(\mathbb{R}^n)} \leq \left(\int_{\mathbb{R}^n} \int_{\mathbb{R}^n} g(x - y)^{p'} f(y)^p dy dx \right)^{\frac{1}{r}} \|f\|_{L^p(\mathbb{R}^n)}^{1 - \frac{p}{r}} \|g\|_{L^{p'}(\mathbb{R}^n)}^{1 - \frac{p'}{r}}. \quad (1)$$

Note that by Fubini's theorem

$$\begin{aligned} \int_{\mathbb{R}^n} \int_{\mathbb{R}^n} g(x - y)^{p'} f(y)^p dy dx &= \int_{\mathbb{R}^n} \int_{\mathbb{R}^n} g(x - y)^{p'} f(y)^p dx dy \\ &= \int_{\mathbb{R}^n} \left(f(y)^p \int_{\mathbb{R}^n} g(x - y)^{p'} dx \right) dy \\ &= \|f\|_{L^p(\mathbb{R}^n)} \|g\|_{L^{p'}(\mathbb{R}^n)}. \end{aligned} \quad (2)$$

Finally, by plugging identity (2) in the inequality (1), we conclude

$$\|f * g\|_{L^r(\mathbb{R}^n)} \leq \|f\|_{L^p(\mathbb{R}^n)}^{\frac{p}{r}} \|g\|_{L^{p'}(\mathbb{R}^n)}^{\frac{p'}{r}} \|f\|_{L^p(\mathbb{R}^n)}^{1-\frac{p}{r}} \|g\|_{L^{p'}(\mathbb{R}^n)}^{1-\frac{p'}{r}} = \|f\|_{L^p(\mathbb{R}^n)} \|g\|_{L^{p'}(\mathbb{R}^n)}.$$

Exercise 4. *Step 1.* Let us prove first the statement in the simpler setting where g has compact support. Let us denote by $K \subset \mathbb{R}^n$ the support of g and let x be an arbitrary point in \mathbb{R}^n . In order to prove that $f * g$ is continuous in x , let

$$B(x - K, 1) := \{z \in \mathbb{R}^n : \exists y \in K : |(x - y) - z| \leq 1\}.$$

Since K is compact, then also $B(x - K, 1)$ is compact and therefore the restriction of f to $B(x - K, 1)$ is uniformly continuous, namely $\forall \varepsilon > 0$ there exists $\delta \in (0, 1)$ such that

$$|x' - x''| \leq \delta \text{ with } x', x'' \in B(x - K, 1) \Rightarrow |f(x') - f(x'')| < \varepsilon.$$

Let $x, \tilde{x} \in \mathbb{R}^n$ with $|x - \tilde{x}| \leq \delta$. Then

$$\begin{aligned} |f * g(x) - f * g(\tilde{x})| &= \left| \int_{\mathbb{R}^n} (f(x - y) - f(\tilde{x} - y))g(y)dy \right| \\ &\leq \int_{\mathbb{R}^n} |f(x - y) - f(\tilde{x} - y)| |g(y)| dy \\ &= \int_K |f(x - y) - f(\tilde{x} - y)| |g(y)| dy. \end{aligned}$$

Since for every $y \in K$ we have the both $x' := x - y$ and $x'' := \tilde{x} - y$ belong to $B(x - K, 1)$, we can estimate the last integral with $\varepsilon \int_K |g(y)| dy$. Since g belongs to $L^p(\mathbb{R}^n)$ and has compact support, then $g \in L^1(\mathbb{R}^n)$, therefore the obtained estimate

$$|f * g(x) - f * g(\tilde{x})| \leq \varepsilon \int_K |g(y)| dy \quad \forall \tilde{x} : |x - \tilde{x}| \leq \delta$$

shows that $f * g$ is continuous in x .

We now prove the second part of the statement, again under the additional assumption that g has compact support. Exactly as before, we have that $\frac{\partial f}{\partial x_i}$ is uniformly continuous on the compact set $B(x - K, 1)$, i.e. for every $\varepsilon > 0$ there exists $\delta \in (0, 1)$ such that

$$|x' - x''| \leq \delta \text{ with } x', x'' \in B(x - K, 1) \Rightarrow \left| \frac{\partial f(x')}{\partial x_i} - \frac{\partial f(x'')}{\partial x_i} \right| < \varepsilon.$$

Let $\sigma \in (0, \delta)$. By the definition of $f * g$ and Lagrange theorem, we have

$$\begin{aligned} \frac{f * g(x + \sigma e_i) - f * g(x)}{\sigma} &= \int_{\mathbb{R}^n} g(y) \frac{f(x - y + \sigma e_i) - f(x - y)}{\sigma} dy \\ &= \int_{\mathbb{R}^n} g(y) \frac{\partial f}{\partial x_i}(x - y + t(\sigma) e_i) dy \end{aligned}$$

for some $t(\sigma) \in [0, \sigma]$ depending on y . Since $\sigma \in (0, \delta)$, by the uniform continuity of $\frac{\partial f}{\partial x_i}$ on $B(x - K, 1)$, we have

$$\left| \frac{\partial f}{\partial x_i}(x - y + t(\sigma) e_i) - \frac{\partial f}{\partial x_i}(x - y) \right| < \varepsilon \quad \forall y \in K.$$

Observe that

$$\begin{aligned} \left| \frac{f * g(x + \sigma e_i) - f * g(x)}{\sigma} - \frac{\partial f}{\partial x_i} * g(x) \right| &= \left| \int_{\mathbb{R}^n} g(y) \frac{\partial f}{\partial x_i}(x - y + t(\sigma)e_i) dy - \int_{\mathbb{R}^n} g(y) \frac{\partial f}{\partial x_i}(x - y) dy \right| \\ &\leq \int_{\mathbb{R}^n} |g(y)| \left| \frac{\partial f}{\partial x_i}(x - y + t(\sigma)e_i) - \frac{\partial f}{\partial x_i}(x - y) \right| dy \\ &\leq \varepsilon \|g\|_{L^1(\mathbb{R}^n)}. \end{aligned}$$

Since $\varepsilon > 0$ was arbitrary, letting $\varepsilon \rightarrow 0^+$, we get

$$\frac{\partial(f * g)}{\partial x_i}(x) = \frac{\partial f}{\partial x_i} * g(x).$$

Moreover, $\frac{\partial f}{\partial x_i}$ is continuous, therefore by the first part of the exercise, $\frac{\partial f}{\partial x_i} * g$ is continuous and hence $\frac{\partial(f * g)}{\partial x_i}$ is continuous as well.

Repeating the argument for every $i = 1, \dots, n$, this shows that $f * g \in C^1(\mathbb{R}^n)$.

Step 2. We remove the extra assumption that g has compact support.

For $\varepsilon > 0$ fixed, there is a compact set $K_\varepsilon \subset \mathbb{R}^n$ and two functions $g_1, g_2 \in L^p(\mathbb{R}^n)$ such that

$$g = g_1 + g_2, \quad \text{spt}(g_1) \subset K_\varepsilon, \quad \|g_2\|_{L^p(\mathbb{R}^n)} \leq \varepsilon.$$

By Step 1 there exists $\delta \in (0, 1)$ such that

$$|x - \tilde{x}| \leq \delta \Rightarrow |f * g_1(x) - f * g_1(\tilde{x})| < \varepsilon \|g_1\|_{L^1(\mathbb{R}^n)},$$

then

$$\begin{aligned} |f * g(x) - f * g(\tilde{x})| &\leq |f * g_1(x) - f * g_1(\tilde{x})| + |f * g_2(x) - f * g_2(\tilde{x})| \\ &\leq \varepsilon \|g_1\|_{L^1(\mathbb{R}^n)} + 2 \|f * g_2\|_{L^\infty(\mathbb{R}^n)}. \end{aligned}$$

For every $x \in \mathbb{R}^n$, we have by Hölder inequality

$$|f * g_2(x)| \leq \int_{\mathbb{R}^n} |g_2(y)| |f(x - y)| dy \leq \|g_2\|_{L^p(\mathbb{R}^n)} \|f\|_{L^{p'}(\mathbb{R}^n)} \leq \varepsilon \|f\|_{L^{p'}(\mathbb{R}^n)},$$

hence $\|f * g_2\|_{L^\infty(\mathbb{R}^n)} \leq \varepsilon \|f\|_{L^{p'}(\mathbb{R}^n)}$. Plugging this into the previous estimate, we get

$$|f * g(x) - f * g(\tilde{x})| \leq \varepsilon \left(\|g_1\|_{L^1(\mathbb{R}^n)} + 2 \|f\|_{L^{p'}(\mathbb{R}^n)} \right),$$

which proves the continuity of $f * g$.

The same argument works also for $\frac{\partial f}{\partial x_i}$: in the same way we get

$$\left\| \frac{f * g_2(x + \sigma e_i) - f * g_2(x)}{\sigma} \right\|_{L^\infty(\mathbb{R}^n)} \leq \varepsilon \left\| \frac{\partial f}{\partial x_i} \right\|_{L^{p'}(\mathbb{R}^n)}$$

and then

$$\begin{aligned} \left| \frac{f * g(x + \sigma e_i) - f * g(x)}{\sigma} - \frac{\partial f}{\partial x_i} * g(x) \right| &\leq \left| \frac{f * g_1(x + \sigma e_i) - f * g_1(x)}{\sigma} - \frac{\partial f}{\partial x_i} * g_1(x) \right| \\ &\quad + \left| \frac{f * g_2(x + \sigma e_i) - f * g_2(x)}{\sigma} \right| + \left| \frac{\partial f}{\partial x_i} * g_2(x) \right| \\ &\leq \varepsilon \left(\|g_1\|_{L^p(\mathbb{R}^n)} + 2 \left\| \frac{\partial f}{\partial x_i} \right\|_{L^{p'}(\mathbb{R}^n)} \right). \end{aligned}$$

Letting $\varepsilon \rightarrow 0$ we obtain

$$\frac{\partial(f * g)}{\partial x_i}(x) = \frac{\partial f}{\partial x_i} * g(x).$$

Since $\frac{\partial f}{\partial x_i} * g$ is continuous by the previous point, we have in particular that $f * g \in C^1(\mathbb{R}^n)$.

Exercise 5.

i) Let $\epsilon > 0$. Choose $\delta > 0$ with the following property: $\forall x, y$ such that $|x - y| < \delta \Rightarrow |f(x) - f(y)| < \epsilon$ (note that this δ exists since f is uniformly continuous).

Then, for every $x \in \mathbb{R}^n$ we have

$$\begin{aligned} |f(x) - (f * \rho_\delta)(x)| &= \left| f(x) - \int_{B(0,\delta)} f(x-y) \rho_\delta(y) dy \right| \\ &= \left| \int_{B(0,\delta)} (f(x) - f(x-y)) \rho_\delta(y) dy \right| \\ &\leq \int_{B(0,\delta)} |f(x) - f(x-y)| \rho_\delta(y) dy \leq \epsilon. \end{aligned}$$

So, we proved that $\forall \epsilon > 0, \exists \delta > 0$ such that

$$\sup_{x \in \mathbb{R}^n} |f(x) - (f * \rho_\delta)(x)| < \epsilon,$$

which means that $f * \rho_\delta \rightarrow f$ uniformly, as $\delta \rightarrow 0$.

ii) The idea is to apply Point i) to uniformly continuous functions approaching f .

Step 1. Let $\varepsilon > 0$ and let us build a uniformly continuous function $\tilde{\phi}_\varepsilon$ such that $\|f - \tilde{\phi}_\varepsilon\|_{L^p(\mathbb{R}^n)} < \varepsilon$. Since $f \in L^p(\mathbb{R}^n)$, then there exists a step function

$$\phi_\varepsilon := \sum_{i=1}^h c_i \chi_{K_i} \quad \text{such that } \|f - \phi_\varepsilon\|_{L^p(\mathbb{R}^n)} < \frac{\varepsilon}{2},$$

where $h \in \mathbb{N}$, $c_i \in \mathbb{R}$, χ_{K_i} denotes the characteristic function of K_i and the sets $K_i \subset \mathbb{R}^n$ are compact and pairwise disjoint. In order to build a continuous approximation, observe that given a compact set K and $c \in \mathbb{R}$ the functions

$$\nu_M : x \mapsto c(1 - M \text{dist}(x, K))^+, \quad \text{with } M \in \mathbb{R}$$

are uniformly continuous with compact support and they converge to $c\chi_K$ in $L^p(\mathbb{R}^n)$ for every $p \in [1, +\infty)$ as $M \rightarrow +\infty$. Here we used the notation $(z)^+ := \max\{z, 0\}$ to denote the positive part of z . By approximating each of the h multiples of the characteristic functions in the definition of ϕ_ε , we obtain a uniformly continuous function $\tilde{\phi}_\varepsilon$ with compact support that, for M sufficiently large, satisfies

$$\|\phi_\varepsilon - \tilde{\phi}_\varepsilon\|_{L^p(\mathbb{R}^n)} < \frac{\varepsilon}{2}.$$

In particular $\|\phi_\varepsilon - f\|_{L^p(\mathbb{R}^n)} < \varepsilon$ and this concludes Step 1.

Step 2. By Point i) we have that

$$\tilde{\phi}_\varepsilon * \rho_\delta \rightarrow \tilde{\phi}_\varepsilon \quad \text{uniformly as } \delta \rightarrow 0.$$

In particular there exists $\bar{\delta} > 0$ such that for every $\delta \in (0, \bar{\delta})$ one has

$$\|\tilde{\phi}_\varepsilon - \tilde{\phi}_\varepsilon * \rho_\delta\|_{L^p(\mathbb{R}^n)} < \varepsilon.$$

Therefore, for $\delta \in (0, \bar{\delta})$, we have

$$\begin{aligned} \|f - f * \rho_\delta\|_{L^p(\mathbb{R}^n)} &\leq \|f - \tilde{\phi}_\varepsilon\|_{L^p(\mathbb{R}^n)} + \|\tilde{\phi}_\varepsilon - \tilde{\phi}_\varepsilon * \rho_\delta\|_{L^p(\mathbb{R}^n)} + \|\tilde{\phi}_\varepsilon * \rho_\delta - f * \rho_\delta\|_{L^p(\mathbb{R}^n)} \\ &< 3\varepsilon, \end{aligned}$$

where in the last inequality we used

$$\|\tilde{\phi}_\varepsilon * \rho_\delta - f * \rho_\delta\|_{L^p(\mathbb{R}^n)} \leq \|f - \tilde{\phi}_\varepsilon\|_{L^p(\mathbb{R}^n)} \|\rho_\delta\|_{L^1(\mathbb{R}^n)} < \varepsilon \cdot 1.$$

This shows that $f * \rho_\delta \rightarrow f$ in $L^p(\mathbb{R}^n)$.

iii) Given $\varepsilon > 0$ and $f \in L^p(\mathbb{R}^n)$, we show that there exists a function $g \in C_c^\infty(\mathbb{R}^n)$ such that $\|f - g\|_{L^p(\mathbb{R}^n)} < 2\varepsilon$.

Observe that a natural candidate would be $g = f * \rho_\delta$ with δ small enough but this choice does not have compact support. Instead, we can consider $g = \tilde{\phi}_\varepsilon * \rho_{\delta(\varepsilon)}$, where $\delta(\varepsilon) > 0$ is such that $\|\tilde{\phi}_\varepsilon - \tilde{\phi}_\varepsilon * \rho_{\delta(\varepsilon)}\|_{L^p(\mathbb{R}^n)} < \varepsilon$. In particular

$$\|f - \tilde{\phi}_\varepsilon * \rho_{\delta(\varepsilon)}\|_{L^p(\mathbb{R}^n)} \leq \|f - \tilde{\phi}_\varepsilon\|_{L^p(\mathbb{R}^n)} + \|\tilde{\phi}_\varepsilon - \tilde{\phi}_\varepsilon * \rho_{\delta(\varepsilon)}\|_{L^p(\mathbb{R}^n)} < 2\varepsilon.$$

Notice moreover that $\tilde{\phi}_\varepsilon * \rho_{\delta(\varepsilon)}$ has compact support since both $\tilde{\phi}_\varepsilon$ and $\rho_{\delta(\varepsilon)}$ have compact support and $\tilde{\phi}_\varepsilon * \rho_{\delta(\varepsilon)} \in C^\infty(\mathbb{R}^n)$ since $\rho_{\delta(\varepsilon)} \in C^\infty(\mathbb{R}^n)$.