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Exercise 1. We first show that f ∗ g is continuous.
Let xn → x in Rn. Since f, g ∈ Cc(Rn), there exists a constant M > 0 such that |f |, |g| ≤ M
for all x ∈ Rn. Thus the sequence of functions hn(y) = f(y)g(xn − y) satisfies

hn(y)→ f(y)g(x− y) ∀y ∈ Rn,

|hn(y)| ≤M2χspt f (y) ∈ L1(Rn),

where χΩ(y) denotes the characteristic function of the set Ω. Thus, by dominated convergence,
we have

lim
xn→x

(f ∗ g)(xn) =

∫
Rn

lim
xn→x

f(y)g(xn − y) dy =

∫
Rn

f(y)g(x− y) dy = (f ∗ g)(x) ,

which shows the continuity of f ∗ g.

Now, if x 6∈ spt f + spt g, we have that

(f ∗ g)(x) =

∫
Rn

f(y)g(x− y) dy =

∫
spt f

f(y)g(x− y) dy = 0,

since g(x− y) = 0 for all y ∈ spt f by our choice of x. This proves

spt (f ∗ g) ⊂ spt f + spt g.

To conclude we need still to observe that f ∗ g ∈ L1(Rn) and satisfies the desired estimate.
Since we showed that f ∗ g is continuous and with compact support, then f ∗ g is bounded and
bounded measurable functions with compact support belong to L1(Rn).
By Tonelli theorem

‖f ∗ g‖L1(Rn) =

∫
Rn

∣∣∣∣∫
Rn

f(y)g(x− y)dy

∣∣∣∣ dx
≤
∫
Rn

∫
Rn

|f(y)g(x− y)| dydx

=

∫
Rn

∫
Rn

|f(y)g(x− y)| dxdy

=

∫
Rn

|f(y)|
∫
Rn

|g(x− y)|dxdy

=

∫
Rn

|f(y)|‖g‖L1(Rn)dy

= ‖f‖L1(Rn)‖g‖L1(Rn).
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Exercise 2. We have that |fk| ≤ |f | and fk(x) → f(x) for almost every x ∈ Rn. Thus by
dominated convergence

fk → f in L1(Rn) .

The functions fk are bounded by construction, moreover

|fk ∗ g(x)| ≤
∫
Rn

|fk(y)g(x− y)|dy ≤ ‖fk‖L∞(Rn)‖g‖L1(Rn) ≤ k‖g‖L1(Rn)

and∫
Rn

|fk ∗ g(x)|dx =

∫
Rn

∫
Rn

|fk(y)||g(x− y)|dydx = ‖fk‖L1(Rn)‖g‖L1(Rn) ≤ ‖f‖L1(Rn)‖g‖L1(Rn),

thus ensuring that fk ∗ g ∈ L1 ∩ L∞(Rn) for every k. Note that, also, f ∗ g ∈ L1(Rn) since∫
Rn

|(f ∗ g)(x)| dx ≤
∫
Rn

∫
Rn

|f(y)||g(x− y)| dydx =

∫
Rn

∫
Rn

|f(y)||g(x− y)| dxdy

=

∫
Rn

|f(y)|
∫
Rn

|g(x− y)| dxdy = ‖f‖L1(Rn)‖g‖L1(Rn) <∞ .

By direct computation we then conclude∫
Rn

|(fk ∗ g)(x)− (f ∗ g)(x)| dx ≤
∫
Rn

∫
Rn

|fk(y)− f(y)||g(x− y)| dydx

≤ ‖g‖L1(Rn)‖fk − f‖L1(Rn) → 0 .

Exercise 3.

i) Let

H : Rn × Rn → [−∞,+∞]

(x, y) 7→ f(x− y)g(y)

Since f, g are measurable, then also H is measurable. Following the computations already
done in Exercise 1, we show that H ∈ L1(Rn × Rn): by Tonelli theorem∫

Rn×Rn

|H(x, y)|d(x× y) =

∫
Rn

(∫
Rn

|f(x− y)||g(y)|dx
)
dy

=

∫
Rn

|g(y)|
(∫

Rn

|f(x− y)|dx
)
dy

=

∫
Rn

|g(y)|‖f‖L1(Rn)dy

= ‖f‖L1(Rn)‖g‖L1(Rn)

< ∞.

Hence, by Fubini theorem, for almost every x ∈ Rn, the section

Hx : Rn → [−∞,+∞]

y 7→ H(x, y) = f(x− y)g(y)
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is integrable, and the function

IH : Rn → R

x 7→ IH(x) =

{∫
Rn Hx(y)dy if Hx is integrable,

0 otherwise

belongs to L1(Rn). Therefore we define f∗g to be (the equivalence class) of the function IH
in L1(Rn). The estimate follows again by Fubini theorem and the previous computation:

‖f ∗ g‖L1(Rn) =

∫
Rn

∣∣∣∣∫
Rn

Hx(y)dy

∣∣∣∣ dx
≤
∫
Rn

∫
Rn

|Hx(y)|dydx

= ‖H‖L1(Rn×Rn)

= ‖f‖L1(Rn)‖g‖L1(Rn).

ii) If r =∞, then it becomes the usual Hölder inequality, indeed

|(f ∗ g)(x)| ≤
∫
Rn

|f(y)||g(x− y)| dy ≤ ‖f‖Lp(Rn)‖g(x− ·)‖Lp′ (Rn) = ‖f‖Lp(Rn)‖g‖Lp′ (Rn),

where ‖g(x − ·)‖Lp′ (Rn) means that the norm is computed in the y variable, for a fixed
x ∈ Rn.

If p = ∞ (the case p′ = ∞ is analogous) then we need to have p′ = 1 and consequently
r =∞. Thus the proof runs as in the previous case.

Suppose now that r, p, p′ <∞. We rewrite

f(y)g(x− y) =
(
f(y)pg(x− y)p

′
) 1

r
f(y)1− p

r g(x− y)1− p′
r .

Note that

1

r
+

1
p

1− p
r

+
1
p′

1− p′
r

=
1

r
+
r − p
rp

+
r − p′

rp′
=

1

p
+

1

p′
− 1

r
= 1 .

Thus, by using the Hölder inequality with 3 indexes, we have∫
Rn

f(y)g(x− y) dy ≤
(∫

Rn

g(x− y)p
′
f(y)p dy

) 1
r

‖f‖1− p
r

Lp(Rn)‖g‖
1− p′

r

Lp′ (Rn)
.

By taking the Lr−norm on both sides we get

‖f ∗ g‖Lr(Rn) ≤
(∫

Rn

∫
Rn

g(x− y)p
′
f(y)p dydx

) 1
r

‖f‖1− p
r

Lp(Rn)‖g‖
1− p′

r

Lp′ (Rn)
. (1)

Note that by Fubini’s theorem∫
Rn

∫
Rn

g(x− y)p
′
f(y)p dydx =

∫
Rn

∫
Rn

g(x− y)p
′
f(y)p dxdy

=

∫
Rn

(
f(y)p

∫
Rn

g(x− y)p
′
dx

)
dy

= ‖f‖Lp(Rn)‖g‖Lp′ (Rn) . (2)
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Finally, by plugging identity (2) in the inequality (1), we conclude

‖f ∗ g‖Lr(Rn) ≤ ‖f‖
p
r

Lp(Rn)‖g‖
p′
r

Lp′ (Rn)
‖f‖1− p

r

Lp(Rn)‖g‖
1− p′

r

Lp′ (Rn)
= ‖f‖Lp(Rn)‖g‖Lp′ (Rn) .

Exercise 4. Step 1. Let us prove first the statement in the simpler setting where g has compact
support. Let us denote by K ⊂ Rn the support of g and let x be an arbitrary point in Rn. In
order to prove that f ∗ g is continuous in x, let

B(x−K, 1) := {z ∈ Rn : ∃y ∈ K : |(x− y)− z| ≤ 1} .

Since K is compact, then also B(x − K, 1) is compact and therefore the restriction of f to
B(x−K, 1) is uniformly continuous, namely ∀ε > 0 there exists δ ∈ (0, 1) such that

|x′ − x′′| ≤ δ with x′, x′′ ∈ B(x−K, 1) ⇒ |f(x′)− f(x′′)| < ε.

Let x, x̃ ∈ Rn with |x− x̃| ≤ δ. Then

|f ∗ g(x)− f ∗ g(x̃)| =
∣∣∣∣∫

Rn

(f(x− y)− f(x̃− y))g(y)dy

∣∣∣∣
≤
∫
Rn

|f(x− y)− f(x̃− y)||g(y)|dy

=

∫
K

|f(x− y)− f(x̃− y)||g(y)|dy.

Since for every y ∈ K we have the both x′ := x− y and x′′ := x̃− y belong to B(x−K, 1), we
can estimate the last integral with ε

∫
K
|g(y)|dy. Since g belongs to Lp(Rn) and has compact

support, then g ∈ L1(Rn), therefore the obtained estimate

|f ∗ g(x)− f ∗ g(x̃)| ≤ ε

∫
K

|g(y)|dy ∀x̃ : |x− x̃| ≤ δ

shows that f ∗ g is continuous in x.
We now prove the second part of the statement, again under the additional assumption that
g has compact support. Exactly as before, we have that ∂f

∂xi
is uniformly continuous on the

compact set B(x−K, 1), i.e. for every ε > 0 there exists δ ∈ (0, 1) such that

|x′ − x′′| ≤ δ with x′, x′′ ∈ B(x−K, 1) ⇒
∣∣∣∣∂f(x′)

∂xi
− ∂f(x′′)

∂xi

∣∣∣∣ < ε.

Let σ ∈ (0, δ). By the definition of f ∗ g and Lagrange theorem, we have

f ∗ g(x+ σei)− f ∗ g(x)

σ
=

∫
Rn

g(y)
f(x− y + σei)− f(x− y)

σ
dy

=

∫
Rn

g(y)
∂f

∂xi
(x− y + t(σ)ei)dy

for some t(σ) ∈ [0, σ] depending on y. Since σ ∈ (0, δ), by the uniform continuity of ∂f
∂xi

on
B(x−K, 1), we have∣∣∣∣ ∂f∂xi (x− y + t(σ)ei)−

∂f

∂xi
(x− y)

∣∣∣∣ < ε ∀y ∈ K.
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Observe that∣∣∣∣f ∗ g(x+ σei)− f ∗ g(x)

σ
− ∂f

∂xi
∗ g(x)

∣∣∣∣ =

∣∣∣∣∫
Rn

g(y)
∂f

∂xi
(x− y + t(σ)ei)dy −

∫
Rn

g(y)
∂f

∂xi
(x− y)dy

∣∣∣∣
≤
∫
Rn

|g(y)|
∣∣∣∣ ∂f∂xi (x− y + t(σ)ei)−

∂f

∂xi
(x− y)

∣∣∣∣
≤ ε‖g‖L1(Rn).

Since ε > 0 was arbitrary, letting ε→ 0+, we get

∂(f ∗ g)

∂xi
(x) =

∂f

∂xi
∗ g(x).

Moreover, ∂f
∂xi

is continuous, therefore by the first part of the exercise, ∂f
∂xi
∗ g is continuous and

hence ∂(f∗g)
∂xi

is continuous as well.

Repeating the argument for every i = 1, . . . , n, this shows that f ∗ g ∈ C1(Rn).
Step 2. We remove the extra assumption that g has compact support.
For ε > 0 fixed, there is a compact set Kε ⊂ Rn and two functions g1, g2 ∈ Lp(Rn) such that

g = g1 + g2, spt (g1) ⊂ Kε, ‖g2‖Lp(Rn) ≤ ε.

By Step 1 there exists δ ∈ (0, 1) such that

|x− x̃| ≤ δ ⇒ |f ∗ g1(x)− f ∗ g1(x̃)| < ε‖g1‖L1(Rn),

then

|f ∗ g(x)− f ∗ g(x̃)| ≤ |f ∗ g1(x)− f ∗ g1(x̃)|+ |f ∗ g2(x)− f ∗ g2(x̃)|
≤ ε‖g1‖L1(Rn) + 2‖f ∗ g2‖L∞(Rn).

For every x ∈ Rn, we have by Hölder inequality

|f ∗ g2(x)| ≤
∫
Rn

|g2(y)|f(x− y)|dy ≤ ‖g2‖Lp(Rn)‖f‖Lp′ (Rn) ≤ ε‖f‖Lp′ (Rn),

hence ‖f ∗ g2‖L∞(Rn) ≤ ε‖f‖Lp′ (Rn). Plugging this into the previous estimate, we get

|f ∗ g(x)− f ∗ g(x̃)| ≤ ε
(
‖g1‖L1(Rn) + 2‖f‖Lp′ (Rn)

)
,

which proves the continuity of f ∗ g.
The same argument works also for ∂f

∂xi
: in the same way we get∥∥∥∥f ∗ g2(x+ σei)− f ∗ g2(x)

σ

∥∥∥∥
L∞(Rn)

≤ ε

∥∥∥∥ ∂f∂xi
∥∥∥∥
Lp′ (Rn)

and then∣∣∣∣f ∗ g(x+ σei)− f ∗ g(x)

σ
− ∂f

∂xi
∗ g(x)

∣∣∣∣ ≤ ∣∣∣∣f ∗ g1(x+ σei)− f ∗ g1(x)

σ
− ∂f

∂xi
∗ g1(x)

∣∣∣∣
+

∣∣∣∣f ∗ g2(x+ σei)− f ∗ g2(x)

σ

∣∣∣∣+

∣∣∣∣ ∂f∂xi ∗ g2(x)

∣∣∣∣
≤ ε

(
‖g1‖Lp(Rn) + 2

∥∥∥∥ ∂f∂xi
∥∥∥∥
Lp′ (Rn)

)
.
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Letting ε→ 0 we obtain
∂(f ∗ g)

∂xi
(x) =

∂f

∂xi
∗ g(x).

Since ∂f
∂xi
∗ g is continuous by the previous point, we have in particular that f ∗ g ∈ C1(Rn).

Exercise 5.

i) Let ε > 0. Choose δ > 0 with the following property: ∀x, y such that |x − y| < δ ⇒
|f(x)− f(y)| < ε (note that this δ exists since f is uniformly continuous).

Then, for every x ∈ Rn we have

|f(x)− (f ∗ ρδ)(x)| =

∣∣∣∣∣f(x)−
∫
B(0,δ)

f(x− y)ρδ(y) dy

∣∣∣∣∣
=

∣∣∣∣∣
∫
B(0,δ)

(
f(x)− f(x− y)

)
ρδ(y) dy

∣∣∣∣∣
≤
∫
B(0,δ)

|f(x)− f(x− y)|ρδ(y) dy ≤ ε .

So, we proved that ∀ε > 0,∃δ > 0 such that

Sup
x∈Rn

|f(x)− (f ∗ ρδ)(x)| < ε ,

which means that f ∗ ρδ → f uniformly, as δ → 0.

ii) The idea is to apply Point i) to uniformly continuous functions approaching f .

Step 1. Let ε > 0 and let us build a uniformly continuous function φ̃ε such that ‖f −
φ̃ε‖Lp(Rn) < ε. Since f ∈ Lp(Rn), then there exists a step function

φε :=
h∑
i=1

ciχKi
such that ‖f − φε‖Lp(Rn) <

ε

2
,

where h ∈ N, ci ∈ R, χKi
denotes the characteristic function of Ki and the sets Ki ⊂ Rn

are compact and pairwise disjoint. In order to build a continuous approximation, observe
that given a compact set K and c ∈ R the functions

νM : x 7→ c (1−Mdist(x,K))+ , with M ∈ R

are uniformly continuous with compact support and they converge to cχK in Lp(Rn) for
every p ∈ [1,+∞) as M → +∞. Here we used the notation (z)+ := max{z, 0} to denote
the positive part of z. By approximating each of the h multiples of the characteristic
functions in the definition of φε, we obtain a uniformly continuous function φ̃ε with
compact support that, for M sufficiently large, satisfies

‖φε − φ̃ε‖Lp(Rn) <
ε

2
.

In particular ‖φε − f‖Lp(Rn) < ε and this concludes Step 1.
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Step 2. By Point i) we have that

φ̃ε ∗ ρδ → φ̃ε uniformly as δ → 0.

In particular there exists δ̄ > 0 such that for every δ ∈ (0, δ) one has

‖φ̃ε − φ̃ε ∗ ρδ‖Lp(Rn) < ε.

Therefore, for δ ∈ (0, δ), we have

‖f − f ∗ ρδ‖Lp(Rn) ≤ ‖f − φ̃ε‖Lp(Rn) + ‖φ̃ε − φ̃ε ∗ ρδ‖Lp(Rn) + ‖φ̃ε ∗ ρδ − f ∗ ρδ‖Lp(Rn)

< 3ε,

where in the last inequality we used

‖φ̃ε ∗ ρδ − f ∗ ρδ‖Lp(Rn) ≤ ‖f − φ̃ε‖Lp(Rn)‖ρδ‖L1(Rn) < ε · 1.

This shows that f ∗ ρδ → f in Lp(Rn).

iii) Given ε > 0 and f ∈ Lp(Rn), we show that there exists a function g ∈ C∞c (Rn) such that
‖f − g‖Lp(Rn) < 2ε.

Observe that a natural candidate would be g = f ∗ρδ with δ small enough but this choice
does not have compact support. Instead, we can consider g = φ̃ε ∗ ρδ(ε), where δ(ε) > 0

is such that ‖φ̃ε − φ̃ε ∗ ρδ(ε)‖Lp(Rn) < ε. In particular

‖f − φ̃ε ∗ ρδ(ε)‖Lp(Rn) ≤ ‖f − φ̃ε‖Lp(Rn) + ‖φ̃ε − φ̃ε ∗ ρδ(ε)‖Lp(Rn) < 2ε.

Notice moreover that φ̃ε ∗ρδ(ε) has compact support since both φ̃ε and ρδ(ε) have compact

support and φ̃ε ∗ ρδ(ε) ∈ C∞(Rn) since ρδ(ε) ∈ C∞(Rn).
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