
EPFL 2022/23
Section MA Dr. Alexis Michelat

Distribution & Interpolation Spaces – Solution sheet 5

Exercise 1.

i) It is sufficient to prove that E ∈ L1
loc(R2). Since E ∈ C∞(R2 \ {0}), then it is enough to

check that ∫
B1(0)

|E(x)|dx <∞.

Indeed we can compute in polar coordinates

1

2π

∫
B1(0)

|Log |x|| dx =

∫ 1

0

|r Log(r)| dr =
1

2
.

ii) For every x 6= 0, we have

∇E(x) =
1

2π

x

|x|2

so, for every x 6= 0,

div∇E(x) =
x

2π
· ∇ 1

|x|2
+

1

2π|x|2
divx =

x

2π
·
(
− 2

|x|3

)
+

2

2π|x|2
= 0.

Exercise 2. By dominated convergence theorem we have∫
R2

E(x)∆φ(x)dx = lim
ε→0

∫
R2\Bε(0)

E(x)∆φ(x)dx

Using twice the divergence theorem, we get∫
R2\Bε(0)

E∆φ =

∫
∂(R2\Bε(0))

E∇φ · ν −
∫
R2\Bε(0)

∇E · ∇φ

=

∫
∂(R2\Bε(0))

E∇φ · ν −
∫
R2\Bε(0)

∇E · ∇φ±
∫
∂(R2\Bε(0))

φ∇E · ν

=

∫
∂(R2\Bε(0))

E∇φ · ν +

∫
R2\Bε(0)

φ∆E +

∫
∂(R2\Bε(0))

φ∇E · ν,

(1)

where ν denotes the outer normal to the set R2 \Bε(0). We now consider the three terms of the
last line separately. The second one is zero thanks to Point ii) of Exercise 1. We estimate the
first term: since |E(x)| = |Log(ε)| for every x ∈ ∂(R2\Bε(0)), and the measure of ∂(R2\Bε(0))
is 2πε, then ∣∣∣∣∫

∂(R2\Bε(0))

E∇φ · ν
∣∣∣∣ ≤ 2πεLog(ε) Sup |∇φ|.

1



In particular

lim
ε→0

∣∣∣∣∫
∂(R2\Bε(0))

E∇φ · ν
∣∣∣∣ = 0.

Now we consider the third term: for every x ∈ ∂(R2 \ Bε(0)) it holds ∇E(x) · ν(x) = 1
2πε

and
|φ(x)− φ(0)| ≤ ε Sup |∇φ|, therefore∫

∂(R2\Bε(0))

φ∇E · ν =

∫
∂(R2\Bε(0))

φ(0)∇E · ν +

∫
∂(R2\Bε(0))

(φ− φ(0))∇E · ν

= φ(0) +

∫
∂(R2\Bε(0))

(φ− φ(0))∇E · ν.

Taking into account the estimates above and the fact that the measure of ∂(R2 \Bε(0)) is 2πε,
we can estimate ∣∣∣∣∫

∂(R2\Bε(0))

(φ− φ(0))∇E · ν
∣∣∣∣ ≤ Sup |∇φ|ε

and in particular we obtain

lim
ε→0

∫
∂(R2\Bε(0))

φ∇E · ν = φ(0).

In conclusion we have proved∫
R2

E(x)∆φ(x)dx = lim
ε→0

∫
R2\Bε(0)

E(x)∆φ(x)dx = φ(0).

In order to prove that ∆E = δ, we observe that

〈∆E, φ〉 = 〈∂11E + ∂22E, φ〉 = 〈∂11E, φ〉+ 〈∂22E, φ〉 = −〈∂1E, ∂1φ〉 − 〈∂2E, ∂2φ〉
= 〈E, ∂11φ〉+ 〈E, ∂22φ〉 = 〈E,∆φ〉.

Since we proved 〈E,∆φ〉 =
∫
R2 E(x)∆φ(x)dx = φ(0), this shows that 〈∆E, φ〉 = φ(0) for every

φ ∈ D(R2), namely ∆E = δ.

Exercise 3. Observe that the measurable function

f(x) =

{
1
x

if x > 0,

0 otherwise

does not define a distribution on R, since it does not belong to L1
loc(R). On the other hand,

g(x) =

{
Log(x) if x > 0,

0 otherwise

belongs to L1
loc(R) so it defines a distribution Tg through

〈Tg, ϕ〉 =

∫
R
gϕ.

The distribution T ′g satisfies the requirements of the exercise.
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Exercise 4. Integrating by parts, we get

Tn(ϕ) =

∫ −ε−n
−∞

ϕ(x)

x
dx+

∫ +∞

ε−n

ϕ(x)

x
dx−

∫ ε+n

ε−n

ϕ(x)

x
dx

=

∫ −ε−n
−∞

ϕ(x)

x
dx+

∫ +∞

ε−n

ϕ(x)

x
dx− φ(x) Log(x)|ε

+
n

x=ε−n
+

∫ ε+n

ε−n

ϕ′(x) Log(x)dx.

We pass to the limit as n→∞:

lim
n→∞

(∫ −ε−n
−∞

ϕ(x)

x
dx+

∫ +∞

ε−n

ϕ(x)

x
dx

)
=

〈
p.v.

(
1

x

)
, ϕ

〉
.

lim
n→∞

(
− φ(x) Log(x)|ε

+
n

x=ε−n

)
= lim

n→∞
ϕ(ε−n ) Log(ε−n )− ϕ(ε+n ) Log(ε+n )

= lim
n→∞

ϕ(0) Log

(
ε−n
ε+n

)
+ (ϕ(ε−n )− ϕ(0)) Log(ε−n )− (ϕ(ε+n )− ϕ(0)) Log(ε+n )

= − ϕ(0) Log a,

where in the last equality we used

|(ϕ(ε+n )− ϕ(0)) Log(ε+n )| ≤ ε+n |Log(ε+n )| Sup |ϕ′(x)| → 0

and similarly for ε−n . The last term can be estimated as follows:∣∣∣∣∣
∫ ε+n

ε−n

ϕ′(x) Log(x)dx

∣∣∣∣∣ ≤ |ε+n − ε−n | Sup |ϕ′|
(
|Log(ε+n )|+ |Log(ε−n )|

)
→ 0.

The conclusion is that Tn converges to the distribution p.v.
(
1
x

)
− Log(a)δ.

Exercise 5. Let ϕ ∈ D(R). We compute

〈g′′, ϕ〉 =

∫
R
g(x)ϕ′′(x) dx =

∫ ∞
0

xϕ′′(x) dx = −
∫ ∞
0

ϕ′(x) dx = ϕ(0),

which shows that g′′ = δ in D′(R).

3


